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ABSTRACT
Social events provide valuable insights into group social behaviors

and public concerns and therefore have many applications in fields

such as product recommendation and crisis management. The com-

plexity and streaming nature of social messages make it appealing

to address social event detection in an incremental learning setting,

where acquiring, preserving, and extending knowledge are major

concerns. Most existing methods, including those based on incre-

mental clustering and community detection, learn limited amounts

of knowledge as they ignore the rich semantics and structural

information contained in the social data. Moreover, they cannot

memorize previously acquired knowledge. In this paper, we pro-

pose a novel Knowledge-Preserving Incremental Heterogeneous

Graph Neural Network (KPGNN) for incremental social event detec-

tion. To acquire more knowledge, KPGNN models complex social

messages into unified social graphs to facilitate data utilization

and explores the expressive power of GNNs for knowledge extrac-

tion. To continuously adapt to the incoming data, KPGNN adopts

contrastive loss terms that cope with a changing number of event

classes. It also leverages the inductive learning ability of GNNs

to efficiently detect events and extends its knowledge from the

previously unseen data. To deal with large social streams, KPGNN

adopts a mini-batch subgraph sampling strategy for scalable train-

ing, and periodically removes obsolete data to maintain a dynamic

embedding space. KPGNN requires no feature engineering and

has few hyperparameters to tune. Extensive experimental results

demonstrate the superiority of KPGNN over various baselines.

KEYWORDS
Social Event Detection, Graph Neural Networks, Incremental Learn-

ing, Contrastive Learning

1 INTRODUCTION
Social events (e.g., Twitter discussions on the Notre-Dame Cathe-

dral fire, as shown in Figure 1) highlight significant happenings

in our daily life, and generally reflect group social behaviors and

widespread public concerns. Social event detection is very impor-

tant since it provides valuable insights for us to make timely re-

sponses, and therefore has many applications in fields including

crisis management, product recommendation, and decision making

∗
This is the corresponding author

[20, 24, 25, 48]. In the last decade, social event detection has become

the research hot spot in social media mining and has drawn more

and more attention from both academia and the industry [8, 29].

The task of social event detection can be formalized as extracting

clusters of co-related messages from social streams (i.e., sequences

of social media messages) to represent events (the corresponding

methods are categorized as document-pivot, i.e., DP methods [1,

16, 21, 29, 47, 48], and are discussed in more detail in Section 5).

Compared to traditional news and articles, social streams such as

Twitter streams are more complex, for the following reasons: they

are generated in sequential order and are enormous in volume; they

contain elements of various types including text, time, hashtags, and

implicit social network structure; their contents are short and often

contain abbreviations that are not in the dictionary; the semantics

of their elements change rapidly. All these characteristics made

social event detection a challenging task [32].

We argue that the complexity and streaming nature of social

messages make it appealing to address the task of social event

detection in an incremental learning [4, 11] setting. Incremental

learning models are characterized by their abilities of 1) acquiring

knowledge from data, 2) preserving previously learned knowledge,

and 3) continually adapting to the incoming data [4]. Existing so-

cial event detection methods, however, cannot fully satisfy these

requirements of incremental learning. Traditional methods based

on incremental clustering [1, 16, 28, 47] and community detection

[8, 21, 23, 44], though are capable of detecting events in an on-

line manner, learn limited amounts of knowledge from social data.

Specifically, they identify events using statistical features such as

word frequencies and co-occurrences while ignoring the rich se-

mantics and structural information contained in social streams to

some extent. Moreover, these methods have very few parameters

in their models. Consequently, they cannot memorize previously

learned information, i.e., they forget what they have learned. Mo-

tivated by graph neural networks (GNNs)’ power in aggregating

structural information and semantics, recent efforts such as [29]

explore GNN-based social event detection and show promising

performances. Nevertheless, [29] assumes that the entire dataset

is available and the output space is fixed. Extending to new data

points requires retraining its model from scratch. In a word, the

task of incremental social event detection is not yet solved.

In this paper, we address incremental social event detection from

a knowledge-preserving perspective, i.e., we design our model to
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continuously extend its knowledge while detecting events from the

incoming social messages. Nevertheless, such knowledge-preserving

incremental social event detection poses significant challenges,

which we summarize as follows. Firstly, as mentioned above, the

model should acquire, preserve, and extend knowledge. This re-

quires the model to efficiently organize and process various ele-

ments in the social streams for full utilization and effectively inter-

pret these elements to discover underlying knowledge that would

help event detection. Moreover, the model needs to efficiently up-

date its knowledge accordingly when new messages arrive. Given

this, continuous training using the new messages is preferred over

retraining from scratch. Secondly, the model needs to handle a

changing number of events (classes) that are unknown. Unlike in

the offline scenario where the total number of classes is pre-known

and fixed, new events arise continuously in the online scenario.

Apparently, classification techniques using softmax cross-entropy

losses cannot be directly applied. Besides, predefining the total

number of events as a hyperparameter is commonly done [1, 48]

but undesirable as it introduces additional constraints. Thirdly, the

model needs to scale to large social streams. As new messages ar-

rive, the model needs to get rid of the obsolete social messages now

and then to maintain a dynamic output space. Also, mini-batch

training [31] is preferable compared to batch training [31], as it

does not require having the entire training dataset in memory.

To tackle the above challenges, we propose a novel knowledge-

preserving incremental social event detection model based on het-

erogeneous GNNs. We name our model as Knowledge-Preserving

Heterogeneous Graph Neural Network or KPGNN in short. KPGNN

employs a document-pivot technique and classifies social messages

based on their correlations. 1) To address the first challenge, i.e., to

acquire, preserve, and extend knowledge, we leverage Heteroge-

neous Information Networks (HINs) [34] to organize social stream

elements of various types into unified social graphs. We then har-

ness the expressive power of GNNs to acquire knowledge from the

semantic and structural information contained in the social graphs.

The GNN parameters, tuned for the social event detection purpose,

preserve the model’s knowledge about the nature of social data.

As new messages arrive, the social graphs are subject to changes.

To cope with that, we design a life-cycle of KPGNN (shown in

Figure 2) to contain a detection stage that directly detects events

from the previously unseen messages and a maintenance stage that

extends the model’s knowledge by resuming the training process

using the new data. Such inference-maintenance design leverages

GNNs’ inductive learning ability, which, as pointed out by [10],

is theoretically discussed [13, 36] yet less explored in real-world

applications. 2) To tackle the second challenge, i.e., dynamic event

classes, we introduce contrastive learning techniques into the train-

ing process. Instead of using cross-entropy loss, we design a triplet

loss that contrasts positive message pairs with the corresponding

negative ones. The triplets are constructed in an online manner,

as inspired by computer vision studies [14, 33], to facilitate incre-

mental learning. We also introduce an additional global-local pair

loss term to better incorporate the graph structure. This term is

based on contrasting global-local structural information [2, 15, 37]

and does not require class labels. 3) To address the third challenge,

i.e., scale to large social graphs, we periodically remove obsolete

messages from the social graphs to keep an up-to-date embedding

Table 1: Glossary of Notations.

Notation Description
𝑆 ;𝑀 Social stream; Message block

𝑚 Message or message as a node type

𝑒;𝐸 Event; Set of events

𝑤 The window size for maintaining the model

𝑜 ; 𝑒;𝑢 Word; Named entity; User (node types)

𝑾
𝑚𝑘

The adjacency matrix between node type𝑚 and 𝑘

G Message graph

𝑁 The total number of messages in G
𝑨 The adjacency matrix of G
𝑿 The initial feature vectors of the messages in G

E(𝑿 ,𝑨) GNN that embeds the messages in G
𝑙 ;𝐿 GNN layer number; Total number of layers

𝑏;𝐵 Mini-batch number; Total number of mini-batches

{𝑚𝑏 } A set of messages in the 𝑏-th mini-batch

𝑐1, ..., 𝑐𝐿 The number of neighbors sampled in each layer

𝒉(𝑙)𝑚𝑖
The representation of𝑚𝑖 at the 𝑙-th layer

𝒉𝑚𝑖
The final representation of𝑚𝑖

𝑚𝑖+ A message in the same class as𝑚𝑖

𝑚𝑖− A message that is not in the same class as𝑚𝑖

𝒔 The summary vector of G
˜𝒉𝑚𝑖

The corrupted representation of𝑚𝑖

L𝑡 Triplet loss

L𝑝 Global-local pair loss

space. We also adopt a mini-batch subgraph sampling algorithm

[13] for scalable and efficient training.

We conduct extensive experiments on a large-scale Twitter cor-

pus [26] that is publicly available. The empirical results show that

KPGNN achieves better performances compared to various base-

lines by effectively preserving event-detection oriented knowledge.

We make our code and preprocessed data publicly available
1
.

We summarize our main contributions as follows:

• We formalize the task of social event detection in an incre-

mental learning setting.

• We design a novel heterogeneous GNN-based knowledge-

preserving incremental social event detection model, namely

KPGNN. KPGNN continuously detects events from the in-

coming social streams while possessing the power of inter-

preting complex social data to accumulate knowledge. To

the best of our knowledge, we are the first to use GNNs in

incremental social event detection.

• We empirically demonstrate the effectiveness of the pro-

posed KPGNN model.

2 NOTATIONS AND PROBLEM
FORMULATION

We first summarize the main notations used in this paper in Table 1.

Then we formalize Social Stream, Social Event, Social Event Detection,
and Incremental Social Event Detection as follows.

1
https://github.com/RingBDStack/KPGNN

https://github.com/RingBDStack/KPGNN
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Figure 1: The architecture of the proposed KPGNN model (best viewed in color). (a) is a heterogeneous social graph that combines various types

of elements contained in the raw messages. Different node colors denote different node types. (b) is the initial feature vectors of the messages. (c) is a
homogeneous message graph that incorporates (a) and (b) (detailed in Section 3.2). (d) shows a GNN-based encoder that learns representations for the

messages in (c). (e) calculates triplet loss L𝑡 and global-local pair loss L𝑝 through contrastive learning. In (e), two orange bars form a positive pair while one

orange bar and one blue bar denote a negative pair. (f) clusters messages into social events.
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Figure 2: Incremental detection life-cycle of the proposed KPGNN
model. Stage I pre-trains an initial KPGNN model. In Stage II, the pre-
trained KPGNN model is directly used to detect social events from unseen

messages. In Stage III, the KPGNNmodel is maintained by continuing train-

ing using the new messages arrived in Stage II. The maintained KPGNN

model can then be used for the next detection stage.𝑀0,𝑀𝑡+1,𝑀𝑡+𝑤 denote

the input message blocks and 𝑤 is the window size for maintaining the

model. The colored bubbles stand for clusters of messages, i.e., social events.

Definition 2.1. A social stream 𝑆 = 𝑀0, ..., 𝑀𝑖−1, 𝑀𝑖 , ... is a
continuous and temporal sequence of blocks of social messages, where
𝑀𝑖 is a message block that contains all the messages arrive during
time period [𝑡𝑖 , 𝑡𝑖+1). We denote a message block𝑀𝑖 as𝑀𝑖 = {𝑚 𝑗 |1 ≤
𝑗 ≤ |𝑀𝑖 |}, where |𝑀𝑖 | is the total number of messages contained
in 𝑀𝑖 , and 𝑚 𝑗 is one message. We denote a social message 𝑚 𝑗 as
𝑚 𝑗 = {𝑑 𝑗 , 𝑢 𝑗 , 𝑡 𝑗 }, where 𝑑 𝑗 , 𝑢 𝑗 , and 𝑡 𝑗 stand for the associated text
document, users (sender and mentioned users), and timestamp of𝑚 𝑗 ,
respectively.

Definition 2.2. A social event 𝑒 = {𝑚𝑖 |1 ≤ 𝑖 ≤ |𝑒 |} is a set of
correlated social messages that discuss the same real-world happening.
Note that we assume each social message belongs to at most one event.

Definition 2.3. Given a message block 𝑀𝑖 , a social event de-
tection algorithm learns a model 𝑓 (𝑀𝑖 ;𝜃 ) = 𝐸𝑖 , such that 𝐸𝑖 =

{𝑒𝑘 |1 ≤ 𝑘 ≤ |𝐸𝑖 |} is a set of events contained in𝑀𝑖 . Here, 𝜃 denotes
the parameter of 𝑓 .

Definition 2.4. Given a social stream 𝑆 , an incremental social
event detection algorithm learns a sequence of event detectionmodels
𝑓0, ..., 𝑓𝑡−𝑤 , 𝑓𝑡 , ..., such that 𝑓𝑡 (𝑀𝑖 ;𝜃𝑡 , 𝜃𝑡−𝑤) = 𝐸𝑖 for all message
blocks in {𝑀𝑖 |𝑡 + 1 ≤ 𝑖 ≤ 𝑡 +𝑤}. Here, 𝐸𝑖 = {𝑒𝑘 |1 ≤ 𝑘 ≤ |𝐸𝑖 |} is a
set of events contained in message block𝑀𝑖 ,𝑤 is the window size for
updating the model, 𝜃𝑡 and 𝜃𝑡−𝑤 are the parameters of 𝑓𝑡 and 𝑓𝑡−𝑤 ,
respectively. Note that 𝑓𝑡 extends the knowledge of its predecessor
𝑓𝑡−𝑤 by depending on 𝜃𝑡−𝑤 . Specially, we call 𝑓0 which extends no
previous model as the initial model.

3 METHODOLOGY
In this section, we introduce our proposed KPGNN model. Specif-

ically, Section 3.1 introduces the life-cycle of KPGNN to give the

big picture of how KPGNN operates incrementally. Sections 3.2-3.5

zoom into the components of KPGNN, which are designed with the

aims of incremental knowledge acquiring and preserving. Finally,

Section 3.6 analyzes the time complexity of KPGNN.

3.1 Continuous Detection Framework
KPGNN follows Definition 2.4 and operates incrementally. Figure 2

and Algorithm 1 depict the working process of KPGNN. As shown

in Figure 2, the life-cycle of KPGNN contains three stages, i.e., pre-

training, detection, and maintenance. In the pre-training stage, we

construct an initial message graph (detailed in Section 3.2) and train

an initial model (Sections 3.3 and 3.4). In the detection stage, we
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Algorithm 1: KPGNN: Knowledge-Preserving Heteroge-
neous Graph Neural Network

Input: A social stream 𝑆 = 𝑀0, 𝑀1, 𝑀2, ..., available labels*,

window size𝑤 , the number of layers 𝐿, and the

number of mini-batches 𝐵.

Output: Sets of events: 𝐸0, 𝐸1, 𝐸2, ....
1 for 𝑡 = 0, 1, 2, ... do
2 if 𝑡 == 0 then
3 G ← construct initial message graph (Section 3.2)

4 else
5 G ← update𝑀𝑡 into message graph (Section 3.2)

6 if 𝑡 ! = 0 then // Detect events from 𝑀𝑡

7 for 𝑙 = 1, 2, ..., 𝐿 do
8 𝒉(𝑙)𝑚𝑖

← Eq. (2), ∀𝑚𝑖 ∈ 𝑀𝑡

9 𝒉𝑚𝑖
← 𝒉(𝐿)𝑚𝑖

,∀𝑚𝑖 ∈ 𝑀𝑡

10 𝐸𝑡 ← message clustering (Section 3.5)

11 if 𝑡%𝑤 == 0 then // Pre-train or maintain model
12 if 𝑡 ! = 0 then
13 G ← remove obsolete messages (Section 3.2)

14 for 𝑏 = 1, 2, ..., 𝐵 do // Train in mini-batches
15 {𝑚𝑏 } ← sample a mini-batch of messages from

G (Section 3.4)

16 for 𝑙 = 1, 2, ..., 𝐿 do
17 𝒉(𝑙)𝑚𝑖

← Eq. (2), ∀𝑚𝑖 ∈ {𝑚𝑏 }

18 𝒉𝑚𝑖
← 𝒉(𝐿)𝑚𝑖

,∀𝑚𝑖 ∈ {𝑚𝑏 }
19 𝑇 ← triplet sampling ∀𝑚𝑖 ∈ {𝑚𝑏 }(Section 3.4)

20 L𝑡 ← Eq. (3), ∀𝑚𝑖 ∈ {𝑚𝑏 }
21 𝒔, ˜𝒉𝑚𝑖

← calculate summary and corrupted

representations ∀𝑚𝑖 ∈ {𝑚𝑏 }(Section 3.4)

22 L𝑝 ← Eq. (4), ∀𝑚𝑖 ∈ {𝑚𝑏 }
23 Back-propagation to update parameters;

*Labels are used for pre-training and maintenance; full labeling is not required (see

Section 3.4 for details).

update themessage graphwith the inputmessage block (Section 3.2)

and detect events (Section 3.5). The current KPGNN model works

on a continuous series of blocks before entering the maintenance

stage. In the maintenance stage, we remove obsolete messages from

the message graph (Section 3.2) and resume model training using

data that arrived within the last window. The maintenance stage

allows the model to forget obsolete knowledge (we experiment

on different forgetting strategies in Section 4.4) and equips the

model with the latest knowledge. The maintained model can then

be used for detection in the next window. In this manner, KPGNN

continuously adapts to the incoming data to detect new events and

update the model’s knowledge.

3.2 Heterogeneous Social Message Modeling
During preprocessing, we aim to 1) fully leverage the social data

by extracting different types of informative elements from the mes-

sages, and 2) organize the extracted elements in a unified manner

to facilitate further processing. We leverage heterogeneous infor-

mation networks (HINs) [34] for these purposes. A HIN is a graph

that contains more than one type of nodes and edges. Figure 1 (a)

shows an example of HIN. Given a message𝑚𝑖 , we extract a set

of named entities
2
and words (with very common and very rare

words filtered out) from its document. The extracted elements, to-

gether with a set of users associated with𝑚𝑖 and𝑚𝑖 itself, are added

as nodes into a HIN. We add edges between𝑚𝑖 and its elements.

For example, in Figure 1 (a), from𝑚1, we can extract tweet node

“𝑚1”, word nodes including “fire” and “tears” (for simplicity, the

figure only shows two words, while there are more to be extracted),

and user nodes including “user1” and “user2”. We add edges be-

tween “𝑚1” and the other nodes. We repeat the same process for

all the messages, with repetitive nodes merged. Eventually, we get

a heterogeneous social graph containing all the messages and their

elements of different types. We denote the node types, i.e., message,

word, named entity, and user as𝑚, 𝑜 , 𝑒 , and 𝑢, respectively.

Existing heterogeneous GNNs [17, 39, 41, 45, 46] typically retain

heterogeneous node types throughout their models as they care

to learn the representations for all the nodes. However, KPGNN,

as a document-pivot model, focuses on learning the correlations

between messages and therefore we adopt a different design and

map the heterogeneous social graph into a homogeneous message

graph as shown in Figure 1 (c). The homogeneous message graph

only contains message nodes and there are edges between mes-

sages that share some common elements. Through mapping, the

homogeneous message graph preserves the message correlations

encoded by the heterogeneous social graph. Specifically, the map-

ping process follows:

𝑨𝑖, 𝑗 =𝑚𝑖𝑛

{[∑
𝑘

𝑾
𝑚𝑘
·𝑾⊺

𝑚𝑘

]
𝑖, 𝑗
, 1

}
, 𝑘 ∈ {𝑜, 𝑒,𝑢}. (1)

Here, 𝑨 ∈ {0, 1}𝑁×𝑁 stands for the adjacency matrix of the homo-

geneous message graph, where 𝑁 is the total number of messages

in the graph. ·
𝑖, 𝑗

stands for the matrix element at the 𝑖-th row and

the 𝑗-th column, 𝑘 denotes a node type. 𝑾
𝑚𝑘

stands for a sub-

matrix of the adjacency matrix of the heterogeneous social graph

that contains rows of type𝑚 and columns of type 𝑘 . ·⊺ stands for

matrix transpose, and 𝑚𝑖𝑛
{
,
}
takes the smaller between its two

operands. If messages 𝑚𝑖 and 𝑚 𝑗 link to some common type 𝑘

nodes,

[
𝑾

𝑚𝑘
·𝑾⊺

𝑚𝑘

]
𝑖, 𝑗

will be greater than or equal to one, and

𝑨𝑖, 𝑗 will be equal to one.

To leverage the natural language semantics and temporal infor-

mation in the data, we construct feature vectors of the messages,

as shown in Figure 1 (b). Specifically, document features are cal-

culated as an average of the pre-trained word embeddings [27] of

all the words in the documents. Temporal features are calculated

by encoding the timestamps: we convert each timestamp to OLE

date (a floating-point number representing the number of days af-

ter December 30, 1899), whose fractional and integral components

form a 2-d vector. We then perform a message-wise concatena-

tion of the two. The resulting initial feature vectors, denoted as

𝑿 = {𝒙𝑚𝑖
∈ R𝑑 |1 ≤ 𝑖 ≤ 𝑁 }}, where 𝒙𝑚𝑖

is the initial feature vector

of𝑚𝑖 and 𝑑 is the dimension, are associated with the corresponding

2
https://spacy.io/api/annotation#section-named-entities

https://spacy.io/api/annotation##section-named-entities
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message nodes. We denote the homogeneous message graph as

G = (𝑿 ,𝑨).
Note that G is not static. When a new message block arrives for

detection (shown in Figure 2 stage II), we update G by inserting

the new message nodes, their linkages with the existing message

nodes, and the linkages within themselves into G. Similarly, we

periodically remove obsolete message nodes and edges associated

with them from G (shown in Figure 2 stage III). We empirically

compare different update-maintenance strategies in Section 4.4.

3.3 Knowledge-Preserving Incremental
Message Embedding

To study the correlations betweenmessages in a knowledge-preserving

manner, we leverage GNNs to learnmessage representations. Specif-

ically, we train a GNN encoder E : R𝑁×𝑑 × {0, 1}𝑁×𝑁 → R𝑁×𝑑′ ,
such that E(𝑿 ,𝑨) = {𝒉𝑚𝑖

∈ R𝑑′ |1 ≤ 𝑖 ≤ 𝑁 }, where 𝒉𝑚𝑖
represents

the high-level representation of message𝑚𝑖 . Figure 1 (d) illustrates

this process. E contains 𝐿 layers and the layer-wise propagation

follows:

𝒉(𝑙)𝑚𝑖
←

ℎ𝑒𝑎𝑑𝑠

∥
(
𝒉(𝑙−1)𝑚𝑖

⊕ 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟
∀𝑚 𝑗 ∈N(𝑚𝑖 )

(
𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (𝒉(𝑙−1)𝑚 𝑗

)
) )
. (2)

Here, 𝒉(𝑙)𝑚𝑖
is the representation of𝑚𝑖 at the (𝑙)-th GNN layer, and

𝒉(0)𝑚𝑖
= 𝒙𝑚𝑖

. N(𝑚𝑖 ) denotes a set of neighbors of 𝑚𝑖 according

to 𝑨. ⊕ stands for an aggregation, e.g., summation, of the infor-

mation contained in its two operands.

ℎ𝑒𝑎𝑑𝑠

∥ represents head-wise

concatenation [35]. 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (·) and 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 (·) [13] are de-

signed differently in different GNNs. The former extracts useful

information from the neighboring messages’ representations while

the latter summarizes the neighborhood information. We use 𝒉(𝐿)𝑚𝑖

as the final representation of𝑚𝑖 , i.e., 𝒉𝑚𝑖
.

In order for KPGNN to work incrementally and embed previ-

ously unseen messages, we adopt the graph attention mechanism

[36] for neighborhood information extraction and aggregation. Our

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (·) and 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 (·) do not assume a fixed graph struc-

ture as did in [12, 18, 40], instead, they consider the similarities

between the representations of the source message and its neigh-

boring messages. In this way, KPGNN handles evolving message

graphs where new message nodes continuously joining in and the

model generalizes to even completely unseen message graphs.

KPGNN preserves knowledge: the learned representations en-

code the model’s knowledge about the messages, which is a fusion

of natural language semantics, temporal information, and the struc-

tural information of the homogeneous message graph; the learned

parameters preserve the model’s cognition about the nature of so-

cial data and are especially tuned, via contrastive training (discussed

in detail in Section 3.4), for the social event detection purpose.

3.4 Scalable Training via Contrastive Learning
As new messages continuously arrive, there can be new events that

are previously unseen by the model. Cross-entropy loss functions,

though widely adopted by various GNNs [18, 36], are no longer ap-

plicable. We instead construct a contrastive triplet loss that enables

KPGNN to differentiate the events without constraining their total

number. As shown in Figure 1 (e), for each message𝑚𝑖 (referred to

as an anchor message), we sample a positive message𝑚𝑖+ (i.e., a
message from the same class) and a negative message𝑚𝑖− (i.e., a
message from a different class) to form a triplet (𝑚𝑖 ,𝑚𝑖+,𝑚𝑖−). The
triplet loss function pushes positive messages close to and negative

messages far away from anchors and is formalized as:

L𝑡 =
∑

(𝑚𝑖 ,𝑚𝑖+,𝑚𝑖−) ∈𝑇
𝑚𝑎𝑥

{
D(𝒉𝑚𝑖

,𝒉𝑚𝑖+) − D(𝒉𝑚𝑖
,𝒉𝑚𝑖−) + 𝑎, 0

}
.

(3)

Here, D(, ) computes the Euclidean distance between two vectors.

𝑎 ∈ R is a hyperparameter controlling how farther away should

the negative messages be compared to the positive ones.𝑚𝑎𝑥
{
,
}

takes the larger between its two operands. 𝑇 is a set of triplets

sampled in an online manner [14] and we focus on the hard triplets

[14], i.e., triplets that satisfy D(𝒉𝑚𝑖
,𝒉𝑚𝑖−) < D(𝒉𝑚𝑖

,𝒉𝑚𝑖+) for
efficient training, as the usage of hard triplets results in faster con-

vergence while helps to learn sharper boundaries between positive

and negative samples [14].

To better incorporate the structural information of the message

graph, we construct an additional global-local pair loss that enables

KPGNN to discover and preserve the features of similar local struc-

tures, as shown in Figure 1 (e). Specifically, the global-local pair loss

function, inspired by [37], takes a noise-contrastive form. It seeks

to maximize the mutual information between the local message

representations and the global summary of the message graph by

minimizing their binary cross-entropy:

L𝑝 =
1

𝑁

𝑁∑
𝑖=1

(
logS(𝒉𝑚𝑖

, 𝒔) + log
(
1 − S( ˜𝒉𝑚𝑖

, 𝒔)
) )
. (4)

Here, 𝒔 ∈ R𝑑′ is a summary of the message graph and we simply use

the average of all message representations.
˜𝒉𝑚𝑖

is a corrupted repre-

sentation of𝑚𝑖 and is learned by E(𝑿̃ ,𝑨), where 𝑿̃ is constructed

by row-wise shuffle of 𝑿 . S(, ) is a bilinear scoring function that

outputs the probability of its two operands coming from a joint

distribution (i.e., being learned from the same graph). Note L𝑝
is readily applicable to dynamic message graphs and we show in

Sections 4.2 and 4.3 with experiments how L𝑝 helps improve the

performance. The overall loss of KPGNN is simply the summation

of L𝑡 and L𝑝 .
To make KPGNN scalable to large message graphs, we adopts

mini-batch subgraph sampling [13] during training. The triplets

used in L𝑡 are constructed from each mini-batch. 𝒉𝑚𝑖
,
˜𝒉𝑚𝑖

and 𝒔
in L𝑝 are also calculated from each subgraph.

It is important to note: 1) KPGNN, as an incremental model, is

not trained once and for all. Instead, we periodically resume the

training to keep the model’s knowledge up-to-date, as shown in

Figure 2 stage III. In the maintenance stage, the training does not

start from scratch, rather, it is continued based on the previous

knowledge (i.e., the existing model parameters) using the new data

arrived during the last time window. 2) Although the calculation of

L𝑡 needs labels, KPGNN does not require full labeling, as 𝑇 can be

sampled from the labeled messages. The unlabeled messages also

contribute, as their features and structural information could be

aggregated into the representations of the labeled ones through

propagation (detailed in Section 3.3). The calculation of L𝑝 , on
the other hand, does not require any labels. Such design suits the
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real-world scenarios where hashtags can be used as labels and the

social streams can be considered as partially labeled.

3.5 Message Clustering
At the detection stage, we cluster the messages based on the learned

message representations. Distance-based clustering algorithms such

as K-Means and density-based ones such as DBSCAN [6] can be

readily used for clustering the representations. Among them, [6]

does not require specifying the total number of classes and there-

fore suits the need for incremental detection. This process is shown

in Figure 1 (f). KPGNN outputs the resulting message clusters as

social events, following Definition 2.2.

3.6 Time Complexity of KPGNN
The overall running time of KPGNN is𝑂 (𝑁𝑒 ), where 𝑁𝑒 is the total

number of edges in the message graph. Specifically, the running

time of constructing the initial message graph (Algorithm 1 line

3) or updating the message graph (Algorithm 1 line 5) is 𝑂 (𝑁 +
𝑁𝑒 ) = 𝑂 (𝑁𝑒 ), where 𝑁 is the total number of messages in the

message graph. The propagation of the GNN encoder E (Algorithm

1 lines 7-9 and 16-18) takes 𝑂 (𝑁𝑑𝑑 ′ + 𝑁𝑒𝑑
′) = 𝑂 (𝑁𝑒 ), where 𝑑

and 𝑑 ′ are the input and output dimensions of E. The mini-batch

subgraph sampling (Algorithm 1 line 15) takes 𝑂 (∏𝐿
𝑙=1

𝑐𝑙 ), where
𝑐1, ..., 𝑐𝑙 , ...𝑐𝐿 are 𝐿 user-specified constants that define the number

of neighbors sampled from the neighborhood of one message in

each layer. In practice,

∏𝐿
𝑙=1

𝑐𝑙 ≪ 𝑁𝑒 . Triplet sampling (Algorithm

1 line 19) takes 𝑂 (∑𝐵
𝑏=1
|{𝑚𝑏 }|2), where |{𝑚𝑏 }| is the number of

messages in the 𝑏-th batch. The corruption of the message graph

(Algorithm 1 line 21) takes 𝑂 (𝑁 ).
We can tell that maintaining a light-weighted message graph

would help reduce time consumption and we compare different

maintenance strategies in Section 4.4.

4 EXPERIMENTS
In this section, we first introduce the experimental setups, including

the dataset, baselines, experimental setting, and the evaluation

metrics. We then compare KPGNN to various baselines including

offline as well as incremental social event detection models. We also

investigate the effects of adopting different forgetting strategies in

the maintenance stage of KPGNN’s life-cycle. At last, we provide

sensitivity analysis for the hyperparameters of KPGNN.

4.1 Experimental Setup
4.1.1 Dataset. We conduct our experiments on a large-scale, pub-

licly available Twitter dataset
3
collected for DP social event detec-

tion methods’ evaluations from [26]. After filtering out repeated

and unfetchable tweets, the dataset contains 68,841 manually la-

beled tweets related to 503 event classes and spread over a period

of four weeks.

4.1.2 Baselines. We compare KPGNN to general message repre-

sentation learning and similarity measuring methods, offline social

event detection methods, and the incremental ones. Our baselines

include:Word2vec [27], which uses the average of the pre-trained

3
http://mir.dcs.gla.ac.uk/resources/

Word2vec embeddings of all the words in a message as its rep-

resentation; Latent Dirichlet Allocation (LDA) [3], which is a

generative statistical model that learns the message documents’

representations by modeling the underlying topic and word distri-

butions; Word Mover’s Distance (WMD) [19], which measures

the dissimilarity between two message documents by calculating

the minimum amount of distance that the word embeddings in

one need to travel to reach that of the other; Pairwise Popularity
Graph Convolutional Network (PP-GCN) [29], which is an of-

fline fine-grained social event detection method based on GCN[18];

EventX [21] is a fine-grained event detectionmethod based on com-

munity detection and is applicable to the online scenario;KPGNN𝑡

is a variation of the proposed KPGNN model, in which the global-

local pair loss term L𝑝 is removed from the loss function and only

the triplet loss term L𝑡 is used.

4.1.3 Experimental Setting and Implementation. For LDA, we set
the total number of topics to 50. For EventX, we adopt the hyper-

parameters as suggested in the original paper [21]. For GNN-based

methods (PP-GCN, KPGNN, and KPGNN𝑡 ), we set the total number

of heads to 4, embedding dimension 𝑑 ′ to 32, the total number

of layers 𝐿 to 2, learning rate to 0.001, optimizer to Adam, and

training epochs to 15 with a patience of 5 for early stopping. For

KPGNN, and KPGNN𝑡 , we set the maintenance window size𝑤 to

3, mini-batch size |{𝑚𝑏 }| to 2000, triplet margin 𝑎 to 3, and the

number of neighbors sampled for each message in the first layer

𝑐1 and that of the second layer 𝑐2 to 800. We observe the effects

of changing 𝑤 and |{𝑚𝑏 }| in Section 4.5. In incremental evalua-

tion (Section 4.3), we adopt the latest message strategy (different

update-maintenance strategies are detailed and studied in Section

4.4). We repeat all experiments for 5 times and report the mean

and standard variance of the results. Note that although KPGNN

does not require pre-defining the total number of event classes,

some baselines (Word2vec, LDA, and WMD) do. For a fair com-

parison, after we obtain the message similarity matrix from WMD

and message representations from the other models except EventX

(EventX does not pre-define its total number of detected classes), we

leverage Spectral [43] and K-Means clustering, respectively, and set

the total number of classes to the number of ground-truth classes.

Otherwise, DBSCAN [6] can be used if the total number of classes

is unknown as often in the case of incremental detection.

For Word2vec, we use the pre-trained 300-d GloVe[30] vectors
4
.

For LDA and WMD, we use the open-source implementations
5,6

.

We implement EventX with Python 3.7.3 and PP-GCN, KPGNN,

and KPGNN𝑡 with Pytorch 1.6.0. All experiments are conducted on

a 64 core Intel Xeon CPU E5-2680 v4@2.40GHz with 512GB RAM

and 1×NVIDIA Tesla P100-PICE GPU.

4.1.4 Evaluation Metrics. To evaluate the performances of all mod-

els, wemeasure the similarities between their detectedmessage clus-

ters and the ground-truth clusters. We utilize Normalized Mutual

Information (NMI) [7], Adjusted Mutual Information (AMI) [38],

and Adjusted Rand Index (ARI) [38]. NMI measures the amount of

information one can extract from the distribution of the predictions

4
https://spacy.io/models/en-starters#en_vectors_web_lg

5
https://radimrehurek.com/gensim/models/ldamodel.html

6
https://tedboy.github.io/nlps/generated/generated/gensim.similarities.

WmdSimilarity.html

http://mir.dcs.gla.ac.uk/resources/
https://spacy.io/models/en-starters##en_vectors_web_lg
https://radimrehurek.com/gensim/models/ldamodel.html
https://tedboy.github.io/nlps/generated/generated/gensim.similarities.WmdSimilarity.html
https://tedboy.github.io/nlps/generated/generated/gensim.similarities.WmdSimilarity.html
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Table 2: Offline evaluation results. The best results are marked in bold and second-best in italic.

Metrics Word2vec [27] LDA [3] WMD [19] PP-GCN [29] EventX [21] KPGNN𝑡 KPGNN

NMI .44±.00 .29±.00 .65±.00 .68±.02 .72±.00 .69±.01 .70±.01
AMI .13±.00 .04±.00 .50±.00 .50±.02 .19±.00 .51±.00 .52±.01
ARI .02±.00 .01±.00 .06±.00 .20±.01 .05±.00 .21±.01 .22±.01

Table 3: The statistics of the social stream.

Blocks 𝑀0 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 𝑀9 𝑀10

# of messages 20, 254 8, 722 1, 491 1, 835 2, 010 1, 834 1, 276 5, 278 1, 560 1, 363 1, 096

Blocks 𝑀11 𝑀12 𝑀13 𝑀14 𝑀15 𝑀16 𝑀17 𝑀18 𝑀19 𝑀20 𝑀21

# of messages 1, 232 3, 237 1, 972 2, 956 2, 549 910 2, 676 1, 887 1, 399 893 2, 410

Table 4: Incremental evaluation NMIs. The best results are marked in bold and second-best in italic.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7

Word2vec [27] .19±.00 .50±.00 .39±.00 .34±.00 .41±.00 .53±.00 .25±.00
LDA [3] .11±.00 .27±.01 .28±.00 .25±.00 .26±.00 .32±.00 .18±.01

WMD [19] .32±.00 .71±.00 .67±.00 .50±.00 .61±.00 .61±.00 .46±.00
PP-GCN [29] .23±.00 .57±.02 .55±.01 .46±.01 .48±.01 .57±.01 .37±.00
EventX [21] .36±.00 .68±.00 .63±.00 .63±.00 .59±.00 .70±.00 .51±.00
KPGNN𝑡 .38±.01 .78±.01 .77±.00 .68±.01 .73±.01 .81±.00 .54±.01
KPGNN .39±.00 .79±.01 .76±.00 .67±.00 .73±.01 .82±.01 .55±.01

Blocks 𝑀8 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14

Word2vec [27] .46±.00 .35±.00 .51±.00 .37±.00 .30±.00 .37±.00 .36±.00
LDA [3] .37±.01 .34±.00 .44±.01 .33±.01 .22±.01 .27±.00 .21±.00

WMD [19] .67±.00 .55±.00 .61±.00 .50± .00.60±.00 .54±.00 .66±.00
PP-GCN [29] .55±.02 .51±.02 .55±.02 .50±.01 .45±.01 .47±.01 .44±.01
EventX [21] .71±.00 .67±.00 .68±.00 .65±.00 .61±.00 .58±.00 .57±.00
KPGNN𝑡 .79±.01 .74±.01 .79±.01 .73±.00 .69±.01 .68±.01 .68±.01
KPGNN .80±.00 .74±.02 .80±.01 .74±.01 .68±.01 .69±.01 .69±.00

Blocks 𝑀15 𝑀16 𝑀17 𝑀18 𝑀19 𝑀20 𝑀21

Word2vec [27] .27±.00 .49±.00 .33±.00 .29±.00 .37±.00 .38±.00 .31±.00
LDA [3] .21±.00 .35±.01 .19±.00 .18±.00 .29±.01 .35±.00 .19±.00

WMD [19] .51±.00 .60±.00 .55±.00 .63±.00 .54±.00 .58±.00 .58±.00
PP-GCN [29] .39±.01 .55±.01 .48±.00 .47±.01 .51±.02 .51±.01 .41±.02
EventX [21] .49±.00 .62±.00 .58±.00 .59±.00 .60±.00 .67±.00 .53±.00
KPGNN𝑡 .57±.01 .78±.01 .69±.01 .68±.01 .73±.00 .73±.00 .59±.01
KPGNN .58±.00 .79±.01 .70±.01 .68±.02 .73±.01 .72±.02 .60±.00

regarding the distribution of the ground-truth labels and is broadly

adopted in social event detection method evaluations [21, 29]. AMI,

similar to NMI, also measures the mutual information between two

clusterings but is adjusted to account for chance [38]. ARI considers

all prediction-label pairs and counts pairs that are assigned in the

same or different clusters, and ARI also accounts for chance [38].

4.2 Offline Evaluation
This subsection compares KPGNN to the baselines in an offline

scenario. We randomly sample 20% of the dataset for testing, 10%

for validation, and use the rest 70% for training.

We summarize the results in Table 2. KPGNN outperforms gen-

eral message embedding and similarity measuring methods by

large margins in all metrics (8−141% in NMI, 4−1200% in AMI, and

267−2100% in ARI). This is due to the fact that these methods rely ei-

ther on measuring the distributions of messages’ elements (LDA) or

on message embeddings (Word2vec and WMD), and they all ignore

the underlying graph structure of the social data to some extent.

Different from these methods, KPGNN simultaneously leverages

the semantics and structural information in the social messages and

therefore acquires more knowledge. KPGNN also outperforms both

PP-GCN and KPGNN𝑡 . This implies that introducing the global-

local pair loss term L𝑝 helps the model learn more knowledge from

the graph structure. Note that although PP-GCN shows strong per-

formance, it assumes a stationary graph structure and cannot adapt

to dynamic social streams. The proposed KPGNN, on the contrary,
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Table 5: Incremental evaluation AMIs. The best results are marked in bold and second-best in italic.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7

Word2vec [27] .08±.00 .41±.00 .31±.00 .24±.00 .33±.00 .40±.00 .13±.00
LDA [3] .08±.00 .20±.01 .22±.01 .17±.00 .21±.00 .20±.00 .12±.01

WMD [19] .30±.00 .69±.00 .63±.00 .45±.00 .57±.00 .57±.00 .46±.00
PP-GCN [29] .21±.00 .55±.02 .52±.01 .42±.01 .46±.01 .52±.02 .34±.00
EventX [21] .06±.00 .29±.00 .18±.00 .19±.00 .14±.00 .27±.00 .13±.00
KPGNN𝑡 .36±.01 .77±.01 .75±.00 .65±.01 .71±.01 .78±.00 .50±.01
KPGNN .37±.00 .78±.01 .74±.00 .64±.01 .71±.01 .79±.01 .51±.01

Blocks 𝑀8 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14

Word2vec [27] .33±.00 .24±.00 .39±.00 .26±.00 .23±.00 .23±.00 .26±.00
LDA [3] 24±.01 .24±.00 .36±.01 .25±.01 .16±.01 .19±.00 .15±.00

WMD [19] .63±.00 .46±.00 .57±.00 .42±.00 .58±.00 .50±.00 .64±.00
PP-GCN [29] .49±.02 .46±.02 .51±.02 .46±.01 .42±.01 .43±.01 .41±.01
EventX [21] .21±.00 .19±.00 .24±.00 .24±.00 .16±.00 .16±.00 .14±.00
KPGNN𝑡 .75±.01 .70±.01 .76±.01 .70±.00 .66±.01 .65±.01 .65±.01
KPGNN .76±.01 .71±.02 .78±.01 .71±.01 .66±.01 .67±.01 .65±.00

Blocks 𝑀15 𝑀16 𝑀17 𝑀18 𝑀19 𝑀20 𝑀21

Word2vec [27] .15±.00 .36±.00 .24±.00 .21±.00 .28±.00 .24±.00 .21±.00
LDA [3] .13±.00 .27±.01 .13±.00 .12±.00 .22±.01 .23±.00 .13±.00

WMD [19] .47±.00 .59±.00 .57±.00 .60±.00 .49±.00 .55±.00 .52±.00
PP-GCN [29] .35±.01 .52±.01 .45±.00 .45±.01 .48±.02 .45±.02 .38±.02
EventX [21] .07±.00 .19±.00 .18±.00 .16±.00 .16±.00 .18±.00 .10±.00
KPGNN𝑡 .53±.01 .75±.01 .67±.01 .66±.01 .70±.00 .68±.00 .57±.01
KPGNN .54±.00 .77±.01 .68±.01 .66±.02 .71±.01 .68±.02 .57±.00
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Figure 3: KPGNN with different update-maintenance strategies. (a), (b), and (c) show the NMI, AMI, and ARI performances of KPGNN when adopting

different update-maintenance strategies. In (d) and (e), we train KPGNN for one mini-batch in the maintenance stages and measure time and memory

consumption. (d) shows the time (in seconds) used for training KPGNN for one mini-batch. (e) shows the GPU% used over time through out the training.
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Table 6: Incremental evaluation ARIs. The best results are marked in bold and second-best in italic.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7

Word2vec [27] 01±.00 .49±.00 .16±.00 .07±.00 .17±.00 .25±.00 .02±.00
LDA [3] .00±.00 .08±.00 .02±.01 .07±.00 .06±.00 .07±.01 .00±.00

WMD [19] .04±.00 .48±.00 .28±.00 .11±.00 .26±.00 .16±.00 .08±.00
PP-GCN [29] .05±.00 .67±.03 .47±.01 .24±.01 .34±.00 .55±.03 .11±.02
EventX [21] .01±.00 .45±.00 .09±.00 .07±.00 .04±.00 .14±.00 .02±.00
KPGNN𝑡 .06±.01 .76±.01 .60±.02 .30±.01 .48±.01 .67±.05 .11±.01
KPGNN .07±.01 .76±.02 .58±.01 .29±.01 .47±.03 .72±.03 .12±.00

Blocks 𝑀8 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14

Word2vec [27] .17±.00 .08±.00 .23±.00 .09±.00 .09±.00 .06±.00 .10±.00
LDA [3] .03±.00 .03±.01 .09±.02 .03±.01 .02±.00 .00±.00 .02±.00

WMD [19] .22±.00 .12±.00 .20±.00 .12±.00 .27±.00 .13±.00 .33±.00
PP-GCN [29] .43±.04 .31±.02 .50±.07 .38±.02 .34±.03 .19±.01 .29±.01
EventX [21] .09±.00 .07±.00 .13±.00 .16±.00 .07±.00 .04±.00 .10±.00
KPGNN𝑡 .59±.02 .45±.02 .64±.01 .48±.01 .50±.03 .28±.01 .43±.02
KPGNN .60±.01 .46±.02 .70±.06 .49±.03 .48±.01 .29±.03 .42±.02

Blocks 𝑀15 𝑀16 𝑀17 𝑀18 𝑀19 𝑀20 𝑀21

Word2vec [27] .03±.00 .19±.00 .10±.00 .07±.00 .14±.00 .10±.00 .06±.00
LDA [3] .00±.00 .11±.01 .02±.00 .02±.00 .03±.00 .02±.01 .00±.01

WMD [19] .16±.00 .32±.00 .26±.00 .35±.00 .12±.00 .19±.00 .19±.00
PP-GCN [29] .15±.00 .51±.03 .35±.03 .39±.03 .41±.02 .41±.01 .20±.03
EventX [21] .01±.00 .08±.00 .12±.00 .08±.00 .07±.00 .11±.00 .01±.00
KPGNN𝑡 .16±.02 .62±.03 .41±.03 .46±.02 .50±.01 .51±.01 .23±.02
KPGNN .17±.00 .66±.05 .43±.05 .47±.04 .51±.03 .51±.04 .20±.01

is capable of continuously adapting to and extending its knowledge

from the incoming messages (empirically testified in Section 4.3).

EventX shows higher NMI but much lower AMI and ARI compared

to KPGNN. This suggests that EventX tends to generate a larger

number of clusters, regardless of whether there is actually more

information captured, while KPGNN is stronger in general, as it

scores the highest or the second-highest in all three metrics.

4.3 Incremental Evaluation
This subsection compares KPGNN with baselines in an incremental

detection scenario. We split the dataset by dates to construct a social

stream. Specifically, we use the messages of the first week to form

an initial message block 𝑀0 and the messages of the rest days to

form the following message blocks𝑀1, 𝑀2, ..., 𝑀21. Table 3 shows

the statistics of the resulting social stream. Note that PP-GCN, as

an offline baseline, cannot be directly applied to the dynamic social

streams and we mitigate that by retraining a new PP-GCN model

from scratch for each message block: we train PP-GCN using the

previous blocks as the training set and predict on the current block.

Tables 4, 5 and 6 summarize the incremental social event de-

tection results in NMI, AMI, and ARI, respectively. The proposed

KPGNN significantly and consistently outperforms the baselines

for all message blocks. KPGNN achieves relative performance gains

over EventX by 6−27% (16% on average) in NMI, 164−676% (319%

on average) in AMI, and 68−1782% (589% on average) in ARI. The

reason behind this is, EventX relies solely on community detection,

while KPGNN incorporates the rich semantics of the social mes-

sages. KPGNN achieves performance gains over WMD by 3−55%
(22% on average) in NMI, 3−48% (23% on average) in NMI, and

3−68% (26% on average) in ARI. This is because KPGNN leverages

the structural information of the social stream, which is ignored

by WMD. KPGNN also outperforms PP-GCN by 38−67% (47% on

average) in NMI, 41−73% (53% on average) in AMI, and up to 58%

(27% on average) in ARI. This suggests that KPGNN effectively

preserves up-to-date knowledge, while PP-GCN can be distracted

by obsolete information as the messages accumulate. KPGNN gen-

erally outperforms KPGNN𝑡 , which testifies the positive effect of

incorporating more structural information through introducing

the global-local pair loss term L𝑝 . To conclude, KPGNN achieves

performances superior to the baselines for it acquires and preserves

more knowledge from the social messages.

4.4 Study on update-maintenance strategies
Recall that KPGNN updates new messages into the message graph

G in the detection stage (Figure 2 stage II). It also periodically

removes obsolete messages from G and continues training to adapt

to the new messages in the maintenance stage (Figure 2 stage III).

The manner of updating and maintaining KPGNN affects its time

complexity (discussed in Section 3.6), the knowledge it preserves,

and, eventually, its performance. In this subsection, we compare

three different update-maintenance strategies, including:

1) All message strategy, keeping all the messages. In the

detection stage, we simply insert the newly arrived message block
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Figure 4: KPGNN with different hyperparameters. We show the performances of KPGNN on message blocks 𝑀2, 𝑀8, 𝑀14, and 𝑀20 when adopting

different window sizes and mini-batch sizes. (a)-(d) show the NMIs, (e)-(h) show the AMIs, and (i)-(l) show the ARIs. The colors indicate the fluctuations in

values: the sunken areas are colored in blue and the convex areas in green.

into G. In the maintenance stage, we continue the training pro-

cess using all the messages in G. In other words, we let KPGNN

memorize all the messages it ever received. This strategy is imprac-

tical (the messages accumulated in G can gradually slow down the

model and will eventually exceed the embedding space capacity of

the message encoder E) and we implement it just for the compari-

son purpose. 2) Relevant message strategy, keeping messages
that are related to the newly arrived ones. In the detection

stage, we insert the newly arrived message block into G. In the

maintenance stage, we first remove messages that are not con-

nected to any messages that arrived during the last time window

and then continue training using all the messages in G. In other

words, we let KPGNN forget the messages that are both old (i.e.,

arrived beyond the window) and unrelated (to the new messages

that arrived within the window). Note that the knowledge acquired

from these messages is preserved in the form of model parameters.

3) Latest message strategy, keeping the latest message block.
In the detection stage, we use only the newly arrived message block

to reconstruct G. In the maintenance stage, we continue training

with all the messages in G, which only involves the latest message

block. In other words, we let KPGNN forget all the messages except

those in the latest message block. The knowledge learned from the

removed messages is memorized in the form of model parameters.

Figures 3 (a)-(c) summarize the performances of KPGNN in NMI,

AMI, and ARI when adopting the above three strategies in incre-

mental social event detection experiments. We can tell that the

latest message strategy achieves the strongest performance among

all strategies by discarding all messages in the past blocks while

solely keeping the knowledge learned from those messages. Figures

3 (d) and (e) show the time and memory consumption of KPGNN

when adopting these strategies. As expected, the latest message
strategy requires significantly less time and GPU memory as com-

pared to the others, for it keeps a light-weighted message graph

G. Note that the latest message strategy and the relevant message
strategy consistently while the all message strategy in most message

blocks outperform strong baselines such as PP-GCN (the perfor-

mances of PP-GCN are shown in Tables 4-6). This proves the strong

performance of KPGNN despite the update-maintenance strategies.

4.5 Hyperparameter Sensitivity
This subsection studies the effects of changing𝑤 , the window size

for maintaining KPGNN, and |{𝑚𝑏 }|, the mini-batch size. Figure

4 compares the performances of KPGNN when adopting different

window sizes and mini-batch sizes. The NMI and AMI results in

Figures 4 (a)-(h) have small standard deviations in the range of

0.01-0.02. This suggests that the NMIs and AMIs of KPGNN change
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with𝑤 and |{𝑚𝑏 }|, but rather insignificantly. Adopting a smaller𝑤

(1 or 3) in general gives slightly better performances. For example,

the block-wise average NMIs of window sizes 1 and 3 are 0.75 and

0.75, respectively, while that of window sizes 9 and 11 are 0.74 and

0.74, respectively. The mini-batch size also has little influence on

the NMIs and AMIs. For example, the block-wise average NMIs

of mini-batch sizes 1000, 2000, 3000, and 4000 are 0.75, 0.75, 0.75,

and 0.75, respectively. In Figures 4 (i)-(k), the ARIs of KPGNN show

some fluctuations but in a manner that is not clearly related to the

changes in the window size and the mini-batch size, as the block-

wise averageARIs of the differentwindow sizes range from 0.58-0.59

and that of the different mini-batch sizes range from 0.57-0.59. In a

word, KPGNN is insensitive to the changes in hyperparameters.

5 RELATEDWORK
Social Event Detection. Based on their objectives, social event

detection methods can be categorized into document-pivot (DP)

methods [1, 16, 21, 29, 47, 48] and feature-pivot (FP) ones [8, 9].

The former aim at clustering social messages based on their corre-

lations while the latter aim at clustering social messages elements

(such as words and named entities) based on their distributions.

KPGNN is a DP method. Based on their application scenarios, social

event detection methods can be divided into offline [29] and online

[8, 16, 21, 47] ones. Though offline methods are essential in ana-

lyzing retrospective, domain-specific events such as disasters and

political campaigns, online methods that continuously work on the

dynamic social streams are desirable [8]. Based on techniques and

mechanisms, social event detection methods can be separated into

into popular classes such as methods rely on incremental clustering

[1, 16, 28, 47], community detection [8, 21–23, 44] and topic models

[48]. These methods, however, learn limited amounts of knowledge

as they ignore the rich semantics and structural information con-

tained in the social streams to some extent. Besides, these models

have too few parameters to preserve the learned knowledge. [29]

proposes a GCN-based social event detection model, however, it can

only work offline. KPGNN is different from the existing methods as

it effectively acquires, extends, and preserves knowledge through

continuously adapting to the incoming social messages.

As a side note, our work is different from [5] since 1) [5] ad-

dresses a different task, i.e., social event prediction, 2) [5] only uses

the words for graph construction, while we utilize heterogeneous

element types, and 3) [5] retrains a GCN from scratch at each time

step while we continuously adapt to the incoming data by resuming

training periodically.

Inductive Learning with Graph Neural Networks. The past

few years have witnessed the success of graph neural networks

(GNNs) [13, 18, 36, 42] in graph data mining. In general, a GNN

learns contextual node representations by extracting and aggregat-

ing local neighborhood information according to the input graph

structure. Depending on their extraction and aggregation strategies,

some GNNs [18] only conduct transductive learning [10] as they re-

quire pre-known, fixed graph structures. Others [13, 36, 42], can be

used in inductive learning [10], which means that they generalize

to unseen nodes. Though oftentimes discussed, inductive learning

using GNNs is rarely evaluated or utilized in real application sce-

narios [10]. The proposed KPGNN is the first to leverage GNNs’

inductive learning ability for incremental social event detection.

6 CONCLUSION
In this study, we address the task of incremental social event detec-

tion from a knowledge-preserving perspective. We design a novel

KPGNN model that incorporates the rich semantics and structural

information in social messages to acquire more knowledge. KPGNN

continuously detects events and extends its knowledge using dy-

namic social streams. We empirically demonstrate the superiority

of KPGNN compared to baselines through experiments. A particu-

larly interesting future research direction would be extending the

proposed model for social event analysis (including studying the

evolution of events) and causal discovery in social data.
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