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Citywide crowd flow data are ubiquitous nowadays, and forecasting the flow of crowds is of great impor-
tance to many real applications such as traffic management and mobility-on-demand (MOD) services. The
challenges of accurately predicting urban crowd flows come from both the nonlinear spatial-temporal cor-
relations of the crowd flow data and the complex impact of the external context factors, such as weather,
holidays, and POIs. It is even more challenging for most existing one-step prediction models to make an accu-
rate prediction across multiple future time slots. In this article, we propose a sequence-to-sequence (Seq2Seq)
Generative Adversarial Nets model named SeqST-GAN to perform multi-step Spatial-Temporal crowd flow
prediction of a city. Motivated by the success of GAN in video prediction, we for the first time propose an
adversarial learning framework by regarding the citywide crowd flow data in successive time slots as “im-
age frames.” Specifically, we first use a Seq2Seq model to generate a sequence of future “frame” predictions
based on previous ones. Then, by integrating the generation error with the adversary loss, SeqST-GAN can
avoid the blurry prediction issue and make more accurate predictions. To incorporate the external contexts,
an external-context gate module called EC-Gate is also proposed to learn region-level representations of the
context features. Experiments on two large crowd flow datasets in New York demonstrate that SeqST-GAN
improves the prediction performance by a large margin compared with the existing state-of-the-art.
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1 INTRODUCTION

The urban crowd flow data such as taxi trajectory data, sharing bike trip data, subway check-in/out
data, and location-based social network (LBSN) data are becoming ubiquitous nowadays. Crowd
flow data prediction, which aims to build a fitting model with the historical data to predict their
future trend, is of great importance to various location-based services and has attracted increased
research interest recently [3]. For example, accurately forecasting the traffic flow of a road net-
work can facilitate a more effective traffic management and help drivers plan their travel routes
in advance [9]; the passenger pickup/dropoff demand prediction is of great importance towards
better vehicle distribution for the emerging mobility-on-demand (MOD) services [48].

As a hot and practically important research topic, various crowd flow prediction methods have
been investigated. The most classical methods are statistics-based time serious analysis models.
For example, autoregressive integrated moving average (ARIMA) [21, 31] and Kalman filtering
[30] are among the most popular models for urban traffic prediction. However, a major limitation
for such statistics-based prediction methods is that they are usually location-specified, and there
lacks a unified model to predict all the areas of a city as a whole. Another limitation is that the
spatial-temporal correlations of the urban crowd flow data are not fully explored. Some recent
works tried to utilize the Bayesian network model to capture the spatial-temporal correlations
for predicting the traffic data of a large road network [15, 37, 38]. However, these studies are
essentially still statistical-based methods. They cannot effectively capture the complex non-linear
spatial-temporal dependency of the crowd flow data, either.

Recently, with the advances of deep learning techniques, deep leaning models such as convo-
lutional neural network (CNN) and recurrent neural network (RNN) have enjoyed considerable
success in various machine learning tasks due to their powerful hierarchical feature learning abil-
ity and have been widely applied in many areas including computer vision [14], natural language
processing [10], recommendation [33], and time series data prediction [43]. This inspires some
recent work to adopt deep learning models for various spatial-temporal data prediction tasks.
Zhang et al. [45] proposed a deep learning model ST-ResNet to collectively forecast the inflow
and outflow of crowds in each region of a city. Yao et al. [41] proposed a Spatial-Temporal Dy-
namic Network (STDN) model for road network—-based traffic prediction. Zhou et al. [48] pro-
posed to use the attention-based neural network, which combined encoder-decoder framework
and ConvLSTM to predict the passenger pickup/dropoff demands for the mobility-on-demand
services. Cheng et al. [9] proposed the DeepTransport model, which combined CNN and RNN
to capture the spatial-temporal traffic data within a transport network. Compared with traditional
time series analysis—based prediction models, deep learning models usually can achieve remark-
able performance improvement due to their powerful hierarchical feature learning ability from big
data.

Although deep learning-based crowd flow prediction models are much more effective than tra-
ditional statistics-based models, there are still several unresolved challenging issues that might
hinder us from going a further step on this research. First, most previous deep models are essen-
tially one-step prediction [9, 41, 45], which means they focus on making the prediction for the
next time slot. There still lacks a multi-step prediction model, which is more useful and challeng-
ing in practice. Reference [48] proposed a ConvLSTM-based encoder-decoder framework to predict
multi-step citywide passenger demands in mobility-on-demand services. However, the two issues
discussed below are still not well addressed. Second, existing deep models for crowd flow predic-
tion suffer from the blurry prediction issue [16, 25]: averaging all possible futures into one single.
The blurry prediction issue is caused by the standard mean squared error used in deep models. To
apply CNN to process the data conveniently, the crowd flow data in a city are usually first modeled
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as image-like matrices by dividing a city into cell regions. Directly applying CNN on the crowd
flow matrices cannot address the blurry prediction issue. Third, different from images and videos,
the crowd flow data can be significantly affected by some external contexts such as weather, holi-
day, and Points of Interest (POIs) [34]. Although some previous models incorporated the external
contexts [45, 48], they considered them as external features and simply concatenated them with
the learned latent features from the historical crowd flow data. It is difficult for these models to
quantitatively model the region-level impact of the external contexts on a citywide crowd flow
prediction and incorporate them for further improving the prediction performance.

To address the above issues, in this article, we propose a sequence-to-sequence deep genera-
tive model SeqST-GAN for more effectively performing multi-step urban crowd flow prediction.
Generative Adversarial Nets (GAN) is currently a powerful generative framework with an adver-
sarial process [13] and has been widely used in various domains including image generation [11],
video prediction [25], and text classification [26]. Previous works [16, 25] showed that adversarial
training can effectively address the blurry prediction issue in video prediction by introducing the
adversarial loss. Motivated by this, we propose an adversarial learning framework for citywide
crowd flow prediction. Specifically, we consider the snapshot of the crowd flow data of a city in
a time slot as a “frame image” and the crowd flow data in all the time slots as a “video.” Different
from SeqGAN [44] that focuses on generating a sequence of discrete tokens like words, SeqST-
GAN aims to generate a sequence of crowd flow “frames” that have high dependency in spatial
and temporal dimensions. To implement the framework, we propose to apply the sequence-to-
sequence (Seq2Seq) model as the generator to perform a multi-step prediction. Seq2Seq model is
much more effective in predicting a sequence of future “frame images” due to the usage of atten-
tion mechanism and the consideration of the temporal correlations among the predicted “frame
images.” To capture the external contexts, we also design an external-context gate module named
EC-Gate. Different from previous works [45, 48] that simply concatenate different context features,
EC-Gate learns a unified region-level representation for all the contexts. The learned context fea-
ture representations are then considered as “gate” to amplify or reduce the generated future “video
frames.” We conduct extensive experiments on two large datasets that are widely used in crowd
flow prediction, and the results demonstrate the superiority of SeqST-GAN by comparison with
existing models.

Our main contributions are summarized as follows:

e We for the first time propose an adversarial learning framework for multi-step urban crowd
flow prediction. The framework integrates Seq2Seq prediction model and adversarial learn-
ing by combining the prediction error and the adversarial loss to effectively address the
blurry prediction issue. The proposed framework is general and can be easily extended and
adapted to other prediction tasks in different domains.

e The auto-encoder framework is utilized to implement the Seq2Seq prediction model. By
modeling the crowd flow in a city as an “image” and the crowd flow sequence as a “video,”
CNN and LSTM components are applied to capture the spatial-temporal correlations of the
crowd flow data sequence.

e External context features are also learned in a fine-grained manner through a carefully
designed EC-Gate. We perform extensive experiments on two large crowd flow datasets of
New York, and the results demonstrate that our proposal improves the prediction result in
terms of both single step and multiple steps urban crowd flow prediction by a large margin
compared with state-of-the-art models.

The remainder of this article is organized as follows: Section 2 will review related works. In
Section 3, we will give a formal definition of the studied problem and show the framework of our
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solution. Section 4 will introduce our methodology. Evaluations are given in Section 5. Finally, we
will conclude this article in Section 6.

2 RELATED WORK

In this section, we will review works that are closely related to ours from the aspects of crowd
flow prediction and Adversarial Generative Nets.

Crowd flow prediction. As an important research topic in spatial-temporal data mining, crowd
flow prediction including traffic prediction [9, 15, 18, 36, 37], taxi demand-supply prediction [42,
48], individual movement prediction [12, 32], and trajectory prediction [1, 29] have been exten-
sively studied in recent years. Traffic prediction has been studied for many years in both intelligent
transportation systems and data mining communities. However, the difference between traffic pre-
diction and our study is that usually traffic prediction focuses on predicting the traffic on the road
segments or a road network [15] rather than over cell regions. Traditional traffic prediction models
are mostly statistics-based such as ARIMA and SVR models, and they mainly focus on predicting
the traffic of one single road or a small set of road segments. Lee et al. [17] and Williams [40] used
ARIMA model to predict the short-term traffic flow. Reference [40] showed that SARIMA model
was considered to be superior to the neural network models. Mecit and Gurcan [7] put forward
an ARIMA prediction model that included two kinds of traffic incident detection algorithms. Ex-
periment result shows that this method is better than the fixed parameter ARIMA models. Chen
et al. [8] used the switching ARIMA model to study the change rules of the traffic flow and in-
troduced the turning proportion matrix to describe the traffic flow state of the road network to
achieve the accurate prediction of the short-term traffic flow of urban roads. Lippi et al. [20] com-
pared SVR model and SARIMA model and concluded that the proposed seasonal SVR model is in
fierce competition during the most crowded period of prediction. The major limitation of the above
models for road segment-level traffic prediction is that the correlations among the road segments
are largely ignored or not fully explored, and the learned parameters of a road segment cannot
be generalized to other roads. Some recent works tried to utilize the Bayesian network model to
capture the spatial-temporal correlations for predicting the traffic data of a large road network [15,
37]. However, these studies are essentially still statistical-based methods. They cannot effectively
capture the complex and non-linear spatial-temporal dependency of the crowd flow data, either.
For example, References [37, 39] only considered the correlations among the neighbor road links,
but ignored the impact of traffic on a road link from farther road links.

Recently, with the advances of deep learning techniques, deep leaning models such as convo-
lutional neural network (CNN) and recurrent neural network (RNN) have enjoyed considerable
success in various machine learning tasks [35]. Due to the powerful hierarchical feature learning
ability of deep learning models in both spatial and temporal domains, various deep learning mod-
els are proposed for spatial-temporal data mining tasks. A line of studies applied CNN to capture
the spatial correlation by treating the traffic data of the entire city as images. Ma et al. [22] utilized
CNN on images of traffic speed for the speed prediction problem. Zhang et al. [45, 46] proposed to
use residual CNN on the images of traffic flow. These methods simply use CNN on the whole city
and use all the regions for prediction. The major limitation of these methods is that although they
used historical traffic images in previous time slots for prediction, they did not explicitly model the
temporal sequential dependency. Another limitation is that as they used CNN to model the traffic
images, the blurry prediction issue that existed in image prediction cannot be addressed. Another
line of research is combining CNN model and RNN model to capture both spatial and temporal
correlations. Yao et al. [41] proposed a Spatial-Temporal Dynamic Network (STDN) model for road
network—-based traffic prediction. Cheng et al. [9] proposed the DeepTransport model, which com-
bined CNN and RNN to capture the spatial-temporal traffic data within a transport network. All
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these models are basically designed for one-step prediction, which means they focus on predict-
ing the traffic data in the next time slot, such as 20 minutes or half an hour. Reference [48] was
the first recent work that studied the problem of multi-step taxi passenger demand prediction. [48]
proposed to use the attention-based neural network, which combined encoder-decoder framework
and ConvLSTM to predict the passenger pickup/dropoff demands for the mobility-on-demand ser-
vices. [18] proposed the Diffusion Convolutional Recurrent Neural Network (DCRNN) to model
the traffic flow as a diffusion process on a directed road graph, which is a deep learning frame-
work for traffic forecasting that incorporates both spatial and temporal dependency in the traffic
flow. Following this work, Reference [47] also proposed to combine GraphCNN and seq2seq model
for road network-level traffic flow prediction. However, there still lacks an effective and general
model that can accurately perform a multi-step crowd flow prediction and at the same time avoid
the blurry prediction issue.

Generative Adversarial Nets. GAN is a powerful generative framework with an adversarial
process [13] proposed recently and has been widely used in various domains including image gen-
eration [11], video prediction [25], and text classification [26]. The general idea of GAN is that it
simultaneously trains two models: a generative model G that captures the data distribution and a
discriminative model D that estimates the probability that a sample comes from the training data
rather than G. This framework corresponds to a minimax two-player game. A major issue of the
initial GAN model is that its training is rather unstable and prone to appear mode collapse. To
address this issue, many improved GAN models are proposed, such as WGAN [2], DCGAN [28],
and LSGAN [23]. Although GAN is initially proposed for samples generation, recently a bunch of
models employed the adversarial leaning framework for video prediction and achieved promising
performance [25]. In Reference [25], several loss functions including the adversarial training loss,
the standard mean squared error (MSE) loss, and image gradient difference loss are integrated to
achieve more promising prediction performance. Particularly, Reference [25] showed that gener-
ative adversarial training can be successfully employed for next frame prediction and helped pre-
serve the sharpness of the frames by addressing the blurry prediction issue. Following the pioneer
work, several works are done to further improve the performance of video prediction under the
adversarial learning framework. Liang et al. [19] developed a dual motion GAN architecture that
learned to explicitly enforce future-frame predictions to be consistent with the pixel-wise flows in
the video through a dual-learning mechanism. Bhattacharjee and Das [6] proposed a multi-stage
GAN framework for future frames prediction. Their method used a two-stage GAN to generate a
crisp and clear set of future frames. Motivated by the successful application of GAN model in video
prediction, in this article, we try to use it for crowd flow prediction, where the crowd flow data
of a city in successive time intervals can be considered as “frames” in a video. However, different
from the above works for video prediction, the model for crowd flow prediction not only needs to
capture the high spatial-temporal correlations of the crowd flow data, but also needs to consider
the complex impact of external context features such as weather, holidays, and social events on
the crowd flow data.

3 PROBLEM DEFINITION

In this section, we will first give some definitions to help us state the studied problem and then
will give a formal problem definition.

Definition 1. Cell Region. In this study, we partition a city into an m X n grid map based on the
longitude and latitude. Each grid is defined as a cell region, and all the grids form a cell region set
R={ry1,...7ij,...Ymxn}, Where r; ; is the cell region in the ith row and jth column of the grid
map.
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Fig. 1. The framework of SeqST-GAN model.

Definition 2. Inflow/Outflow [46]. Let  be a collection of crowd flow trajectories at the time
slot t. For a cell region r; ;, the inflow and outflow of the crowds at ¢ are defined, respectively, as

xin = D Nk > gy €71y Age €7l

TreP
*ou = ), Wk = 1lgk €71 A gesr € i),
TreP
where Tr : g1 — go — - -+ — gr, is a trajectory in P, and gy is the geospatial coordinate; gi € 7; ;
means gy lies within the region r; ; and vice versa; | - | denotes the cardinality of a set.

Following previous works [45, 46], we denote the inflow and outflow in all the cell regions in
time slot ¢ as a crowd flow tensor X’ € R™"*Z where (X'); o = i ;i XDij1 =X}, Based
on the above definitions, we give a formal definition of the studied problem as follows:

ProBLEM DEFINITION 1. Multi-step Crowd Flow Prediction. Given the crowd flow tensors
{X!|t = 1,...n} in the cell regions R over the previous n time slots, our goal is to predict the crowd
flow tensors {X!|t = n+ 1,...n + k} for the next k time slots simultaneously.

4 METHODOLOGY

In this section, we will introduce the proposed methodology in detail. We will first briefly introduce
the framework of SeqST-GAN. Then, we will introduce the overall objective of SeqST-GAN. Next,
we will elaborate on the generator of SeqST-GAN that is implemented as a seq2seq model, and its
discriminator, to build up the adversarial learning framework.

Figure 1 shows the training framework of SeqST-GAN. One can see that SeqST-GAN con-
tains two parts: the generator G and the discriminator D. For the generator G, we propose an
encoder-decoder—based Seq2Seq framework to generate the future k crowd flow tensor sequences
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Fig. 2. lllustration of Generative Adversarial Nets (GAN).

{X!|t = tys1s. . . task ), and the input is the historical data {X*|t = t,, ... t,}. In this framework, the
input historical crowd flow tensors are first encoded into a latent space vector with a CNN layer
and an LSTM layer, and then a Seq2Seq attention is applied to capture the weights of the ten-
sors in different time slots for predicting the future tensors. Next a decoder is used to decode the
latent space vector and generate the future crowd flow tensors. The decoder contains an LSTM
layer and a deconvolutional neural network R-CNN to transform a vector back to a crow flow
tensor. Note that a external-context gate called EC-Gate is also designed to capture the external
contexts such as weather, date, and POIs. For the discriminator D, the generated tensors and the
real tensors are both concatenated with the previous crowd flow tensors and form a pair of inputs
X={XLXt =ttty £ = toats o tnakh, X = (XE|t = 1, ... tys} for D. D tries to distinguish
{X, X} which one is real and which one is generated by G. The generator G and discriminator D are
trained iteratively, and finally the generated data sequence by G is so similar to the real one such
that D cannot distinguish them. Thus, the generated data sequence can be used as the prediction.
Next, we will introduce SeqST-GAN in detail.

4.1 The Overall Objective of SeqST-GAN

Before elaborating on our model, we first briefly introduce GAN [13]. GAN is a framework for
estimating generative models via an adversarial process. As shown in Figure 2, GAN contains
two components: a generative model G and a discriminative model D. It simultaneously trains the
generative model G to capture the data distribution and the discriminative mode D to estimate the
probability that a sample comes from the training data rather than G. The training procedure for G
is to maximize the probability of D making a mistake. Thus, GAN can be considered as a minimax
two-player game whose objective function is as follows:

m(i;n m[z)ix L(G,D) = Ex—p,u.(x)[logD(X)] + Ez (2 [log(1 — D(G(2)))], (1)

where X is a real data sample (the crowd flow tensor in our case), pgq:4(X) is the real data distri-
bution of X, D(X) represents the probability that X comes from the data distribution, Z is random
noise, pz () is the prior distribution on input noise Z, G(Z) is a generator that generates “fake”
data from Z, and D(G(Z)) represents the probability that the generated “fake” sample comes from
the data distribution. The goal of the objective function is to maximize the probability of assigning
the correct label to both real and fake samples from G and minimize log(1 — D(G(Z))).

In this article, instead of using the initial GAN, we utilize the Wasserstein GAN (WGAN) due to
the following advantages [2]: First, training WGAN does not require maintaining a careful balance
in training the discriminator and the generator, and thus solves the mode collapse problem. Sec-
ond, it does not require a careful design of the network architecture. Third, WGAN can improve
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the stability of training, and thus is much easier to train. The major difference between WGAN
and initial GAN is that the Wasserstein distance is used to measure the distance and divergence
between the real data distribution and the learned data distribution by the generator.

By using WGAN as our adversarial learning framework, the objective function is as follows:

minmax Bx-pyq [fuw(X)] - Ezpz)[f(90(D))], )

where w is the critic parameters, 0 is the generator’s parameters, and f,,(X) is a parameterized
family of functions { fi, },yeq that are all K-Lipschitz for K.

Given N pairs of real and generated crowd flow tensors {(Xl-,/\A’,-)}f\i ,» the objective function
under WGAN framework can be rewritten as follows:
N N

min mgxé(fmi)) - ;uw(ge(xi))). ()

Note that in the multi-step crowd flow prediction task, the generated sequence {X!|t =
tnt1s - - - thrk } by G is conditioned on the input sequence {X*|t = ti, ... t,} as shown in the gener-
ator in Figure 1. Thus, in our model there is variability in the output of the generator even without
noise, which means noise is not necessary anymore in the prediction model [25]. In addition, GAN
and WGAN are both designed for new data generation rather than future data prediction. To make
the generated future crowd flow tensors follow the real data distribution, and at the same time they
are close to the real ones as much as possible, we add a mean square error loss to the generator as
follows:

L,(G(Xi), Xi) = 1X; = Xi||§- (4)
Here, we use the Euclidean norm and set p = 2. By combining Equations (3) and (4), the final
objective function of SeqST-GAN is as follows:
N

N
mimmax ) LX) = fulgo )+ ) 11X = &ill, )
= i=

where A is a parameter to balance the importance of the adversary loss and the mean square error.
By combining the adversary loss and the mean square error in Equation (5), the blurry prediction
issue can be well addressed, because an average of several possible future predictions optimized
by the mean square error will increase the adversary loss. Therefore, given a sequence of historical
crowd flow data, if there are several possible future trends, the adversarial loss will help the model
select the most likely future prediction rather than simply averaging them.

Model optimization. To find the function f in the objective function (5), usually a neural net-
work parameterized with weights w is trained to approximate f. Similarly, another neural network
parameterized with weights 0 is trained to approximate the generator function g. The two neu-
ral networks will be introduced in detail in the next section. To train the objective function, the
standard minibatch stochastic gradient descent training method can be applied.

The stochastic gradients of the generator G and discriminator D are as follows:

Ve {‘%Zﬁv(ge(?@ﬂ%Zlixi—&nz)}, ©)
i=1 i=1
1 & 1 & R
Vw{;;fw(/\’l)—;;fw(gg(z\’,))}, (7)

where m is the batch size in minibatch optimization. We follow the standard training process of
WGAN. The procedure of the SeqST-GAN algorithm is shown in Algorithm 1. Note that RMSProp
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ALGORITHM 1: Training of SeqST-GAN

Input: The learning rate & = 0.001, the clipping parameter ¢ = 0.01, the batch size m = 32, the number of
iterations of the critic per generator iteration n¢rijc, the historical crowd flow tensor
(Xit=1,...n)

Output: The model parameters w and 6.

while the algorithm does not converge do

fort=0,...,ncritic do
Sample {X;}!", ~ pyatq @ batch from the real data.

Sample (X; }™, ~ pz a batch from the generated data with the seq2seq model.
gw < Vol D2 fuw(Xi) = 5 7Ly fu(ge(Xi))
w — w + a - RMSProp(w, gw)

end

Sample (X }, ~ pz a batch from the generated data with the seq2seq model.

9o — ~Vol—im 71 funlgo(X) + 4 BT 11X = Xill2}

0 « 0 —a-RMSProp(0, gg)

end

optimization method is used in SeqST-GAN, which is known to perform well even on very non-
stationary problems.

4.2 Generator G: Seq2Seq-based Encoder-decoder for Multi-step Prediction

In this subsection, we introduce how we build the generator G. Seq2Seq was initially designed
for machine translation [5]. Due to its advantage in handling sequential data, currently it has also
been widely applied in many other applications, such as event prediction [27] and human motion
prediction [24]. Given a word sequence, Seq2Seq model can align it with another word sequence
or predict the following word sequence through an encoder-decoder learning framework. In our
work, we aim to use a sequence of historical crowd flow tensors {X’|t = ti,...t,} to predict a
sequence of future tensors (X!t = thets - - - tnsk ), whose scenario is similar to machine translation
or sentence prediction. Motivated by this idea, we design a Seq2Seq-based encoder-decoder model
as the generator G to generate a sequence of future crowd flow data for the multi-step prediction,
as shown in the upper part of Figure 1.

The architecture of the Seq2Seq-based G is designed as follows: It contains the encoder part (the
left part of the generator G in Figure 1) and the decoder part (the right part of the generator G in
Figure 1). The encoder learns compact vector representations of the input sequential crowd flow
tensors, while the decoder tries to generate a sequence of future tensors with the learned compact
vector representations. In the encoder, the input tensor sequence {X*|t = ty,. .. t,} is first fed into
a CNN layer to learn the spatial features. Then, the outputs of the CNN layer are input into the
LSTM layer to learn the temporal dependency among the crowd flow tensors in different time
slots.

Note that the crowd flow tensors in different time slots contribute differently to the prediction of
the future. For example, to predict the traffic flow in 3:00pm, the traffic flow in the last hour 2:00pm
is more important than that in the hour 10:00am. To take this into account, we also propose to add
an attention mechanism to the encoder. Attention mechanism is widely used in natural language
processing [5] and imaging processing [4]. It allows the decoder to attend to different parts of the
input data sequence at each step of the output generation. Such a Seq2Seq model with attention
mechanism makes our multi-step crowd flow prediction more accurate compared with previous
deep learning models [42, 45]. The Seq2Seq decoder model with attention mechanism is illustrated
in Figure 3.
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Fig. 3. lllustration of the Seq2Seq model with attention.

As shown in Figure 3, given the input crowd flow tensors {X*|t = ti, ... t,} and the previous
output {y!, ...y 1} of the LSTM layer in the decoder, the i-step prediction of y’ can be calculated
by

P(yi|y1, e yi—l»En(le L th)) = g(yi—h Sis Ci), (8)
where En(X!,...X!) is the output of the encoder, ¢; is a context vector, and s; is the hidden state
of LSTM for time i, which is computed by

Si = f(si*19 yifla Ci)a (9)
n
Ci = Za’l’jh]’. (10)
j=1
The weight a;; of each annotation h; is computed by
exp(e;;
oy pleij) (11)

ZZ:l exp(eik) '
where e;; = a(s;_1, hj) is an alignment model that scores how well the input around position j
and the output at position i match. The score is based on the LSTM hidden state s;_; and the
jth annotation h; of the input crowd flow tensor sequence {X‘|t = t,...t,}. The output of the
LSTM layer in the decoder is {y, . . . yx}, and then it is input into a deconvolution layer R-CNN to
generate the tensors XI{ST 1 With the same shape as the input X’

EC-Gate to learn the external context features. Note that the crowd flow data such as traf-
fic data and human mobility data can be remarkably affected by many external contexts such as
weather, POlIs, social events, and holidays. To take the external contexts into account, some previ-
ous works [45, 48] extracted external context features and concatenated them with the features of
the crowd flow data. The limitation of such methods is that they do not distinguish the different
impacts of the external features to different regions. In this article, we design a gate called EC-Gate
to learn a fine-grained representation of the external contexts for each region in each time slot.
Instead of simply concatenating the external context features, the proposed EC-Gate can learn a
unified impact weight of all the external context features for each region in each time slot. The
structure of EC-Gate is shown in Figure 4. Three types of external context features are extracted,
weather, day & hour, and POIs. The extracted context features form a external feature tensor whose
three dimensions are cell region id, cell region id, and feature type. The external feature tensor is
then input into a CNN model. Note that, in the CNN model, we do not use the pooling layer to
keep the shape of the output the same as the input. The final output of CNN is two matrices. One
corresponds to the inflow gate and the other corresponds to the outflow gate. By incorporating
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Fig. 4. ST-Gate to learn external context features.

EC-Gate, the final output of the decoder can be calculated by
X' =X o0 ©G, (12)

where Xi o7 18 the output of LSTM layer, G is the normalized output of the EC-Gate, and © is the
Hadamard product. Note that EC-Gate is jointly learned with SeqST-GAN, and thus the parameters
of EC-Gate are updated together with the parameters of SeqST-GAN in each iteration to learn the
region-level impact weights of the external contexts.

4.3 Discriminator D

Given a pair of real and generated crowd flow tensors (X, X ), the discriminator D tries to distin-
guish which one is real and which one is generated. The prediction error of discriminator D will
be back-propagated to the generator G to guide it to generate more real data. We also design the
discriminator as a deep neural network, and the architecture of D is shown in the lower part of
Figure 1. First, the observed previous crowd flow tensors {X'|t = t,. .. t,} are merged with the
real future tensors {X'|t = t,41, ... tysx} and the generated tensors (XUt = thats - - - bpek ) to form
a pair of training samples (X ,X). Then, (X, X) is in turn input into a CNN layer and an LSTM
layer to learn the spatial and temporal latent features. Next the attention mechanism is also ap-
plied on the output of LSTM. Note that the D in WGAN uses a new loss function derived from
the Wasserstein distance, and thus no logarithm is needed anymore. D here does not play as a
direct critic but a helper for estimating the Wasserstein distance metric between the real and the
generated data distributions. Thus, the Sigmoid layer is not needed in the final layer.

5 EVALUATION

In this section, we will conduct extensive experiments to evaluate the proposed SeqST-GAN on
two large urban crowd flow datasets: the taxi trip dataset and the bike trip dataset in New York.
We will first introduce the datasets, the baselines, and the experiment settings. Then, we will show
the experiment results on both single-step and multi-step prediction on the two datasets. Next, we
will perform parameter study to show the effectiveness of SeqST-GAN in addressing the blurry
prediction issue. Finally, we will evaluate the effectiveness of the proposed EC-Gate in external
context features learning.

5.1 Dataset
The details of the two datasets used for evaluation are described as follows:

e TaxiNYC dataset.! TaxiNYC dataset contains 1.19B taxicab trip records in New York from
January 2009 to December 2015. On average, there are 170M trip records collected in
each year. Each taxi trip record includes fields capturing pickup and dropoff dates/times,
pickup and dropoff locations, trip distances, itemized fares, rate types, payment types, and

Thttp://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
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Fig. 5. The heat maps of the TaxiNYC dataset.
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Fig. 6. The heat maps of the CitiBikeNYC dataset.

driver-reported passenger counts. We use four-year records from 2009 to 2013 as training
data, while the records in 2014 and 2015 are used as validation and test sets, respectively.

e CitiBikeNYC dataset.? CitiBikeNYC dataset contains more than 28M bike trips in
NewYork from July 2013 to June 2016. In total, CitiBike has established over 600 stations
and 10K bikes in New York. Each bike trip contains the trip duration, start/end station IDs,
start/end timestamps, station Lat/Long, and bike ID. We use the data from 2013 to 2015 as
training and validation data and the data in 2016 as testing data.

Figure 5 shows the heat maps of the dropoff and pickup locations of the taxis in New York, and
Figure 6 shows the heat maps of the check-out and check-in locations of the CitiBike bikes in New

Zhttps://www.citibikenyc.com/system-data.
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Table 1. Statistics of the Datasets

Dataset TaxiNYC CitiBikeNYC
Data type Taxi GPS trip Bike rent trip
Time Span Jan. 2009-Dec. 2015 July 2013-June 2016

# of trips 1.19B 28M

Grid map size (64, 64) (16, 16)
Time interval 1 hour 1 hour
Point Of Interest (POI) data
# of POIs 18,912

residential(16.7%), education(20%),
culture(3%), transportation(6.1%),
social services(8.7%), recreational(17.2%),
Types of POIs commercial(5.5%), government(4.5%),
religious institution(8.4%), water(1.6%),
public safety(3.3%), health services(1.5%),
miscellaneous(3.5%)
Weather data

Weather rainy, snowy, sunny, visibility, etc.
Temperature [-30°C, 40°C]
Wind speed [0, 50mph]

York. One can see the two datasets are both not evenly distributed in New York. There are a large
number of taxi and bike trips in Manhattan, but the data are sparse in other areas of New York.
As the locations of bike stations in New York are fixed and the bike trips can be only from one
bike station to another, the covering areas of the bike trips is much smaller than the areas covered
by the taxi trips. Note that in some areas there are no bike or taxi flow data at all, such as the
ocean areas. Thus, although we still include such areas in our grid maps, we do not evaluate the
prediction results for these regions, as the values are always zero.

We also use the publicly available POI data of New York.® In this dataset, there are 18,912 POIs
in total, and it includes the POIs of the following facility domains: residential, education facility,
culture facility, recreational facility, social services, transportation facility, commercial, government
facility, religious institution, health services, public safety, water, and miscellaneous. We also use
weather information, including the weather conditions (rainy, snowy, sunny, etc.), temperature,
wind speed, and so on. The detailed statistical information of the two datasets, POI dataset, and
the used weather information are given in Table 1.

5.2 Data Analysis

In this subsection, we conduct data analysis on the two datasets to show how the external factors
affect the crowd flow of taxis and bikes. Figure 7(a) and Figure 7(b) show the number of bike trips
and taxi trips varying with different average temperatures of a day, respectively. Each point in the
figure represents the trip number of a day under a particular average temperature. One can see
that with the increase of the temperature, the usage of bikes presents a significant increase trend.
However, the effect of temperature on the usage of taxis is less significant than that of bikes, and
the number of taxi trips does not increase or decrease remarkably with the change of temperature.

Shttps://data.cityofnewyork.us/City-Government/Points- Of-Interest/rxuy-2muj/data.
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Fig. 7. The effect of temperature to the trips of bikes and taxis.
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Fig. 8. Trip numbers in different hours of a day.

This is reasonable, because in cold days people will be less likely to take a bike for travel, and they
might choose to take taxis, buses, or subways instead. For the taxi trips, however, cold weather
will not decrease the possibility of people choosing taxi for traveling. On the contrary, people may
be more likely to take a taxi when there is extreme weather. From this figure, one can see that the
external factor of weather does have impact on the crowd flow data, but for different types of data
the impact can be significantly different.

We next investigate how the usage of bikes and taxis varies in different hours of a day. Figure 8(a)
and Figure 8(b) show the results. As people’s travel patterns can be quite different on weekdays and
weekends, we show the trip number curves in weekday and weekend for each dataset, respectively.
One can see that, for the bike trip data, there are two remarkable peaks in the rush hours of
weekdays. This is probably because on weekdays people tend to take bike to their work places or
to the subway station for transferring. On weekends, although there are no significant peaks in a
day, one can see that the largest number of bike trips appears in the interval from about 11:00am
to 4:00pm. This is mainly because on weekends people take bikes for tour rather than for work.
For the taxi trip dataset, there are also peaks for the curve on weekday, but they are not as large as
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that of the bikes. Overall, the usage of taxis in the daytime is always large, no matter on weekdays
or weekends. This is probably because most people do not choose to take taxi to work and thus
there is no big difference between the two curves of workdays and non-workdays. One can also
see that a big difference between the usage patterns of bikes and taxis is that their curves in the
night are quite different. In the night from 8:00pm to 12:00am (midnight), the bike trip number is
always small, but the taxi trip number is still large. This is mainly because, in the late night, people
are more likely to take a taxi home due to safety issues.

Both data analysis results show that external factors including weather, hours of a day, and hol-
idays can affect the crowd flow data, and thus they should be carefully considered when building
a mode for predicting the future trend of the crowd flow.

5.3 Baselines and Evaluation Metrics

We compare our model with the following baselines, including both traditional statistics-based
models and the recent state-of-the-art deep learning models:

e Historical Average (HA): The historical average crowd flows are used as the prediction
of the corresponding future crowd flows. For example, we use the average crowd flow in
the past one year in the time slot 10:00am-11:00am as the prediction of the crowd flow in
the same time slot.

e ARIMA: Auto-Regressive Integrated Moving Average (ARIMA) is a widely used regression
model for time series data prediction. The spatial correlation among the grid regions is not
explored in this model.

e Ridge regression: Ridge regression is also a widely used linear regression model for time-
series data forecasting. Here, we use an l;-norm regularization of Ridge regression.

e ST-ResNet [45]: ST-ResNet is a deep spatial-temporal residual network model for one-step
crowd flow prediction. In this model, a residual netural network framework is proposed to
model the temporal closeness, period, and trend properties of crowd traffic. The external
context features considered in ST-ResNet include weather, holiday events, and day of a
week. Two fully connected layers are stacked to learn the latent features for the external
contexts, and then the latent features are fused with the crowd flow latent features through
a tanh function.

o AttConvLSTM [48]: AttConvLSTM is a state-of-the-art model for multi-step passenger
demands prediction in the mobility-on-demand services. It employs an encoder-decoder
framework based on convolutional LSTM to capture the spatial-temporal features.

e DMVST-Net [42]: DMVST-Net considers the spatial and temporal relations as two-view
data. It is a deep multi-view spatial-temporal network model to incorporate the temporal
view, spatial view, and the semantic view for one-step taxi demand prediction. DMVST-Net
also considers external context features including weather conditions and holidays. Such
features are directly concatenated with the learned latent features of the taxi demand by
CNN.

e Seq2Seq: To study whether the GAN framework is more effective, we also compare with
the Seq2Seq model, which is used as the generator of SeqST-GAN.

e SeqST-GAN-Con: To study whether the proposed ST-gate can more effectively learn
the external context features, we compare with SeqST-GAN-Con, which is also a variant
of SeqST-GAN. SeqST-GAN-Con directly concatenates the latent features learned from
the external factors through an MLP structure with the learned latent vectors of the
encoder.
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We use the widely adopted Mean Average Error (MAE) and Rooted Mean Square Error (RMSE)
defined as follows as the evaluation metrics:

N n+k
=5
i=1 t=n
N n+k
= 2
RMSE = 1~ k;t;ﬂ(yt ¥

where N is the number of testing samples, ! is the prediction of sample i at time slot ¢, and y! is
the ground truth.

5.4 Experiment Results

Parameters Setting. We implement our model with Tensorflow framework on a 2xGTX 1080Ti
GPU. The parameters in the model are set as follows: The input data size is 64x64x2 for taxi data,
and 16x16X2 for bike data, where 64 and 16 are the row sizes of the divided cell regions, 2 is the
number of channels. The previous time slot length n is set to 24, which means that we use the
crowd flow data of the previous one whole data for prediction. The learning rate « is set to 0.001.
Batch size m is set to 32. The CNN model of TaxiNYC contains 4 layers whose structure is 64x64x8,
32%32%16, 16X16X16, and 8x8x32. The CNN model of CitiBikeNYC also contains 4 layers whose
structure is 16X16X16, 8X8x32, 4x4x64, and 2Xx2x128. We use 8 kernels, and the kernel size is 5X5.
R-CNN has the reversed structure corresponding to the CNN. The output of CNN is flattened to a
512-dimensional vector. The size of LSTM’s hidden state is set to 200.

The parameters of baseline methods are set based on the original papers. Following Refer-
ence [45], convolutions of Conv1 and all residual units in ST-ResNet model use 64 filters of size 3X3,
and Conv2uses a convolution with 2 filters of size 3x3. The batch size is 32. The hyperparamer p in
ST-ResNet is fixed to one-day, and q is fixed to one-week. Following Reference [48], the parameters
of the AttConvLSTM model are set as follows: The encoder consists of 2-layer CNN and 2-layer
ConvLSTM. The kernel size of the 2-layer CNN is set to 3x3 with a stride of 2 and the number
of features is set to 8 for the lower layer and 16 for the higher layer. For the 2-layer ConvLSTM,
the kernel size of all convolutional operations is 3X3 with a stride of 1, and both layers contain
64 hidden states for each grid. The decoder is composed of 2-layer ConvLSTM and 2-layer DCNN,
with the same configuration as encoder. For the attention model, the number of nodes in the single
hidden layer of MLP is set to 1,024. For model training, we adopt the mini-batch learning method
with a batch size of 16. Adam optimizer is used with a constant learning rate of 0.0002. Following
Reference [42], the parameters of DMVST-Net model are set as follows: The number of layers of
the spatial view is set to 3, the kernel size is set to 3x3, number of kernels is set to 64, and the
dimension of the output is set to 64. For the temporal view, the sequence length is set to 8 for
LSTM, and the output dimension of graph embedding is set to 32. The output dimension for the
semantic view is set to 6. The batch size during model training is set to 64, and early-stop is used
in the experiment.

Convergence Analysis. As GAN is generally hard to train, we first study whether the proposed
SeqST-GAN can converge quickly. Figure 9 shows the training loss curves of generator G and
discriminator D of SeqST-GAN on TaxiNYC dataset. One can see that the losses become stable
when the training epoch reaches 400. It shows that SeqST-GAN can converge quickly. This is
mainly because we use WGAN instead of the original GAN, and WGAN is more stable in training.
For the CitiBikeNYC dataset, it needs smaller number of epochs to converge. In the following
experiment, we train our model with 400 epochs on both datasets.
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Fig. 9. The loss curves of G and D of SeqST-GAN.

Table 2. Comparison of Different Methods on MAE
and RMSE for One-step Prediction

Method TaxiNYC CitiBikeNYC
MAE RMSE MAE RMSE
HA 10.82 38.67 6.42 10.10
ARIMA 12.45 67.5 6.78 13.56
Ridge 11.23 46.56 6.25 11.25
ST-ResNet 9.76 43.97 5.84 10.58
AttConvLSTM  7.56 26.91 478 7.76
DMVST-Net 6.58 21.64 4.46 7.85
Seq2Seq 6.12 19.42 415 7.68
SeqST-GAN 5.83 18.35 3.79 7.35

Comparison on One-step Prediction. As most previous models focus on one-step prediction,
for a fair comparison, we first evaluate the performance of various methods on one-step prediction
on the two datasets. In this experiment, each training sample X = {X‘|t = 1,2, .. .25} is composed
by the observed crowd flow matrices in the first 24 hours and the crowd flow matrix in the future
one hour for prediction. Table 2 shows the result, and the best results are highlighted with bold
font. One can see that SeqST-GAN outperforms all the baselines on both MAE and RMSE on the
two datasets. HA, though, is a naive prediction model that totally relies on the history average,
and it outperforms the other two statistics-based methods ARIMA and Ridge regression. This im-
plies that the two crowd flow datasets present obvious periodicity, and history average can provide
a rather good prediction on the future. However, HA is inferior to all the deep learning models,
demonstrating that deep models are more powerful in learning spatial-temporal features from
crowd flow data. In addition, HA does not consider the effect of external factors such as weather
and holidays. Deep learning-based methods including ST-ResNet, AttConvLSTM, and DMVST-
Net outperform the shallow models but are inferior to SeqST-GAN. This verifies the effectiveness
of the proposed adversarial learning framework in one-step prediction, and incorporating the ad-
versarial learning loss does improve the performance. On average, SeqST-GAN reduces MAE by
13.2% and RMSE by 10.5% on the two datasets compared with the strong baseline DMVST-Net.
Compared with AttConvLSTM, the average reductions of MAE and RMSE are 21.8% and 18.5%,
respectively. To further investigate whether adversarial learning helps in our studied problem, we
compare SeqST-GAN with Seq2Seq. One can see that Seq2Seq actually works even better than the
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Fig. 10. RMSE of different methods on 10-step prediction.

strong baseline DMVST-Net, which shows the proposed Seq2Seq-based prediction model works
well. Seq2Seq model is inferior to SeqST-GAN in both datasets. Thus, one can conclude that ad-
versarial learning does improve the prediction performance.

Comparison on Multi-step Prediction. We next evaluate the performance of the methods on
multi-step prediction. We set the step size k as 10 to predict the crowd flows in the future 10 hours
simultaneously. In this experiment, each training sample X = {X’|t = 1,2, ... 34} is composed by
the observed crowd flow matrices in the first 24 hours and the future 10 hours for prediction.
Figure 10 shows the RMSE curves of different methods on the two datasets. The experiment re-
sult on MAE is similar to RMSE, and thus, we do not show the MAE curves for simplicity. As
DMVST-Net cannot perform multi-step prediction, we do not compare with it. One can see that
our proposal SeqST-GAN consistently and significantly outperforms all the baselines. The pre-
diction results of ARIMA, Ridge regression, and ST-ResNet are rather unstable, and the RMSE of
them increases significantly with the increase of the step number. This implies these methods
cannot capture a long-term dependency among the crowd flow data in different hours, and thus
they are not suitable for a multi-step prediction. HA can make much more stable predictions, but
the performance is poor with much higher RMSE values. The RMSE achieved by HA is nearly 40
over TaxiNYC dataset and larger than 11 over the CitiBike dataset. AttConvLSTM, Seq2Seq, and
SeqST-GAN all give stable predictions on the future 10 time slots, and the performance is much
better than other models. The three models all use Seq2Seq learning framework for multi-step
prediction, which verifies the effectiveness of such a learning framework in the studied problem.
The RMSE of SeqST-GAN ranges from around 18 to 22 over the TaxiNYC dataset and from 7.5 to
8.5 over the CitiBike dataset, which are the best results among all the methods. It shows that the
three models successfully capture the periodicity of the crowd flow data, and thus their predictions
on a longer future are still stable. AttConvLSTM achieves comparable performance with Seq2Seq
model. Seq2Seq is slightly better than AttConvLSTM probably due to the usage of the ST-Gate to
incorporate the external context features.

Note that the RMSE at k = 1 shown in Figure 10 is different from the RMSE shown in Table 2
for SeqST-GAN. This is mainly because the training samples and experiment settings are different
in the two experiments. For one-step prediction, only the prediction error for the future 1 hour is
minimized; while for 10-step prediction in this experiment, the prediction error for the future 10
hours are all minimized. Therefore, the final optimal solutions of SeqST-GAN in the two experi-
ments are different, leading to different experiment results at k = 1.
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Table 3. MAE of Four Methods under Different Steps k

method dataset k=1 k=3 k=5 k=8 k=10 k=15 k=20
A CitibikeNYC 642 673 654 683 720 689 675
TaxiNYC 1082 1142 1145 11.26 1126 1128 1127

CitibikeNYC 478 648 712 913 1020 11.13  13.55

AltConlSTM - = e e 756 812 1014 1215 1326 1544  17.82
SeazSe CitibikeNYC 415 615 735 856 942 1046  11.75
qe>eq TaxiNYC 612 782 957 1156 1256 1387 1521
SeqST-GAN CitibikeNYC 379 518 542 716 835 942  11.75

TaxiNYC 5.83 6.36 8.45 9.78 11.42 13.24 14.56

Parameter Study on Future Steps k. To study the effect of the future steps k to the model
performance, we further evaluate the prediction performance of HA, AttConLSTM, Seq2Seq, and
SeqST-GAN under different future steps k. Table 3 shows the result with the k set to 1, 3, 5, 8,
10, 15, and 20, respectively. >From this table, one can draw the following conclusions: First, with
the increase of the future steps k, the average MAE of the methods AttConLSTM, Seq2Seq, and
SeqST-GAN keeps increasing. For example, for the CitiBikeNYC dataset, the MAE achieved by
SeqST-GAN is 3.79 when the step k is 1, which is a small value, but it increases to 8.35 when k
increases to 10. The result of the TaxiNYC dataset presents the similar trend. This is reasonable,
because a farther future (larger k) is always harder to predict than a nearer future (smaller k).
Second, the prediction performance on the CitibikeBikeNYC dataset is consistently better than
that on the TaxiNYC dataset for all the methods. This shows that the taxi data are harder to predict
than the bike data in New York, which is consistent with our previous experiment results. Third,
SeqST-GAN consistently outperforms the two baselines by achieving lower MAE on both datasets,
demonstrating the effectiveness of the proposed model. Finally, by comparing AttConLSTM with
Seq2Seq, one can see that the two models achieve comparable performance, but overall Seq2Seq
is slightly better than AttConLSTM. This also verifies the effectiveness of the proposed Seq2Seq
model in multi-step crowd flow prediction. Seq2Seq is inferior to SeqST-GAN, which demonstrates
that adding the adversarial loss does help to improve the prediction performance.

By comparing HA with the other three methods, one can see that for the long-term prediction
(say, k = 10), HA outperforms the other methods including our proposed SeqST-GAN. When k
is smaller than 10, HA is inferior to SeqST-GAN, but when k is larger than 10, HA performs bet-
ter than SeqST-GAN. This is because SeqST-GAN and other prediction models AttConLSTM and
Seq2Seq only use the crowd flow data in the previous 24 hours for prediction, while HA makes
the prediction based on the average of all the historical data. Therefore, SeqST-GAN, Seq2Seq,
and AttConvLSTM perform much better than HA for short-term prediction; while for long-term
prediction, HA performs better.

Parameter Study on A. The parameter A is used to balance the importance of mean square
error and adversary loss for addressing the blurry prediction issue. A larger A means that the mean
square error is more important in the final loss function of Equation (5). When A is too large, the
effect of the adversary loss to the objective function is negligible and the model degenerates to
most existing models that only use the square error loss. When A = 0, it means only the adversary
loss is considered in the objective function, while the square error is totally ignored.

To study the effect of A on the model performance, we test the performance of SeqST-GAN with
different value settings of A ranging from 0.001 to 100 on the two datasets. The five-step prediction
result on the MAE metric is shown in Figure 11. One can see that the MAE value varies remarkably
with the increase of the A on both datasets, which demonstrates that A does have a remarkable

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 22. Publication date: June 2020.



22:20 S. Wang et al.

5.6 ‘ : 14
5.4+
W
<
=
5.2+
5 : 6 : :
102 10 10? 102 10° 10?
) (CitiBikeNYC) A (TaxiNYC)
Fig. 11. The effect of A on the model performance.
8 i — 12 i
Bl ScqST-GAN Bl ScqST-GAN
SeqST-GAN-Con [SeqST-GAN-Con M
6 L_JSeq-GAN . — i [ 1Seq-GAN
8 L
83 [Sa}
<4t <
= =
4t
2 L
0 0
k=1 k=3 k=5 k=8 k=1 k=3 k=5 k=8
(a) CitiBikeNYC (b) TaxiNYC

Fig. 12. MAE comparison of SeqST-GAN, SeqST-GAN-Con, and Seq-GAN.

impact on the model performance. On the CitiBikeNYC dataset, the MAE is below 5.2 when A = 0.1,
while MAE increases to nearly 5.6 when A = 0.001. The effect of A on the TaxiNYC dataset is even
more significant, and the MAE varies from around 7 to nearly 13. One can see that a too large or
small A will hurt the performance and the best A for CitiBikeNYC is 0.1, and 1 for TaxiNYC. When
only the mean square error is considered with very large A values, the performance decreases.
This is probably due to the blurry prediction issue. Previous works [16, 25] showed that blurry
prediction issue is common in image prediction and generation. To address this issue, adversary
training framework was widely used. On the CitiBikeNYC dataset, the MAE is about 5.4 when
A = 100, which is lower than the best result 5.2 when a more suitable A value is set as 0.1. On the
TaxiNYC dataset, the effect of blurry prediction is even more significant, MAE increasing from 8
to 13. This result demonstrates that a suitable A can help improve the performance of SeqST-GAN
by reducing the negative effect of blurry prediction in crowd flow prediction.

Effectiveness of EC-Gate in External Context Feature Learning. Finally, we study whether
and to what extent the fine-grained region-level representation features of the external contexts
learned by EC-Gate—including weather, date, and POIs—help our prediction model. To this pur-
pose, we compare the complete version of SeqST-GAN with the incomplete version of SeqST-GAN
named Seq-GAN, which removes the EC-Gate. To examine whether EC-Gate can better integrate
the external context features than simply concatenating the features, we also compare it with
SeqST-GAN-Con. Figure 12 shows the MAE comparison of the three methods under different fu-
ture steps. It shows that on both datasets SeqST-GAN outperforms the two baselines in all the cases,
which verifies that the external context features are useful and incorporating them does improve
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the model performance. One can also see that the performance improvement of SeqST-GAN on the
CitibikeNYC dataset is more significant compared with that on the TaxiNYC dataset. On average,
the MAE reduction on the CitibikeNYC dataset is around 5%, but the number is only less than 3%
for the TaxiNYC dataset. This is mainly because, as shown in Figure 8 in our data analysis section,
the taxi trip data are less sensitive to the external weather data. Comparing SeqST-GAN-Con with
Seq-GAN, one can see that SeqST-GAN-Con consistently outperforms Seq-GAN with smaller MAE
values. This verifies that the external contexts features are useful, and even simply concatenating
the features with the encoded latent features of the crowd flow tensors, the performance can be
improved.

However, SeqST-GAN-Con is consistently inferior to SeqST-GAN on the two datasets. It shows
that EC-gate can better learn fine-grained features of the external contexts for different regions.
This is mainly because for different regions the effect of the external context features on the crowd
flow could be quite different. For example, the effects of weekday and weekend on a region of a
mall and a region of a university could be different. The effects of weather on a region of park area
and an office building area could be also different. For the feature concatenation method SeqST-
GAN-Con, it assumes that the external context features such as weather and holidays have the
same effect on all the regions, which is not reasonable.

We further investigate whether the three types of external features: weather, POIs, and day &
hour are all helpful to the prediction. We remove the three types of features separately and then
test the performance. We use SeqST-GAN(W) to denote that the weather features are removed,
SeqST-GAN(DH) to denote that the day & hour features are removed, and SeqST-GAN(POI) to
denote that the POIs are removed. The experiment results are shown in Figure 13. From this figure
one can see that MAE will increase when any type of features are removed in both datasets, which
means that the three types of features are all helpful to the crowd flow prediction task.

6 CONCLUSION AND FUTURE WORK

In this article, we proposed a novel model named SeqST-GAN that integrated Seq2Seq model and
adversarial learning framework for forecasting multi-step urban crowd flow data. Specifically,
a Seq2Seq model was first applied to generate the future crowd flow “frames” step-by-step. To
capture the external context features, an EC-Gate module was also designed to learn a unified
region-level representation of the features to help tune the initially generated future “frames.”
Then, through an adversary learning framework, the mean square error and the adversarial loss
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were combined to handle the blurry prediction issue. We evaluated our proposal on two large crowd
flow datasets of New York. The results showed that it significantly outperformed several strong
baselines.

For the future, it would be interesting to further study whether the proposed framework can be
applied to other spatial-temporal data mining tasks, such as trajectory prediction and POI recom-
mendation. Similar to the crowd flow data studied in this work, the trajectory data in an area and
the POIs in a city can be also modeled as “images” or “videos,” and thus the proposed framework
can be applied to perform related prediction tasks. Another potential future research direction that
we are particularly interested in is how to extend the current model for urban crowd flow predic-
tion under the scenario of sparse data. As GAN model can produce high quality samples that are
very similar to the real ones, we can use GAN to generate more training samples to address the
data sparsity issue before training.
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