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a b s t r a c t 

Traffic flow prediction is a fundamental issue in smart cities and plays an important role in urban traffic 

planning and management. An accurate predictive model can help individuals make reliable travel plans 

and choose optimal routes while efficiently helping administrators maintain traffic order. Road speed 

prediction, which is a sub-task of traffic flow forecasting, is challenging due to the complicated spatial 

dependencies characterizing road networks and dynamic temporal traffic patterns. Given the power of 

recurrent neural networks (RNNs) in learning temporal relations and graph neural networks (GNNs) in 

integrating graph-structured and node-attributed features, in this paper, we design a novel graph LSTM 

(GLSTM) framework to capture spatial-temporal representations in road speed forecasting. More specifi- 

cally, we first present a temporal directed attributed graph to model complex traffic flow. Then, to take 

advantage of the structure properties and graph features, we employ a message-passing mechanism for 

feature aggregation and updating. Finally, we further implement several variants of LSTMs with a GN 

block under the encoder-decoder framework to model spatial-temporal dependencies. The experiments 

show that our proposed model is able to fully utilize both the road latent graph structure and traffic 

speed to forecast the road state during future periods. The results on two real-world datasets show that 

our GLSTM can outperform state-of-the-art baseline methods by up to 32.8% in terms of MAE, 43.2% in 

terms of MAPE and 23.1% in terms of RMSE. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The accurate and real-time prediction of traffic speed is a cru-

ial and fundamental task in the construction of smart cities and

s particularly useful for many applications such as traffic network

lanning, route guidance, and congestion avoidance [1] . Actually,

eliable road speed prediction can not only benefit city manage-

ent departments by providing tools for policy making but also

ive individual travellers sufficient information when making plans

2] . There are numerous methods for traffic prediction based on es-

imating road speed, volume, and travel time. These methods can

e divided into two categories: conventional shallow methods and

merging deep-learning-based models. The former methods, such

s support vector machine (SVM) [3] and the autoregressive inte-

rated moving average (ARIMA) model [4] , can handle time-series

ata but cannot capture the spatial-temporal relationships of road

etworks. At the same time, given the increasing research inter-

st in time-series data prediction based on deep learning meth-
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ds, many neural-network-based models have been proposed in

he latter category, such as the ResNet-based ST-ResNet model [5] ,

he convolutional neural network (CNN)-based model [6] , the GCN-

ased model [7] and other deep-learning-based traffic flow predic-

ion methods [8,9] . These models can outperform shallow models

n capturing spatial-temporal features. 

In recent years, LSTMs have gained substantial interest due to

heir ability to model the long-term dependencies of time-series

ata. Many methods, such as [10–12] , examine the applicability

nd demonstrate the advantages of LSTMs for traffic prediction.

urthermore, a variant of LSTMs has been proposed for improv-

ng performance in many tasks, such as [13–16] . Many papers were

lso published after [17] , which gives a detailed introduction of

NNs. Given the advantages of GNNs and graph convolutional neu-

al networks (GCNs), graph-structured data modelling has gained

ncreased attention, especially for traffic networks such as in

18–22] . Regardless, these methods model spatial-temporal rela-

ions of road networks by constructing adjacent matrices and using

onvolution operations while ignoring the latent properties of road

tructures. 

In this paper, we aim to predict road speed more accurately,

specially under extreme circumstances such as following traffic

ccidents. However, we face several challenges when addressing
s meet graph neural networks for road speed prediction, Neuro- 
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this task: (1) Complex road structure . There are many relations

between segments in a road network, such as different directions.

Moreover, segments and sections have many properties. (2) Spatial

and temporal correlation . The adjacent sections on a road in the

same direction have similar traffic speeds most of the time. How-

ever, adjacent sections in opposite directions are generally not re-

lated in terms of traffic speed. The temporal correlations of adja-

cent sections exhibit the same phenomena as spatial correlations. 

Motivated by the idea that performance gains can be achieved

by using GNNs for modelling graph-structured data and LSTM for

learning long-term dependencies of time-series data, this paper

proposes combining GNNs and LSTM for predicting the traffic state

of the next time period for all related road segments. More specif-

ically, a road network is constructed as a graph to capture prop-

agation patterns, and this model takes the graph as input and re-

turns a graph as output. The input graph has edges, nodes, and

global-level attributes, while the output graph has the same struc-

ture with updated attributes. The goal of this study is to develop

a new model for accurately capturing traffic state connections be-

tween adjacent sections and predicting the road speed of future

periods. The contributions of this paper can be summarized as fol-

lows: 

• We fully utilize the graph structure to improve the performance

of road prediction by using a GNN. We can capture adjacent

section relations for different directions and utilize road net-

work properties while maintaining the original structure, espe-

cially under extreme traffic conditions. 

• We propose GLSTM, which combines GN blocks with LSTM

cells, and then, we adopt an encoder-decoder model to cap-

ture the spatial-temporal properties of road network structures.

Furthermore, we implement several variants of GLSTM cells to

prove the effectiveness of the combination of the GN and LSTM

cells. 

• We conduct extensive experiments on two real-world datasets

and obtain accurate predictions. The state-of-the-art methods

and strong baselines are compared with our method for road

speed forecasting. 

The remaining parts are organized as follows. First, related

works are presented and compared with standard LSTM and GNNs

in Section 2 . Next, we give several definitions and formulate the

problem in Section 3 . Then, we present the details of the proposed

methods in Section 4 , followed by Section 5 , where the experimen-

tal results are evaluated and explained. Finally, a comprehensive

conclusion and future research are discussed in Section 6 . 

2. Related work 

2.1. Traffic speed prediction 

Traffic speed prediction is a critical component in an intelligent

transportation system (ITS) and is a fundamental problem in ur-

ban computing. Methods for traffic speed prediction fall into two

categories: parametric and non-parametric methods [23] . 

Many parametric methods were used for traffic speed pre-

diction before deep learning methods appeared. These methods

are called shadow methods, in contrast to deep learning mod-

els. Levin and Tsao found that the ARIMA (0,1,1) was the most

statistically significant of all forecasting intervals [24] . K-nearest

neighbour (KNN) algorithms were investigated for traffic predic-

tion and achieved slightly better results than other state-of-the-art

techniques [25] . Ghosh et al. [26] . proposed structural time-series

model (STM) for short-term traffic condition forecasting. The above

methods can capture the temporal properties of time-series data

while ignoring the spatial attributes. 
Please cite this article as: Z. Lu, W. Lv and Y. Cao et al., LSTM variant
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Given the advances of deep-learning-based methods, many

on-parametric algorithms have been applied to various applica-

ions. Indeed, neural-network-based models have been commonly

sed for traffic speed prediction. Wang et al. [27] . proposed a deep

earning method with an errorfeedback recurrent convolutional

eural network structure (eRCNN) for continuous traffic speed pre-

iction. Lv et al. [28] . proposed look-up convolution recurrent neu-

al network (LC-RNN) to achieve more accurate traffic speed pre-

iction by taking advantage of a rational integration of both RNN

nd CNN models to learn more meaningful time-series patterns

hat can adapt to the traffic dynamics of surrounding areas. Kim et

l. [29] . demonstrated that embedding topological information of

he road network improves the process of learning traffic features

nd then used a graph of a vehicular road network with recurrent

eural networks (RNNs) to infer the interaction between adjacent

oad segments as well as the temporal dynamics. A neural network

ith capsules that replaces max pooling by dynamic routing has

een proposed for traffic speed prediction [30] . These methods can

ncorporate many hidden unit and complex neural network frame-

orks to capture the temporal and spatial attributes of data. 

.2. Long short-term memory 

LSTM networks are RNNs equipped with a special gating mech-

nism that controls access to memory cells [31] . LSTM can be de-

igned to model long-term dependency relations, especially when

andling sequential data. Liao et al. [32] proposed a hybrid model

ased on the Seq2Seq framework with LSTM for traffic prediction.

ei et al. [33] proposed a spatio-temporal LSTM network pre-

eded by map matching to predict fine-grained traffic conditions.

ariants of LSTM have been proposed, whereas the above stud-

es all include standard versions. Neil et al. [14] . introduced the

hased LSTM model, which extends the LSTM unit by adding a

ew time gate and achieved faster convergence than regular LSTM

n tasks that require the learning of long sequences. Several pa-

ers have predicted traffic while considering road structure. Cui

t al. [34] modelled the traffic network as a graph and proposed

 novel deep learning framework, the traffic graph convolutional

ong short-term memory neural network (TGC-LSTM), to learn the

nteractions between roadways in a traffic network and forecast

he network-wide traffic state. Zhao et al. [35] proposed a novel

eural-network-based traffic forecasting method called the tempo-

al graph convolutional network (T-GCN) model, which combined

he graph convolutional network (GCN) and gated recurrent unit

GRU). Wu et al. [36] proposed the graph attention LSTM network

GAT-LSTM) and used it to build an end-to-end trainable encoder-

orecaster model to solve the multi-link traffic flow forecasting

roblem. It is not efficient to capture road structure properties

ithout graphs, and these methods treat road links as adjacent

atrices. 

.3. Graph neural networks 

The concept of GNNs was first introduced in 2005 [37] and fur-

her elaborated upon in 2009 [38] . GNNs have been able to achieve

atisfactory results in multiple domains where data are typically

tructured as a graph [39] . Zhou et al. [40] noted that graphs can

e used as denotations of a large number of systems across vari-

us areas, including social networks, physical systems, knowledge

raphs and many other research areas. Ma et al. [41] provided a

ew graph convolution framework that involves every path linking

he message sender and receiver with learnable weights depend-

ng on the path length, which corresponds to the maximal entropy

andom walk inspired by the path integral idea in physics. More-

ver, unlike standard neural networks, GNNs include a state that
s meet graph neural networks for road speed prediction, Neuro- 
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Fig. 1. Differences between two modelling structures. 
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an represent information from its neighbourhood with an arbi-

rary depth and can capture the dependence of graphs via message

assing between the nodes of the graphs. Xu et al. [42] presented a

heoretical framework for analysing the expressive power of GNNs

o capture different graph structures and explained the power of

NNs for handling graph-structured data. 

A new graph network (GN) framework was presented that

efines a class of functions for relational reasoning over graph-

tructured representations [17] . The main unit of computation in

he GN framework is the GN block, which takes a graph as input

nd returns a graph. Moreover, the GN block can be constructed for

arious complex architectures when combined with other models. 

Because road networks can be naturally modelled with graph

tructures, many studies on traffic-prediction-based GNNs have

een conducted. The graph convolution generalizes the traditional

onvolution to data to graph structures. Li et al. [43] modelled

he spatial dependency of traffic as a diffusion process on a di-

ected graph and proposed the diffusion convolutional recurrent

eural network (DCRNN), which can capture both spatial and tem-

oral dependencies among time series. Guo et al. [7] proposed

 novel attention-based spatial-temporal graph convolutional net-

ork (ASTGCN) model to solve the traffic flow forecasting problem,

herein combining the spatial-temporal attention mechanism and

patial-temporal convolution. A multi-view graph convolutional

etwork (MVGCN) for the crowd flow forecasting problem was

uilt using spatial graph convolution [44] . Wang et al. [45] pro-

osed a new topological framework called a linkage network to

odel road networks, presented the propagation patterns of the

raffic flow and designed a graph recurrent neural network (GRNN)

o learn the propagation patterns in the graph. 

. Definitions and problem statement 

We briefly introduce the traffic speed prediction problem in this

ection. First, we define several key concepts and then formulate

he problem. 

Graph for GNN . A normal graph is composed of nodes and

dges that connect nodes. However, a graph in a GNN is defined

ith additional properties. Specifically, graphs are defined as G =
(V, E, V at t r , E at t r , U 

at t r ) in a GNN. V = v j represents all nodes of a

raph, while E = (e k , s k , r k ) contains all the edges. n j and e k are

mall integers sorted in ascending order. The sender and receiver

f an edge are nodes in V and are represented by s k and r k , respec-

ively. V 

attr contains the attributes of all nodes. The i -th row of V 

attr 
Please cite this article as: Z. Lu, W. Lv and Y. Cao et al., LSTM variant

computing, https://doi.org/10.1016/j.neucom.2020.03.031 
s the attribute vector of the i -th node. Similarly, E attr is a matrix

hat contains the attributes of all edges. The i -th row of E attr repre-

ents the attribute vector of the i -th edge. Finally, U 

attr represents

he attribute vector of the whole graph. 

Graph isomorphism . Given graphs G 1 = { V 1 , E 1 } and G 2 =
 

V 2 , E 2 } , they are isomorphic under the following conditions: 1)

here is a bijection (one-to-one correspondence) f from V 1 to V 2 ,

nd 2) there is a bijection g from E 1 to E 2 that maps each edge ( v,

 ) to ( f ( v ), f ( u )). 

Road network . We model a road network as a directed graph

 = (V, E) . Each vertex v ∈ V denotes an intersection or the seg-

entation point of a road, and each edge e ∈ E represents a road

egment that links the contiguous intersections. A directional edge

 ∈ E from intersection v i to v j is established when there is a road

egment between v i and v j . V = { v 1 , v 2 , · · · , v N } , where N is the

umber of road intersections. E = { e 1 , e 2 , · · · , e M 

} , where M is the

umber of road segments. Fig. 1 (a) illustrates the graph structure

f a road network. 

Linkage graph . For handling a simple graph and combining the

seful information contained in vertices and edges, the linkage

raph-structured network [45] is adopted, which is different com-

ared to a normal road network. G 

∗ = (V ∗, E ∗) denotes the new

inkage graph. Each vertex v ∗ ∈ V 

∗ denotes a segment of a road,

nd each edge e ∗ ∈ E ∗ represents a direct link between adjacent

egments. V ∗ = { v ∗1 , v ∗2 , · · · , v ∗M 

} , where M is the number of road

egments. E ∗ = { e ∗
1 
, e ∗

2 
, · · · , e ∗

L 
} , where L is the number of linkages.

 directional edge e ∗
i 

from segment v ∗
i 

to v ∗
j 

will be established if

here is an approachable path from v ∗
i 

to v ∗
j 
. Compared with G de-

ned above, each node in G 

∗ denotes a road segment e ∈ E , and

ach edge denotes a reachable direct link between e ∈ E . Fig. 1 (b)

llustrates the graph structure of the linkage network in Fig. 1 (a).

n this paper, the road traffic speed graph (TSG) is a linkage graph

hereby each vertex contains information about the traffic state of

he road segment between two intersections, and the TSG will be

ed to the proposed model. Additional information is considered

hen constructing a linkage graph. More specifically, the length

nd width of the segment for each node, as well as the traffic light

nd turning direction of each edge are included. 

Traffic speed prediction . Given the data of road segments in

he past time intervals from t j−2 k to t j−1 , the problem is to predict

he road traffic speed of road segments v ∗
i 

during peak hours from

 j to t j+ k for several connected road segments simultaneously. We

im to predict Y = { S v ∗i t | r = j, · · · , j + k } given the historical data
s meet graph neural networks for road speed prediction, Neuro- 
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Fig. 2. Updates in a GN block. ( a ) denotes how the edge updates in a GN block: it updates only the edge and related node properties. ( b ) denotes how the node updates: it 

only updates the related edges. ( c ) denotes how the graph updates: it updates all the edges and nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Computation in a GN block. 

Input: G = (V, E, V at t r , E at t r , U 

at t r ) 

Output: G 

′ = (V ′ , E ′ , V at t r ′ , E at t r ′ , U 

at t r ′ ) 
1: for i in number of E do 

2: ˜ E at t r 
i 

= [ E at t r 
i 

, V at t r 
r , V at t r 

s , U 

at t r ] 

3: end for 

4: E at t r ′ = tanh (W E ∗ ˜ E at t r + b E ) 

5: for i in number of V do 

6: ˜ V at t r 
i 

= [ agg i e → v (E at t r ′ ) , V at t r 
i 

, U 

at t r ] , where agg i e → v (E at t r ′ ) = ∑ 

j ∈{ j | E j .r k = V i } E 
at t r ′ 
j 

7: end for 

8: V at t r ′ = tanh (W V ∗ ˜ V at t r + b V ) 

9: ˜ U 

at t r = [ 
∑ 

E at t r ′ , 
∑ 

V at t r ′ , U 

at t r ] 

10: U 

at t r ′ = tanh (W U ∗ ˜ U 

at t r + b U ) 
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s  
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m  

s  
{ S v ∗i t r 
| r = j − 2 k, · · · , j − 1 } , where i ∈ {1, 2, ���, M }, k represents

the smallest time interval, S 
v ∗

i 
t j 

denotes the traffic speed of road seg-

ment v ∗
i 

at t j , while ˆ S 
v ∗

i 
t j 

is to be predicted. As Fig. 1 (a) shows, a to

h are different road segments, and they are connected by road in-

tersections 2, 5, 8, and 11. Our goal, expressed in Eq. (1) , is used to

predict the road speed of all eight segments from t j to t j+ k given

past road speeds from t j−2 k to t j−1 . (
ˆ S 
v ∗

i 

t j 
, · · · , ̂  S 

v ∗
i 

t j+ k 

)
= F 

(
S 

v ∗
i 

t j−2 k 
, · · · , S 

v ∗
i 

t j−1 

)
(1)

4. Proposed method 

We now describe the proposed GLSTM model, which combines

LSTM and GNNs to predict road traffic speed. First, we formulate

the GN block. Then, we introduce the proposed graph LSTM cell

modified from the LSTM cell. Subsequently, we explain the entire

architecture of the proposed model in detail. Finally, we choose the

optimal loss functions and optimize the training process. 

4.1. GN block for graph to graph 

A GN block, as defined in Eq. (2) , is a “graph-to-graph” mod-

ule, which means that it takes a graph as input, denoted as

G = (V, E, V at t r , E at t r , U 

at t r ) , and returns a graph denoted as G 

′ =
(V ′ , E ′ , V at t r ′ , E at t r ′ , U 

at t r ′ ) as output. 

G 

′ = GN (G ) (2)

Graphs G 

′ and G are isomorphic, which means that V ′ = V and

E ′ = E. 

When G is provided as input to a GN block, the computations

proceed from the edge to the node and to the global level. Fig. 2

illustrates that graph elements are involved in each of the com-

putation steps. The computation in a GN block is described in

Algorithm 1 . In the GN block, V at t r ′ is considered to be associated

with V 

attr , as well as E attr and U 

attr . These additional attributes are

merged into a new matrix, denoted as ˜ E at t r . The i -th r ow in 

˜ E at t r ,

denoted as ˜ E at t r 
i 

, is produced by 

˜ E at t r 
i = [ E at t r 

i , V 

at t r 
r , V 

at t r 
s , U 

at t r ] (3)

where V at t r 
r and V at t r 

s denote the attributes of the receiver and

sender nodes of the i -th edge, respectively. The right-hand side of

Eq. (3) means concatenating all of these vectors into a longer vec-

tor. 

E at t r ′ is then produced with 

˜ E at t r by a one-layer fully connected

neural network. 

E at t r ′ = tanh (W E ∗ ˜ E at t r + b E ) (4)
Please cite this article as: Z. Lu, W. Lv and Y. Cao et al., LSTM variant
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here tanh ( ∗) is the hyperbolic tangent function, W E are weights

f ˜ E at t r and b E are biases. 

The i -th row of ̃  V at t r is defined as 

 

 

at t r 
i = [ agg i e → v (E at t r ′ ) , V 

at t r 
i , U 

at t r ] (5)

here 

gg i e → v (E at t r ′ ) = 

∑ 

j ∈{ j | E j .r k = V i } 
E at t r ′ 

j (6)

nd � means aggregating many vectors into one vector by sum-

ing them up with vector addition. For simplicity, Eq. (6) indicates

ggregating attributes of edges whose receivers are the i -th node,

enoted as V i . 

Similarly, V at t r ′ is also produced by a one-layer fully connected

eural network with 

˜ V at t r , where b V and b U are biases for V at t r ′ 

nd U 

at t r ′ correspond. 

 

at t r ′ = tanh (W V ∗ ˜ V 

at t r + b V ) (7)

Finally, U 

at t r ′ is produced as follows: 

 

at t r ′ = tanh (W U ∗ ˜ U 

at t r + b U ) (8)

here ˜ 

 

at t r = 

[ ∑ 

E at t r ′ , 
∑ 

V 

at t r ′ , U 

at t r 
] 

(9)

.2. Graph LSTM cell 

Inspired by regular LSTM cells, in this paper, GLSTM cells, as

hown in Fig. 3 , are constructed to handle graph sequences rather

han sequential vectors. Similar to regular L STM cells, GL STM cells

aintain two hidden states, GC and Gh, which are both repre-

ented as graphs. In each step of a GL STM model, the GL STM cell
s meet graph neural networks for road speed prediction, Neuro- 
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Fig. 3. Inner structure of graph LSTM cell. 
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akes GC t−1 and Gh t−1 as input, where GX t is also included as in-

ut, and returns GC t and Gh t as output. A GLSTM cell can be for-

ulated as follows: 

(GC t , Gh t ) = GLST M(GC t−1 , Gh t−1 , GX t ) (10) 

The forget gate mechanism of GLSTM is indicated as f t in

ig. 3 and is formulated as follows: 

f t = σ (GN f ([ Gh t−1 , GX t ])) (11)

In this part, the operations are slightly different from the reg-

lar operations. For example, in Eq. (11) , G M 

= [ G 1 , G 2 ] means the

oncatenating of two graphs, which is defined as follows: 

G M 

.V = G 1 .V = G 2 .V 

G M 

.E = G 1 .E = G 2 .E 

G M 

.V 

at t r = [ G 1 .V 

at t r , G 2 .V 

at t r ] 

G M 

.E at t r = [ G 1 .E 
at t r , G 2 .E 

at t r ] 

 M 

.U 

at t r = [ G 1 .U 

at t r , G 2 .U 

at t r ] (12) 

Similarly, an activation function, such as the sigmoid function

or graphs, denoted as ˆ G = σ (G ) , is defined as follows: 

ˆ G .V = G.V 

ˆ G .E = G.E 

ˆ G .V 

at t r = σ (G.V 

at t r ) 

ˆ G .E at t r = σ (G.E at t r ) 

ˆ 
 .U 

at t r = σ (G.U 

at t r ) (13) 

N f is a GN block for generating the forget gate. 

The input gate, denoted as i t , is defined as 

 t = σ (GN i ([ Gh t−1 , GX t ])) (14)

here GN i is a GN block for generating the input gate. 

Based on the forget and input gates, the long-term memory is

pdated by forgetting the meaningless old memories and adding

ew memories: 

C t = f t � GC t−1 + i t � NM t (15)

here 

M t = GN NM 

([ Gh t−1 , GX t ]) (16)

nd the � operation means the dot product for graphs. 

The output gate is defined as follows: 

 t = σ (GN o ([ Gh t−1 , GX t ])) (17)

The Gh t is updated based on o t and defined as follows: 
h t = o t � GN o ([ Gh t−1 , GX t ]) (18) j  

Please cite this article as: Z. Lu, W. Lv and Y. Cao et al., LSTM variant
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.3. Model framework 

Based on the GLSTM cell, we propose a new model that com-

ines the LSTM and GN frameworks for handling graph-structured

ata to predict the traffic speed of a road network. As Fig. 4 shows,

e can see that GLSTM has two components: the encoder compo-

ent and the decoder component. The encoder component feeds a

ariable-length source graph sequence to GLSTM while also map-

ing the graph-structured data to fixed-length data. Then, the de-

oder component outputs graph-structured data from GLSTM while

lso mapping fixed-length data to a variable-length target graph

equence. The EOS of Fig. 4 just represent the beginning and end-

ng of decoder component. Finally, the entire architecture can be

pplied to sequential graph-structured data while maintaining the

riginal structure and capturing latent properties for accurate road

peed prediction. 

.4. Objective function and optimization 

The objective function is used to define the loss between pre-

icted values and true values. In this model, we choose the mean

quared error (MSE) as the loss function, 

SE = 

1 

T 

T ∑ 

i =1 

(v t − ˜ v t ) 2 (19) 

here L is defined as follows: 

 = 

1 

M 

1 

T 

M ∑ 

i =1 

T ∑ 

j=1 

‖ 

ˆ S 
v ∗

i 

t j 
− S 

v ∗
i 

t j 
‖ 

2 
(20) 

here T is the time span to be predicted, and M is the road seg-

ents for training and testing. Furthermore, ˆ S 
v ∗

i 
t j 

is the predicted

oad speed of a specific road segment v ∗
i 

at t j , while S 
v ∗

i 
t j 

is the real

oad segment. We also select the Adam optimizer as the optimiza-

ion algorithm in the training process. 

. Experiments 

.1. Dataset description 

In this paper, we test our proposed models on two real-world

atasets. One dataset is collected from Beijing city, which is the

apital of China, while the other dataset is collected from Xi’an

ity, a southern city of China. 

.1.1. Beijing traffic network 

The data contain two parts: the road network structure of Bei-

ing and the taxi speed. The selected time periods of the trajectory
s meet graph neural networks for road speed prediction, Neuro- 

https://doi.org/10.1016/j.neucom.2020.03.031


6 Z. Lu, W. Lv and Y. Cao et al. / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; March 20, 2020;10:3 ] 

Fig. 4. Framework of the GLSTM model. 
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data range from Aug. 01 2018 to Oct. 31 2018, representing 85 days

in total since several days were missing. For simplicity, we selected

69 road segments for the experiments, as shown in Fig. 5 ( a ). We

chose 80% of the data as the training set, while the remainder was

used as the testing set. In this way, 68 ∗69 = 4692 samples for the

training set and 17 ∗69 = 1173 samples for testing were utilized. 

5.1.2. Xi’an traffic network 

The data contain the road network structure of Xi’an and taxi

speed data. We choose the time periods of trajectory data rang-

ing from Sept. 01 2017 to Nov. 30 2017, 91 days totally. For sim-

plicity, we select 28 road segments in this experiment, as shown

in Fig. 5 ( b ) and Fig. 5 ( c ). Data from Nov. 17 2017 to Nov. 30 2017

is used for testing, while the others are used for training. In this

way, we chose 77 × 28 = 2156 samples as the training set and

14 × 28 = 392 samples for testing. 

5.2. Preprocessing 

We need to calculate the road speed of selected segments from

taxi speeds. First, we calculate the traffic speed from the origi-

nal taxi trajectory data, and ST-Matching [46] is applied to match

the low-sampling-rate GPS trajectories with the road network. The

traffic speed value of this road segment is missing when no taxi

passed through a certain road segment during a time interval.

Then, we use the moving average method to address the missing

values of road segments when faced with incomplete data. 

We also need to construct a linkage graph based on map data

for training. First, we select the specific road and find all related

segments. And the selected segments will be plotted clearly by us-

ing Echarts 1 . Then we find the connections of these segments and

add additional information of segments based on property files. Fi-

nally, we tag every segments an new id and save all connections

between them with personal properties. 

In our experiments, we aggregated the traffic speed into 5-

minute windows and applied Z-score standardization for data pre-

processing. We only trained and predicted the traffic speed of a

specific period during the morning peak hours from 6:00 to 9:00

because there were sufficient vehicles on the road and because the

data are of high quality. We choose two hours, from 6:00 to 8:00,

as the observation period for training and predict the next one-

hour period, from 8:00 to 9:00; thus, the length of an input se-

quence is 24, while the output length is 12. In addition, we incor-

porate some basic properties of road segments and intersections
1 https://www.echartsjs.com/zh/index.html 
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o capture road network structures such as the width, length and

ype of road segment. 

.3. Evaluation metrics 

The mean absolute error ( MAE ), mean absolute percentage er-

or ( MAPE ) and root mean square error ( RMSE ) are used to evalu-

te the performance of the proposed method and the comparative

pproaches. These metrics are defined as follows: 

AE = 

1 

T 

T ∑ 

t=1 

| v t − ˜ v t | (21)

AP E = 

1 

T 

T ∑ 

t=1 

∣∣∣∣v t − ˜ v t 
v t 

∣∣∣∣ (22)

MSE = 

√ 

1 

T 

T ∑ 

t=1 

(v t − ˜ v t ) 2 (23)

here v t and 

˜ v t are the real and predicted traffic speeds at time t ,

espectively. 

.4. Baselines 

In this section, we compare the proposed model with several

aselines. Furthermore, we compare modified variants of LSTM

ombined with the GN block and prove that the GN block can im-

rove the performance of the LSTM method when combined with

he LSTM method. 

• Multilayer perceptron (MLP) : In our experiments, the MLP uti-

lized three fully connected layers consisting of 24, 24 and 12

hidden units. 

• Seq2Seq [47] : This model uses an RNN to encode the input se-

quences into a feature representation and another RNN to gen-

erate predictions. 

• GRU [13] : GRUs are a gating mechanism in RNNs. The GRU is

similar to an LSTM with a forget gate but has fewer parame-

ters than LSTM because it lacks an output gate. GRUs have been

shown to exhibit even better performance on certain datasets. 

• Phased LSTM [14] : Phased LSTM extends the LSTM unit by

adding a new time gate. This gate is controlled by a parameter-

ized oscillation with a frequency range that produces updates

of the memory cell only during a small portion of the cycle. 
s meet graph neural networks for road speed prediction, Neuro- 
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Fig. 5. Selected road networks. ( a ) denotes a road intersection in Beijing that has 69 segments. ( b ) and ( c ) represent two different intersections in Xi’an. ( b ) is composed of 

14 segments, while ( c ) has the same segments. 
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• NL STM [15] : NL STM is a simple extension of the LSTM model

that adds depth via nesting, as opposed to via stacking. Nested

LSTMs outperform both stacked and single-layer LSTMs with

similar numbers of parameters on various character-level lan-

guage modelling tasks, and the inner memories of an LSTM

learn longer term dependencies compared with the higher level

units of a stacked LSTM. 

• IndyL STM [16] : IndyL STM differs from regular LSTM cells in

that the recurrent weights are not modelled as a full matrix but

rather as a diagonal matrix, i.e., the output and state of each

LSTM cell depend on the inputs and their own outputs, as op-

posed to the inputs and outputs of all the cells in the layer. 

• GNN [17] : A simple GNN model that uses GN blocks for graph-

structured data to predict traffic speed. 

• T-GCN [35] : The temporal graph convolutional network (T-

GCN) model is a novel neural-network-based traffic forecasting

method and uses a combination of a GCN and GRU to capture

the spatial and temporal dependence simultaneously. 
c  

Please cite this article as: Z. Lu, W. Lv and Y. Cao et al., LSTM variant
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• DCRNN [43] : DCRNN is a deep learning framework for traffic

forecasting that incorporates both spatial and temporal depen-

dencies in the traffic flow. DCRNN captures the spatial depen-

dency using bidirectional random walks on the graph and the

temporal dependency using the encoder-decoder architecture 

with scheduled sampling. 

.5. Experimental settings 

All experiments were complied and tested on a cluster with

our NVIDIA TITAN Xp CPUs. For simplicity, we select several road

egments for the experiments as discussed before in the data de-

cription. In addition, early stopping behaviour is exploited to ac-

elerate inference and terminate the training process when the

rror on the validation set increases. These neural-network-based

pproaches were implemented using TensorFlow 1.9.0 and trained

sing the Adam optimizer with learning rate annealing. We exe-

ute grid search strategy to find the optimal hyper-parameters on
s meet graph neural networks for road speed prediction, Neuro- 
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Fig. 6. Training and testing loss. Shows the training and testing losses of four GNN models with different training iteration numbers. 

Fig. 7. Predicted results of Xi’an. Denotes the predicted traffic speed between the ground truth and selected baselines. 
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Table 1 

Comparison with different baselines. 

Model Xi’an Beijing 

MAE MAPE RMSE MAE MAPE RMSE 

MLP 7.331 0.519 8.857 11.981 0.931 14.791 

Seq2Seq [47] 7.054 0.502 8.788 11.772 0.902 14.599 

GRU [13] 5.972 0.431 7.753 10.731 0.841 13.552 

Phased LSTM [14] 5.783 0.421 7.593 10.645 0.827 13.497 

NLSTM [15] 5.716 0.412 7.491 10.628 0.816 13.275 

IndyLSTM [16] 5.707 0.387 7.307 10.547 0.789 13.063 

DCRNN [43] 5.457 0.369 7.173 10.346 0.775 12.841 

T-GCN [35] 5.286 0.355 7.018 10.283 0.768 12.812 

GNN [17] 5.182 0.348 6.903 10.159 0.742 12.725 

GLSTM 5.026 0.336 6.882 10.084 0.721 12.698 

Graph GRU 4.937 0.302 6.831 10.027 0.707 12.631 

Graph Phased LSTM 4.921 0.295 6.814 9.956 0.665 12.558 

w  

d

 

G  

o  

s  

m  

b  

F

d

he validation dataset. Additionally, we set MSE as the loss func-

ion when training models. The historical time window is 2 hours,

nd the predicted time window is 1 h. Almost these deep learning

ethods are based on the encoder-decoder framework, we set the

nput length as 24 (T = 24) , while the length of output is set to 12

(T = 12) . 

.6. Results and discussion 

We present the comparison results with the baselines, where

ll of these LSTMs are variations of LSTMs, therein incorporating

hanges from standard LSTM cells in Table 1 . There are two real-

orld datasets for Xi’an and Beijing with three evaluation metrics.

e find that the same methods trained on different datasets ob-

ain different performances. Specifically, these models trained on

he Xi’an data can achieve better results than on Beijing due to the

ata quality. From the table, we can easily observe that the GNN

an outperform simple deep learning methods such as LSTM and

LP. These simple methods did not incorporate the spatial topol-

gy of the road network. In contrast, the GNN model can capture

he graph structure and utilize latent properties to model tempo-

al and spatial dependencies to improve performance. Furthermore,

e compare state-of-the-art methods, such as T-GCN and DCRNN

nd both models constructed a graph as an adjacent matrix to

haracterize inner graph properties. The results in Table 1 show

hat these methods cannot model the graph structure and achieve
ig. 8. Traffic speed of the road network in Xi’an during different periods. The first row

emonstration. Based on these data, we predict the next hour, from 8:00 to 9:00, and the

Please cite this article as: Z. Lu, W. Lv and Y. Cao et al., LSTM variant

computing, https://doi.org/10.1016/j.neucom.2020.03.031 
orse performance than GNN, which models road networks as a

irected graph. 

From Table 1 , we can see that several LSTM variants, such as

RU, Phased L STM, IndyL STM and NL STM, can make improvements

ver standard LSTM. All of these variants mainly changed the inner

tructure of the LSTM cells to better capture long- and short-term

emories. Additionally, we realize these variants of LSTMs com-

ined with the GN block to predict traffic speed. The GN block fully
 denotes the traffic speed from 6:00 to 8:00. We select four time slices for the 

 results of the four selected periods are elaborated on the second row. 

s meet graph neural networks for road speed prediction, Neuro- 
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Fig. 9. Traffic speed of the road network in Xi’an during different periods. The first row denotes the traffic speed from 6:00 to 8:00. We select four time slices for the 

demonstration. Based on these data, we predict the next hour, from 8:00 to 9:00, and the results of the four selected periods are elaborated on the second row. 

Fig. 10. Traffic speed of the road network in Beijing during different periods. The first row denotes the traffic speed from 6:00 to 8:00. We select four time slices for the 

demonstration. Based on these data, we predict the next hour, from 8:00 to 9:00, and the results of the four selected periods are elaborated on the second row. 
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utilizes the attributes of nodes and edges via aggregation and up-

date mechanism. The results indicate that these new graph LSTM

structures can outperform the unchanged LSTM models such as

Graph GRU and Graph Phased LSTM. This is an effective evidence

that the GNN with LSTM cells is capable of capturing road net-

work properties and addressing traffic prediction problems; how-

ever, a huge improvement is not achieved. We also show the train-

ing process under training and testing losses of four models from

high levels to low levels until they converge in Fig. 6 . The loss is

at a high level, which means that the performance is bad when

the training begins. After a sufficient number of iterations, the MSE

loss reaches a relatively low level, which represents an acceptable
result. p  

Please cite this article as: Z. Lu, W. Lv and Y. Cao et al., LSTM variant
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To better understand the comparative results between the pro-

osed methods and selected baselines, we choose a random road

egment during the morning peak ranging from 8:00 to 9:00 to

ighlight certain aspects of the results in Fig. 7 . We find that the

LSTM can capture the changing trend of road speeds on a spe-

ific road segment and track the ground truth more closely. Simul-

aneously, these baselines cannot accurately predict road speed be-

ause the road structures are ignored. Moreover, we illustrate the

volution of the road speed of Xi’an and Beijing road during the

orning peak from 6:00 to 9:00 in Fig. 8 , 9 and 10 . The time in-

erval from 6:00 to 8:00 is the real traffic speed calculated from

istorical taxi trajectory data, as shown in (1), (2), (3) and (4). The

redicted results are shown in (5), (6), (7) and (8). We can clearly
s meet graph neural networks for road speed prediction, Neuro- 
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ote that the related road segments have similar road speeds. The

LSTM can capture the road structures, as well as the complexity

elations between these segments. 

. Conclusions and future work 

A novel traffic speed prediction model called GLSTM is pro-

osed in this paper. Inspired by the GN framework, we first con-

truct a topological graph of the road network and feed the whole

raph into the neural network and obtain a graph as output. More-

ver, we combine the LSTM and GN block to build a new model to

redict the traffic speed, where an encoder-decoder architecture is

sed. Specifically, each road segment is formulated as a vertex, and

ach edge denotes a connection between two segments. The prop-

rties of each vertex and edge are also considered during the train-

ng process. Then, we conduct extensive experiments on two real-

orld datasets obtained from Xi’an and Beijing. The results show

hat GLSTM can achieve the best performance against several base-

ines in terms of MAE, MAPE, RMSE and MSE. Moreover, variations

f LSTMs with GN block can achieve improved prediction accuracy

ompared with standard LSTM. We can conclude that the GN block

as the ability to capture graph structure properties and improve

he performance of standard LSTM due to the aggregation and up-

ate mechanisms of nodes and edges attributes. 

In future work, we will investigate other external factors, such

s the weather and holidays, to improve the prediction accuracy.

n addition, we will incorporate additional road network proper-

ies for training a standard model. The proposed model will also

e applied to other spatial-temporal forecasting tasks such as traf-

c event prediction and traffic state estimation of longer periods.

e can also explore modifying additional neural networks and

eed graphs as input to improve the performance of the model.

he time and memory requirements are two main problems that

hould be addressed in future work. It would also be meaningful

o explore the explainability of GNNs. 
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