
Information Sciences 537 (2020) 380–393 

Contents lists available at ScienceDirect 

Information Sciences 

journal homepage: www.elsevier.com/locate/ins 

Multi-attributed heterogeneous graph convolutional network 

for bot detection 

Jun Zhao 

a , b , Xudong Liu 

a , b , ∗, Qiben Yan 

c , Bo Li a , b , ∗, Minglai Shao 

a , b , Hao Peng 

a , b 

a School of Computer Science and Engineering, Beihang University, Beijing, China 
b Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China 
c Computer Science and Engineering, Michigan State University, East Lansing, MI, USA 

a r t i c l e i n f o 

Article history: 

Received 21 January 2020 

Revised 6 March 2020 

Accepted 30 March 2020 

Available online 2 June 2020 

Keywords: 

Botnet detection 

Bot behavioral model 

Multi-attributed graph 

GCN 

a b s t r a c t 

Bot detection is a fundamental and crucial task for tracing and mitigating cyber threats 

in the Internet. This paper aims to address two major limitations of current bot detection 

systems. First, existing flow-based bot detection approaches ignore structural information 

of botnets, which lead to false detection. Second, they cannot identify the interactive be- 

havioral patterns among heterogeneous botnet objects. In this paper, we propose a novel 

bot detection framework, namely Bot-AHGCN, which models fine-grained network flow ob- 

jects (e.g., IP, response) as a multi-attributed heterogeneous graph and transforms bot de- 

tection problem into a semi-supervised node classification task on the graph. Particularly, 

we first build a multi-attributed heterogeneous information network (AHIN) to model the 

interdependent relationships among botnet objects. Second, we present a weight-learning 

based node embedding method, which learns the interactive behavioral patterns among 

bots and integrates them into weighted similarity graphs. Finally, we perform graph con- 

volution on the learned similarity graphs to characterize more comprehensive and dis- 

criminative features of bots, and feed them into a forward neural network to identify bots. 

The overall experimental results on two real-world datasets confirm that Bot-AHGCN out- 

performs the existing state-of-the-art approaches, and presents better interpretability by 

introducing meaningful meta-paths and meta-graphs. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Botnet attack has been regarded as one of the most serious threats against multiple industries such as finance, education,

government, medical care, critical infrastructure, Internet of Thing (IoT), etc. [1] . Recently, with the explosive growth of IoT

platforms, an increasing number of IoT devices (e.g., camera, sensor) without protection software are going online. The large

volume of low-security IoT devices have attracted hackers to use them as weapons [2] . For example, Mirai, one of the most

notorious botnets, infected more than 30 million IoT devices in one day and crippled Krebs with 650 Gbps attack volume [3] .

A botnet consists of a large number of compromised devices, in which each compromised device is a bot and controlled

by a botmaster. Perpetrators only need to supervise a small number of botmasters to distributively manipulate the bots

via command and control ( C & C ) channels. Different from traditional viruses and worms, bots can receive commands from
∗ Corresponding authors. 

E-mail addresses: zhaojun@act.buaa.edu.cn (J. Zhao), liuxd@act.buaa.edu.cn (X. Liu), qyan@msu.edu (Q. Yan), libo@act.buaa.edu.cn (B. Li), 

shaoml@act.buaa.edu.cn (M. Shao), penghao@act.buaa.edu.cn (H. Peng). 

https://doi.org/10.1016/j.ins.2020.03.113 

0020-0255/© 2020 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.ins.2020.03.113
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.03.113&domain=pdf
mailto:zhaojun@act.buaa.edu.cn
mailto:liuxd@act.buaa.edu.cn
mailto:qyan@msu.edu
mailto:libo@act.buaa.edu.cn
mailto:shaoml@act.buaa.edu.cn
mailto:penghao@act.buaa.edu.cn
https://doi.org/10.1016/j.ins.2020.03.113


J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 381 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

botmasters remotely to launch a distributed cyber crime [4] . Recently, botnet attack has been causing catastrophes against

cybersecurity, such as: spreading malware and virus, launching distributed denial-of-service (DDoS) attacks, sending spam-

ming emails and advertisements, phishing, and click frauds [5] . Therefore, it is critical and urgent to develop an effective

tool to detect botnets. 

During the last decade, a large volume of bot detection approaches based on diverse technologies have been proposed.

Generally, the majority of existing botnet detection approaches focus on particular botnet command and control ( C & C ) pro-

tocols (e.g., HTTP, IRC ) or network structures (e.g., centralized or P2P). Correspondingly, existing botnets detection methods

can be roughly divided into two types: flow-based and graph-based [6] . Particularly, flow-based bot detection methods [7–

16] rely on statistics or machine learning techniques to analyze botnet characteristics from each individual traffic flow, which

generally focus on source IP, destination IP, port, protocol, packet size, and session duration, etc. These characteristics can

be regarded as a fingerprint of each flow to discriminate whether a host carries malicious traffic [7] . However, the major

limitations of flow-based approaches are two-fold. First, they excessively rely on computing the statistical features from

each individual network flow while ignoring the topological structure among bots, inevitably resulting in losing the impor-

tant interdependent relationships among bots. Second, they compare the features learned from each isolated network flow

to identify bots instead of handling the global interactive behavioral patterns, leading to an unsatisfactory performance on

unseen or well-disguised botnet flows. 

To address the limitations of flow-based approaches, another stream of research focused on identifying graph-based fea-

tures for bot detection [17–22] . These studies leverage various graph theories to detect bots, which mainly consider the

spatial relationships in a group of network flows, by analyzing the network topology, mining similar community structures,

or discovering specific subgraphs [19] . Generally, these methods are more effective than flow-based approaches, since they

can tackle the topological relationships of bots and are capable of characterizing more discriminative behavioral features

among bots [18] . 

Nevertheless, the majority of graph-based approaches expose two serious deficiencies [20] . First, similar to flow-based

approaches, the graph-based methods mostly overemphasize particular rules such as similar community structure or spe-

cific subgraph, which means that predetermined rules need to be established before discriminating bots in a graph. In

other words, such methods may become feeble and obsolete if attackers frequently adapt botnet structures for evading de-

tection [19] . Second, the majority of graph-based methods build a homogeneous graph which only contains hosts (i.e., IP

address) [17,19] . These graphs cannot model complex interdependent relationships among heterogeneous network objects,

such as source IP, destination IP, port, protocol, request, and response, etc. As a result, these graph-based approaches cannot

identify the underlying interactive behavioral patterns among bots. 

In summary, existing bot detection methods suffer from two major challenges. First, the features and rules based on flows

and graphs are often too rigid for unseen network flows or adaptive topological structures. Second, they cannot handle the

potential interactive relationships among fine-grained network flow objects, resulting in the inability to model the interactive

patterns among bots. 

In order to overcome these challenges, we present a novel bot detection framework, namely Bot-AHGCN, which models

fine-grained network flow objects into a heterogeneous graph and transforms bot detection problem into a semi-supervised

node classification task on the graph. Different from the existing graph-based botnet detection methods [17,19] , our approach

offers the following advantages: (I) we leverage Heterogeneous Information Network (HIN) to model fine-grained botnet flow

objects that include source IP, destination IP, port, protocol, request, and response, which can more precisely characterize

the interactive behavioral pattern between bots; (II) the proposed approach is capable of effectively learning the interactive

behavioral patterns among bots for various network structures and scenarios by conducting graph convolution operation;

(III) our proposed method brings better interpretability by introducing the real-world semantic relationships (see Figs. 2 and

4 ) in the network flows of botnets. The main contributions of this paper are summarized as follows: 

• AHIN of fine-grained network flow objects . To the best of our knowledge, we are the first to leverage Attributed Hetero-

geneous Information Network (AHIN) to model the interactive behavioral patterns among bots. Different from existing

graph-based detection methods, AHIN is capable of modeling meaningful semantic relationships that reflect interactions

among fine-grained network flow objects, such as source IPs, destination IPs, protocols, ports, requests, responses. 

• Weight-learning based similarity embedding . We propose a novel weight-learning based similarity embedding approach

to measure the similarity between any two hosts using meta-paths and meta-graphs. The proposed similarity embedding

can evaluate the importance of different meta-paths and meta-graphs to precisely characterize hosts, and integrate them

into the weighted homogeneous graph. 

• Bot-AHGCN . We transform bot detection into a semi-supervised node classification task on the AHIN , and present Bot-

AHGCN, a more robust and effective bot detection approach based on multi-attributed heterogeneous graph convolutional

networks. Bot-AHGCN can reliably characterize the interactive behavioral relationships and attributed features of bots,

which provide discriminative features even with adaptive botnet topologies. 

The rest of this paper is organized as follows: In Section 2 , we introduce the preliminary of this work. In Section 3 , we

introduce our approach to detecting bots using multi-attributed heterogeneous graph convolutional network, including AHIN

construction, similarity graph embedding, heterogeneous graph convolution, and detection model training. In Section 4 , we

verify the effectiveness and efficiency of Bot-AHGCN on two real-world datasets. We evaluate the stability and scalability of

Bot-AHGCN in Section 5 , and the related work is reviewed in Section 6 . Finally, a conclusion is presented in Section 7 . 



382 J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 

Fig. 1. Schema of AHIN. 

Fig. 2. Meta-paths starting and ending with source IPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Preliminary 

In this section, we present important definitions used in our work, such as attributed heterogeneous information net-

works of network flows (AHIN), network schema, and meta-path. 

Definition 1 (Attributed Heterogeneous Information Networks of Network Flows (AHIN)) . AHIN is a graph G = (V, E, A ) ,

where V and E are the collection of nodes and links in G respectively, and each link describes a semantic relationship

between two nodes v i and v j . A = ∪ 

m 

i =1 
A i is a set of attributes of node V i . Given a set of node types T = { t 1 , t 2 , . . . , t n } , let

V i be the set of objects of type t i , and A i be the set of attributes for object V i . A specific node v j that belongs to type t i is

associated with its corresponding attribute set f j = ( f j 1 , f j 2 , . . . , f j | A i | 
) . 

As illustrated in Fig. 1 , each network flow can be represented as a six-tuple including fine-grained network objects

T = (I P src , I P des , Port, P rotocol, Request, Response ) , and their interdependent relationships are defined as relationship R1 ~ R10

introduced in Section 4 . Meanwhile, unlike conventional HIN, AHIN integrates attribute information of objects. Taking source

IP as an example, it contains the session timestamp, user-agent, session contents, and package length, etc. AHIN can simul-

taneously handle the attribute information of bots and interactive behavioral patterns among bots, boosting the robustness

and accuracy of bot detection. 

In order to better understand the object types and relationship types in AHIN, it is necessary to provide the schema-

level description of the network. Network schema [23] describes possible associations between different entities in a global

perspective, which is formalized as Definition 2 . 

Definition 2 (Network Schema) . The network schema [23] of AHIN denoted as H S = ( T, R ) is a meta template for G =
(V, E, A ) with the object type mapping ϕ : V → T and the link type mapping � : E → R , which is a directed graph defined

over object types T , with edges as relationships from R . 



J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 383 

Fig. 3. Framework of Bot-AHGCN. Bot-AHGCN consists of four major components: (a) AHIN construction models network flows into a heteroge- 

neous graph to depict the interdependent relationships among fine-grained network objects, and each work flow is modeled as a six-meta-tuple 

T = (I P src , I P des , Port, Protocol, Request, Response ) ; (b) similarity embedding builds the adjacency metrics A M and A G leveraging Eqs. (1) and (2) in session 

4, which can measure the similarity between any two IP src based on diverse meta-paths and meta-graphs respectively; (c) graph convolution based on 

the similarity embedding A M and A G learns more discriminative interactive behavioral features of bots; (d) the embedded features are fed into a neural 

network to train an automated model to identify bots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The network schema specifies type constraints on the sets of objects and links between objects, which makes AHIN

structured and guides a walker to explore semantics relations that meet specific rules in the network. For a link/relationship

type R (defined in Section 3.2 ) connecting object type S to object type T, i.e ., S 
R −→ T, S and T are the source object type and

target object type of link type R , which can be denoted as R.S and R.T , respectively. The inverse relation R −1 holds naturally

for T 
R −→ S . 

Definition 3 (Meta-path) . A meta-path [23] P is a path defined on a network schema S = (N, R ) , and is denoted in the form

of N 1 

R 1 −→ N 2 

R 2 −→ . . . 
R i −→ N i +1 , which defines a composite relation R = R 1 � R 2 � . . . � R i +1 , where � denotes the composition

operator on relations. 

A meta-path can be considered as a schema instance that satisfies a particular network schema, which depicts a template

of relationships between entities. For example, the relationship “two source IP ( IP src ) send the same request ( R )” can be

described by a symmetrical meta-path I P src 
send −−→ request 

send −−−−→ I P src . For bot detection, we focus on 10 types of symmetrical

meta-paths which start and end with source IPs ( IP src ), as shown in Fig. 2 . 

3. Bot detection using multi-attributed heterogeneous graph convolutional network 

In this section, we first present the problem, and then describe our proposed framework shown in Fig. 3 , which consists

of four major components: AHIN construction, weight-learning based host similarity embedding (i.e., node embedding),

graph convolutional operation, and bot detection. 

3.1. Problem definition 

Here, we formulate the problem of bot detection based on AHGCN as follows: 

Definition 4 (Bot Detection Based on AHGCN) . Given an AHIN G = { V, E, A } , the meta-path set M P = (P 1 , . . . , P i ) , and the

meta-graph collection M G = (M 1 , . . . , M j ) . The task of bot detection based on AHGCN is to : (I) measure the similarity be-

tween any two hosts (each individual source IP in G is treated as a host) based on meta-path M P and meta-graph M G to

generate homogeneous weighted graphs between hosts A M 

and A G accordingly; (ii) construct the feature matrix of hosts X

by mapping attribute information of hosts into latent vector space; (iii) perform graph convolution GCN ( A M 

, X ) and GCN ( A G ,

X ) to characterize more discriminative bot features respectively, (IV) feed the embedded features into a forward network to

train a model for detecting bots. 

Where, V, E , and A represent the set of nodes, links, and attributes in heterogeneous graph G , respectively. X is the

adjacency matrix of host’s attributes, A M 

and A G are the weighted adjacency matrices between hosts based on meta-path

and meta-graph, and GCN ( ◦) is graph convolutional operation. P i and M j represent a specific meta-path instance and meta-

graph instance, respectively. 

Next, we will introduce our proposed framework, which consists of AHIN construction, weight-learning based host simi-

larity embedding, and graph convolutional operation for bot detection ( Fig. 3 ). 



384 J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 

Fig. 4. Meta-graphs where both start and end with source IPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. AHIN construction 

We first build the AHIN of network flows, which is capable of representing more fine-grained network flow objects. As

we explore the behavioral interaction among bots, the following relationships are considered in our work. 

• R1 : To denote a connection from a source IP to a specific destination IP, we build Source IP-Destination IP matrix M , for

each element M i,j ∈ {0, 1}, M i,j = 1 indicates source IP i visits the destination IP j . 

• R2 : A source IP needs to use protocols to send packages. We establish the Source IP-Protocol matrix R to record the

relation between source IP and used protocols, for each element R i,j ∈ {0, 1}, R i,j = 1 indicates source IP i uses protocol j . 

• R3 : To depict the relation between a source IP and the ports it leverages, we define Source IP-Port matrix S , for each

element S i,j ∈ {0, 1}, S i,j = 1 indicates source IP i utilizes port j . 

• R4 : We construct a Source IP-Request matrix C to uncover the interaction between a source IP and requests it sends. For

each element C i,j ∈ {0, 1}, if C i,j = 1, there exists a sending relationship between source IP i and request j . 

• R5 : To describe the relation of a source IP and received responses, we build Source IP-Response matrix M . For each

element M i,j ∈ {0, 1}, M i,j = 1 means that source IP i received response j . 

• R6 : To portray whether a protocol utilizes a port, we build Protocol-Port adjacency matrix P . For each element P i,j ∈ {0,

1}, P i,j = 1 indicates that protocol i utilizes port j to send packages. 

As demonstrated in Fig. 1 , for the destination IP in AHIN, we can construct the semantic relationships between desti-

nation IP and protocol, port, request, and response similar with R2 ~ R5 respectively, denoted as R7 ~ R10 . The ten types

of relationships can fully tackle the interactive behavioral patterns among fine-grained objects in constructed AHIN, based

on which we focus on the 10 symmetrical meta-paths where start node and end node are source IPs, as shown in Fig. 2 .

Different from traditional heterogeneous information networks, our AHIN involves the attribute information of nodes, which

can assist in conveying more richer and meaningful semantic information for improving the performance of characterizing

bots. On the one hand, AHIN can model the characteristics of bots from their attribute information. On the other hand, it

can tackle the interactive relationship among bots, and learn their behavioral patterns from a global perspective. Therefore,

it offers better performance and interpretability for bot detection by introducing the real-world meaningful meta-paths and

meta-graphs. 

3.3. Weight-learning based similarity embedding 

For the task of bot detection, we aim to identify malicious bots from all hosts ( each individual source IP is treated as a host )

in the constructed AHIN by analyzing their similarity in terms of attributes and behavioral patterns. In order to characterize

the similarity of bots we propose a weight-learning based similarity embedding method, which can measure the similarity

of any two hosts based on meta-path and meta-graph, respectively. Intuitively, objects are more strongly connected by the

significant meta-paths, they tend to be more similar [23] . Similarly, in our task, there is a higher probability that they

are both malicious bots or legitimate hosts if they hold large amount of similar meta-path instances. Formally, we provide

Definition 3 to model the similarity of hosts based on meta-path instances. 

Definition 5. meta-path based host similarity embedding. Given a set of symmetric meta-path set P = [ P m 

] M 

′ 
m =1 

, the similar-

ity between any two hosts h i and h j is defined as: 

S M 

(h i , h j ) = 

M 

′ 
∑ 

m 

w m 

2 × | { h i → j ∈ P m 

} | 
| { h i → i ∈ P m 

} | + | { h j→ j ∈ P m 

} | , (1) 



J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 385 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

 

 

where h i → j ∈ h m 

is a path instance between host h i and h j following meta-path P m 

, h i → i ∈ P m 

is the instance between

host instance h i and h i , and h j → j ∈ P m 

is the instance between host instance h j and h j , | { h i → j ∈ P m 

} | = M P m (i, j) , | { h i → i ∈
P m 

} | = M P m (i, i ) , | { h j→ j ∈ P m 

} | = M P m ( j, j) . w = [ w 1 , . . . , w m 

, . . . , w 

M 

′ ] to denote the meta-path weights, w m 

is the weight

of meta-paths P m 

. M 

′ 
is the number of meta-paths. 

S M 

( h i , h j ) has two components: (1) the semantic overlap in the numerator, which describes the number of meta-paths

between host instances h i and h j ; (2) and the semantic broadness in the denominator, which depicts the number of total

meta-paths between themselves. A larger number of meta-paths between host instance h i and h j indicates a higher similarity

between them. 

Different from Pathsim [23] , our proposed similarity embedding method introduces a weight vector w m 

, which is a

trainable coefficient vector to learn the importance of different meta-paths for characterizing bots. 

Obviously, it is costly to calculate the similarity between any two hosts in the AHIN since it usually requires to ran-

domly walk a larger number of nodes in the graph. Fortunately, in our work, it is unnecessary to walk the entire graph

as we prescribe a limit based on the predefined meta-paths. Moreover, for bot detection, we only concern with the sym-

metrical meta-paths where both the start and end with source IPs. To calculate the similarity between any two hosts un-

der different meta-path instances, we need to compute all the commuting matrices [23] related to them following the

meta-paths. Given a meta-path set P = 

∑ M 

′ 
m 

{ A 1 , A 2 , . . . , A l+1 } , the meta-path based commuting matrix can be defined as

 P = U A 1 A 2 
◦ U A 2 A 3 

. . . ◦ U AA l+1 
, where C P ( i, j ) represents the probability of object i ∈ A 1 reaching object j ∈ A l+1 under the

path P , and ◦ is a connection operation. These symmetric meta-paths not only efficiently reduce the complexity of walking,

but also ensures that the commuting matrix can be easily decomposed, which greatly hoists computing performance. In ad-

dition, due to the consideration of the symmetric meta-paths in AHIN, we leverage pairwise random-walk [23] to accelerate

calculations. 

Definition 6. Pairwise random-walk. Given a symmetric meta-path P that can be divided into two shorter paths owning the

same length P = (P 1 , P 2 ) , w ( x, y ) is the pairwise random-walk probability that starts from nodes x and y terminates at the

same connected node: s (x, y ) = 

∑ 

p 1 p 2 ∈ (P 1 ,P 2 ) 
P rob(p 1 ) P rob(p −1 

2 
)) , where Prob ( p 1 ) and P rob(p −1 

2 
) are random walk probabili-

ties under the two meta-path instances. 

With Eq. (1) and pairwise random-walk, we can obtain the similarity embedding between any two hosts h i and h j under

a meta-path set P = 

∑ M 

′ 
m 

{ P m 

} , and eventually can learn a homogeneous weighted host-host similarity graph (i.e., adjacent

matrix of source IPs) from the AHIN, denoted as A M 

∈ R 

N×N , where N is the number of hosts (source IPs) in AHIN. 

Meta-paths can be used to depict the individual relationship between objects, but they cannot model the high-order

semantic relationship. For instance, meta-path P 1 : host use port 
use −−−−→ host and P 3 : host 

use −−→ protocol 
use −−−−→ host in Fig. 2 portray

two separate relationships: two hosts using the same port ( P 1 ) and two hosts leveraging the same protocol ( P 3 ). However,

it cannot directly portray the relationship that “two hosts use both the same port and the same protocol ”, which calls for

an advanced semantic to handle such a high-order relationship. As a result, we introduce the meta-graph [24] to model

high-order interactive relationships between bots. 

Definition 7 (Meta-graph) . A meta-graph S is a directed acyclic graph with a single source node n s and a single target node

n t , defined on a AHIN G = (V, E, A ) with schema T G = (A, R ) . Formally, a meta-graph is defined as M G = (V S , E S , A S , n s , n t ) ,

where V S ∈ V, E S ∈ E constrained by A s ∈ A and R S ∈ R , respectively. 

As demonstrated in Fig. 4 , we define seven types of symmetrical meta-graphs ( M 1 ~ M 7 ) where both source node and

target node are source IPs, which models meaningful semantic relationships from the higher-order perspective. Essentially,

each meta-path is a specific case of a meta-graph (e.g., the meta-paths P 1 : host 
use −−→ protocol 

use −−−−→ host and P 2 : host 
send −−→

request 
send −−−−→ host in Fig. 2 are particular cases of meta-graph M 1 in Fig. 4 ). Compared to meta-path, meta-graph can si-

multaneously hold more complex high-order semantic relationships from a group of meta-paths. For example, M 1 depicts

that two hosts are related if they both co-use the same protocol and send the same request. To learn more comprehensive

behavioral patterns between bots from various meta-graphs, we propose the meta-graphs based similarity embedding. We

first introduce the CouMG to record the number of meta-graph instances that allow two nodes to reach. 

Definition 8. CouMG: Given AHIN G = { V, E, A } , and meta-graph set M G = (M 1 , M 2 , . . . , M L +1 ) , CouMG is a counting

function that record the number of meta-graph instances such that CouMG M 

(v i , v j ) = C M G 
{ v i , v j } where C M G 

= W M 1 M 2 
·

 M 2 M 3 
, . . . , W M L M L +1 

, and W M L , M L +1 
is the adjacency matrix between type A k and A k +1 under the meta-graph M . 

Definition 9. meta-graph based host similarity embedding. Given a meta-graph set MG = { G m 

} M 

′ 
m =1 

, similar with Eq. (1) , the

meta-graph based similarity between any two hosts h i and h j can be defined as: 

S G (h i , h j ) = 

M 

′ 
∑ 

m 

w g 

2 × CouMG M 

(h i , h j ) 

CouMG M 

(h i , h i ) + CouMG M 

(h j , h j ) 
(2)



386 J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where CouMG M 

( h i , h j ) is the number of meta-graph M between host instances h i and h j , CouMG M 

( h i , h i ) is that between

host h i and h i , and CouMG M 

( h j , h j ) is that between host h j and h j . w g = { w 1 , w 2 , . . . , w 

M 

′ } is the weight vector that learns

the importance of meta-graphs for measuring host similarity. 

As mentioned earlier, commuting matrix has been used to compute the counting based host similarity embedding for

meta-paths. For a given meta-path P = { A 1 , A 2 , . . . , A l+1 } , we can build a matrix W A i A j 
as the adjacency matrix between type

A i and A j . Consequently, the commuting matrix following meta-path P is C p = W A 1 A 2 
· W A 2 A 3 

, . . . , W A l A l+1 
. However, for the

meta-graphs, the task becomes more challenging as it introduce joint nodes and links in a meta-graph. For example, for

M 5 in Fig. 4 , there are two individual meta-paths running through the meta-graph, involving ( S, P, P o , P, S ) and ( S, P, R, P,

S ). Here, we propose to “glue” the semantics of ( P, P o , P ) and ( P, R, P ), which holds the higher-order semantic relationship.

Obviously, a meta-graph is composed of multiple meta-paths, here, we introduce the Hadamard product [25] to “glue” the

semantic relations from multiple meta-paths in a meta-graph. As a general example, Algorithm 1 shows the computational

principle of commuting matrix for the meta-graph M 5 in Fig. 4 . Where, ◦ denotes Hadamard product, which can capture the

high-order semantic among connected meta-paths. Note that not limited to M 5 , all meta-graphs defined in this paper can

be computed similar to Algorithm 1 . 

Algorithm 1 Computing commuting matrix for C M 5 
. 

Input: G = { V, E, A } , meta-graph set M G = { M 1 , M 2 , . . . , M n } . 
Output: counting commuting matrix; 

1: Compute C P 1 : C P 1 = W PR · W 

T 
PR 

2: Compute C P 2 : C P 2 = W PP O 
· W 

T 
PP O 

3: Compute C C : C C = C P 1 ◦ C P 2 
4: Compute C M 5 

: C M 5 
= W SP ◦ C C ◦ W 

T 
SP 

5: return C M 5 

By computing the similarity of any two hosts according to the meta-graph MG , we can construct another host-host

similarity graph (i.e., adjacency matrix of hosts) A G ∈ R 

N×N , where N is the number of hosts. It is worth mentioning that all

meta-paths based commuting matrices in our meta-graphs ( M 1 ~ M 7 ) have been calculated and stored when constructing

the meta-paths based host similarity embedding. Therefore, meta-graph based host similarity embedding only adds the cost

of the Hadamard product operation. 

3.4. GCN based bot detection 

Existing botnet detection methods mostly rely on a large number of labeled data for model training. However, the num-

ber of bot flows is not substantial. Moreover, a botnet is essentially a graph-based network. In this paper, we model network

flows in a multi-attributed heterogeneous graph and transform bot detection into semi-supervised node classification on the

graph, which can be trained using a small number of labeled samples. Next, we show how to implement bot detection based

on the constructed host similarity graph A M 

and A G , and expound how to train the weight w m 

and w g for meta-paths and

meta-graphs, respectively. 

As mentioned above, we have established two N × N homogeneous weighted graph (i.e., adjacent matrix of hosts) A M 

and A G using meta-paths (using Eq. (1) ) and meta-graphs (using Eq. (2) ) respectively, which hold the behavioral similarity

of any two hosts. Where, N is the number of host instances in A M 

and A G , A M i j 
= A M ji 

= S M 

(i, j) and A G i j 
= A G ji 

= S G (i, j) .

Meanwhile, in order to make use of the attributed information of hosts, we train the Word2vec [26] to model the fea-

tures matrix X ∈ R 

N×d , where N is the number of hosts in A M 

and A G , and d is the dimension of host feature. Naturally,

with the learned similarity graphs and feature matrix of hosts, we can leverage the classical GCN [27] to characterize the

discriminative features of bots. Conventionally, the layer-wise propagation rule of GCN can be defined as below. 

H 

(l+1) = σ ( ̃  D 

− 1 
2 

˜ A ̃ D 
− 1 

2 H (l) W 

(l) 

) (3) 

where, ˜ A = A + I N is the adjacency matrix of hosts with self-connections, I N is the identify matrix, ˜ D ii = 

∑ 

j 
˜ A i j and W 

( l ) is a

l th layer trainable weight matrix. σ ( · ) denotes an activation function, such as relu . H 

(l) ∈ R 

N×d is the matrix of activation in

the l th layer, and the original is H 

(0) = X . We respectively conduct the graph convolution on A M 

and A G to comprehensively

model the discriminative characteristics of bots. Particularly, we first implement A M 

based GCN. 

Z M 

= f (X, A M 

) = σ ( ̂  A M 

· relu ( ̂  A M 

X W 

(0) 
M 

) W 

(1) 
M 

) (4)

where W 

(0) 
M 

∈ R 

d×H is an input-to-hidden weight matrix for a hidden layer with H feature maps. W 

(1) 
M 

∈ R 

H×F is a hidden-

to-output weight matrix. X ∈ R 

N×d , N is the number of hosts and d is the dimension of features. σ is a activation function,

such as sigmoid . The ˆ A M 

= 

˜ D 

− 1 
2 ˜ A M ̃

 D 

− 1 
2 can be calculated offline. Similarly, with similarity embedding A G and feature matrix

X , we can obtain 

Z G = f (X, A G ) = σ ( ̂  A G · relu ( ̂  A G X W 

(0) 
G 

) W 

(1) 
G 

) (5)



J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 387 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where, the meaning of W 

(0) 
G 

, W 

(1) 
G 

, X and σ are same as the corresponding parameters in Eq. (4) . Notes that ˆ A M 

=
˜ D 

− 1 
2 ˜ A M ̃

 D 

− 1 
2 and ˆ A G = 

˜ D 

− 1 
2 ˜ A G ̃

 D 

− 1 
2 can be computed in a pre-processing step. Here, we leverage cross-entropy as loss function

to quantify the error of our model for bot detection: 

Loss (Y l f , Z l f ) = −
∑ 

l∈ Y l 

F ∑ 

f=1 

Y l f · lnZ l f (6)

where, Y lf is the real label, and Z lf is a corresponding label that our model predicts, 

Z l f = αZ M 

+ Z G (7)

Here, α is a trainable coefficient that evaluates the importance of A M 

and A G for boosting the bot detection performance.

Under the guidance of the loss function ( Eq. (6) ), we conduct stochastic gradient descent to continuously optimize the neural

network weights W 

(0) 
M 

, W 

(1) 
M 

, W 

(0) 
G 

, W 

(1) 
G 

, α, w m 

and w g to train an automated bot detection model. 

4. Experimental evaluation 

4.1. Datasets and settings 

In this section, the effectiveness and efficiency of Bot-AHGCN are validated on two real-world datasets, involving public

botnet dataset CTU-13 [28] and our captured botnet data using honeypot systems. 

CTU-13 dataset is a popular public benchmark dataset of botnet traffic that released by the CTU university in 2011, which

consists of 78,754 botnet flow entries and 2,743,258 normal flow entries from 13 scenarios. In the comparison experiments,

we randomly select 50,0 0 0 botnet flows and 50,0 0 0 normal flows to form the final experimental dataset. 

Honeypot dataset. In order to evaluate the robustness of our proposed Bot-AHGCN, it is necessary to conduct Bot-AHGCN

on the latest botnet traffics. In this paper, we deploy ten honeypot systems that simulate different protocols and scenarios to

capture malicious attack records, which include but not limited to timestamp, source IP, destination IP, source port, destina-

tion port, request, response, session duration, etc. From Jun 2017 to Jun. 2019, the honeypot systems have successfully lured

2,738,188 suspicious connections and sniffed out more than 50,0 0 0 botnet attacks. Moreover, we randomly select 50,0 0 0

legitimate network flows from the campus gateway. 

For both of the two datasets, we randomly select 60% of samples as training set, 20% of samples as verification set, and

the rest of the samples as our test set. We comprehensively evaluate the performance of Bot-AHGCN for detecting bots on

the two datasets. All of the experiments are run on 16 cores Intel(R) Core(TM) i7-6700 CPU @3.40 GHz with 64 GB RAM and

4 × NVIDIA Tesla K80 GPU. The experimental codes developed with python 3.6 are executed on TensorFlow-GPU framework

supported by Ubuntu 16.0.4 operating system. We utilize precision, recall, and Micro-F1 to evaluate the performance of bot

detection. 

4.2. Evaluation of meta-paths and meta-graphs 

In this paper, we represent each botnet flow as a six-tuple (Source IP, Destination IP, Port, Protocol, Request and Re-

sponse), and design meaningful meta-paths and meta-graphs to model the interdependent behavioral relationships among

heterogeneous fine-grained botnet objects. Meta-paths and meta-graphs are defined as the relationship templates between

botnet objects, while different meta-paths and meta-graphs represent different semantic relationships. Meanwhile, the meta-

paths and meta-graphs construct a structured heterogeneous information network of botnet flows, which define the seman-

tic relationships we want to explore and effectively guide the random walk process, further reducing the cost of random

walk. Moreover, meta-paths and meta-graph present better interpretability as they reflect real-world botnet communication

process. Here, we evaluate the performance of different meta-paths and meta-graphs on two real-world datasets for bot

detection, and the average experimental results are recorded in Table 1 . 

The results show that different meta-paths and meta-graphs show different performance on bot detection in terms of

precision and Micro-F1. Particularly, we can find that several meta-paths perform well on detecting bots, such as P 2 , P 4 , P 8
and P 10 , while some meta-paths (e.g., P 3 , P 6 and P 7 ) show poor detection results, which may be attributed to their inability

to reflect the characteristics of bots. Generally, meta-graphs are more effective than meta-paths in terms of modeling higher-

order semantic relationships since they are capable of combining multiple semantic relations from different meta-paths. In

our proposed framework, we simultaneously consider the meta-paths and meta-graphs to model both basic and high-order

semantic relationships to characterize bots. 

Different meta-paths and meta-graphs have different importance for characterizing the interactive relationships of bots.

In our work, we propose wight-learning based similarity embedding method to vectorize the interactive behavioral patterns

of bots, which can learn the weights of different meta-paths and meta-graphs to characterize bots. Fig. 5 demonstrates

the normalized weight distribution of different meta-paths and meta-graphs, from which we can learn that: (i) overall,

the weights of meta-graphs are greater than that of meta-paths, which is because meta-graphs can model higher-order

and more comprehensive semantic relationships than meta-paths; (ii) meta-paths and meta-graphs containing requests and

protocols own higher weights than those containing other objects (e.g., port, response). (iii) as a whole, the learned weighted



388 J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 

Table 1 

Performance comparison of different meta-paths ( P 1 ~ P 10 in Fig. 2 ) and meta-graphs ( M 1 ~ M 7 in Fig. 4 ) for bot detection (“#” indicates 

that the corresponding meta-path or meta-graph is not included in CTU-13 dataset). 

ID Description Honeypot Dataset CTU-13 Dataset 

Precision Micro-F1 Precision Micro-F1 

P 1 Hosts that use the same protocol 0.9214 0.9147 0.9143 0.9238 

P 2 Hosts that send the same request 0.9443 0.9513 0.9314 0.9452 

P 3 Hosts that access the same port 0.7142 0.7426 0.6957 0.7258 

P 4 Hosts that use the same protocol to access the same destination 0.9521 0.9645 0.9416 0.9596 

P 5 Hosts that use the same port to access the same destination 0.8236 0.8147 0.8302 0.7976 

P 6 Hosts that receive the same response from the same destination 0.7512 0.7239 # # 

P 7 Hosts that receive the same response 0.7116 0.7245 # # 

P 8 Hosts that send the same request to access the same destination 0.9714 0.9526 0.9742 0.9641 

P 9 Hosts that access the same destination 0.8913 0.9145 0.9015 0.9164 

P 10 Hosts that use the same protocol and port to send the same request to 

the same destination 

0.9743 0.9616 0.9821 0.9815 

M 1 Hosts that use both the same port and send the same request 0.9613 0.9527 0.9586 0.9543 

M 2 Hosts that send the same request and receive the same response 0.9218 0.9385 # # 

M 3 Hosts that use both the same port and protocol 0.9246 0.9412 0.9174 0.9228 

M 4 Hosts that use both the same protocol to access the same destination 

and send the same request to the same destination 

0.9831 0.9713 0.9870 0.9686 

M 5 Hosts that use the same protocol and port and send the same request 0.9624 0.9563 0.9617 0.9581 

M 6 Hosts that both use the same port and protocol and send the same 

request to access the same destination 

0.9912 0.9825 0.9876 0.9743 

M 7 Hosts that use the same port and protocol and send the same request 0.9742 0.9671 0.9635 0.9687 

 

 

 

 

 

 

 

 

 

 

 

distribution is positively correlated with the ability of meta-paths and meta-graphs to detect bots. From Table 1 and Fig. 5 ,

we can observe that meta-paths (e.g., P 10 ) and meta-graph (e.g., M 6 ) with better bot detection performances own a larger

weight factor. 

4.3. Performance evaluation of Bot-AHGCN 

In order to verify the effectiveness of Bot-AHGCN, we evaluate it against six baseline methods: Bot-SVM, Bot-DL [8] ,

Graph-Cluster [17] , Graph-ML [19] , GCN [27] , HAN [29] . For the baseline methods, we implement or utilize the source code

published by the authors, and adopt the same parameter set in their work. 

• Bot-SVM . Support vector machine (SVM) is an effective model for classification tasks. As a naive flow-based baseline

method, we implement Bot-SVM which leverages support vector machine to learn botnet features and identify bots from

each individual network flow. 

• Bot-DL is a state-of-the-art deep learning-based botnet detection approach, which applies deep neural networks to model

the characteristics of bots by analyzing individual network flows. 

• Graph-Cluster is an efficient bot detection approach based on graph features. The method relies on building a topological

graph only involving hosts, in which diverse graph-based features are used to cluster malicious bots. 

• Graph-ML combines graph theory and machine learning (ML) to address the problem of botnet detection, which lever-

ages both supervised and unsupervised machine learning to establish a two-phased, graph-based bot detection system. 

• GCN is a state-of-the-art method designed for tackling graph-based data, which can directly conduct graph convolutional

operation to model features for a specific task. Here, we implement Bot-GCN, a GCN-based botnet detection method

taking the topological structure and attribute information of the hosts as input. 
Fig. 5. Normalized weight distribution of different meta-paths and meta-graphs. 



J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 389 

Table 2 

Performances comparison of different methods for bot detection. 

Method Honeypot dataset CTU-13 dataset 

Precision Recall Micro-F1 Precision Recall Micro-F1 

Bot-SVM 82.36 ± 0.02 84.21 ± 0.07 83.27 ± 0.12 84.14 ± 0.08 85.32 ± 1.02 84.73 ± 0.14 

Bot-DL 93.15 ± 0.68 91.43 ± 0.57 92.28 ± 0.63 94.21 ± 1.04 91.34 ± 0.63 92.75 ± 0.76 

Graph-ML 91.04 ± 0.87 89.37 ± 0.65 90.20 ± 0.71 92.31 ± 0.39 87.50 ± 0.56 88.48 ± 0.41 

Graph-Cluster 93.21 ± 0.49 92.72 ± 0.52 92.96 ± 0.57 94.17 ± 0.23 92.36 ± 0.47 93.26 ± 0.36 

GCN 92.16 ± 0.96 91.45 ± 0.62 91.80 ± 0.79 92.54 ± 0.63 91.85 ± 0.75 92.20 ± 0.69 

HAN 93.14 ± 0.67 92.81 ± 1.24 92.97 ± 0.85 93.43 ± 0.74 91.89 ± 0.67 92.65 ± 0.72 

GCN-AM 93.68 ± 0.53 97.71 ± 0.35 95.65 ± 0.43 92.65 ± 1.04 93.47 ± 0.69 93.06 ± 0.80 

GCN-AG 95.21 ± 0.71 95.07 ± 0.38 95.14 ± 0.49 94.36 ± 0.89 92.35 ± 0.54 93.34 ± 0.76 

Bot-AHGCN 98.81 ± 0.24 97.65 ± 0.41 98.22 ± 0.36 98.24 ± 0.34 98.31 ± 0.19 98.27 ± 0.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• HAN is an effective attention-based heterogeneous graph embedding approach, which can evaluate the importance of

node-level and path-level features for graph representation. 

• Bot-AHGCN is the proposed bot detection framework based on multi-attributed heterogeneous graph convolutional net-

works, which handles both the multi-attributed information and behavioral interaction of bots. It characterize bots from

the perspective of meta-paths and meta-graphs, simultaneously. 

• GCN-AM is a variant of Bot-AHGCN, which focuses on meta-path based semantic relationships to characterize bots while

ignoring meta-graphs. 

• GCN-AG is another variant of Bot-AHGCN, which only performs graph convolutional operation on A G using meta-graphs. 

Table 2 shows the performance of different methods for bot detection on CTU-13 dataset and our Honeypot datasets. We

conduct 10-fold cross-validation for each method on the two datasets, and record their average performance in terms of

precision, recall, and Micro-F1 in Table 2 . The results show that our proposed Bot-AHGCN model outperforms all baseline

methods in terms of the three evaluation metrics. The proposed Bot-AHGCN model achieves 5.5–16.4% and 4–14% improve-

ment in terms of precision on Honeypot dataset and CTU-13 dataset, respectively. Our method can reach the precision peak

with 99.12% and 99.27% on Honeypot dataset and CTU-13 dataset, respectively. 

In fact, the improvement of Bot-AHGCN can be attributed to the following traits. First, comparing with flow-based bot

detection methods such as Bot-SVM and Bot-DL, we build an attributed heterogeneous information network (AHIN) to inte-

grate all network flow objects, which can better model the global structural relation of network flows than just considering

isolated features extracted from each individual network flow. Actually, as a powerful tool for exploring associations, AHIN

is capable of uncovering the concealed bots by analyzing the interactive behavioral relationships among hosts from a global

perspective. Notably, the Bot-AHGCN model achieves more than 13% and 5% improvement against Bot-SVM and Bot-DL in

terms of Micro-F1 on the two datasets. 

Second, the existing graph-based bot detection approaches mostly rely on building a homogeneous graph containing only

hosts, which analyze graph-based features (e.g., in-degree, out-degree, specific community structure, subgraph, etc.) to detect

botnets, such as Graph-ML and Graph-Cluster. However, such methods are overly reliant on matching particular subgraphs

or communities in a coarse-grained graph, which is feeble when the attack patterns and network structures of botnets are

frequently tampered for evading detection. We build AHIN of network flows, a heterogeneous fine-grained graph involving

more types of network objects, such as source IP, destination IP, port, protocol, request, and response. AHIN is equipped to

demystify the abnormal behavioral pattern of bots even if their topology is often adaptive. Comparing with homogeneous

graph tackling only hosts, our constructed AHIN converges more rich and meaningful semantic relationships conveyed by

fine-grained entities, which can model more advanced behavioral interaction to compensate the loss for topology changes.

Bot-AHGCN boosts 5.6% and 4% precision against Graph-ML and Graph-Cluster on Honeypot dataset and CTU-13 dataset. 

Third, the overall performance of Bot-AHGCN is superior to that of GCN and HAN due to the following reasons. HAN

can learn the importance of node-level and semantic-level for graph embedding, yet, it is limited by the inability to learn

more high-order semantic relationships based on meta-graph, resulting in an inferior performance. Compare with Bot-GCN,

our implemented Bot-AHGCN is capable of comprehensively handling the A M 

and A G , indicating that it can simultaneously

leverage the interactive behavioral features among bots based on meta-paths and meta-graphs, respectively. Meanwhile, the

similarity graph A M 

and A G themselves can automatically learn the behavioral characteristics of bots, making our method

more effective and practical. In fact, A M 

and A G learned by weight-learning based similarity embedding possess the dis-

criminative bot features, and they can achieve satisfactory results even if they are fed into traditional machine learning

models (e.g., SVM, KNN). We implement two SVM models based on A M 

and A G , respectively, and they can achieve excellent

results with the precision and Micro-F1 exceeding 91%, which verified that our established A M 

and A G can well characterize

bots. Moreover, in order to verify the effectiveness of simultaneously utilizing both meta-paths and meta-graphs to model

botnet detection, we implement two variants of Bot-AHGCN, namely GCN-AM and GCN-AG, respectively. GCN-AM only holds

the behavioral patterns among bots based on meta-paths while ignore that of meta-graphs. On the contrary, GCN-AG only

focuses on the impact of A on botnet detection. Overall, Bot-AHGCN outperforms GCN-AM and GCN-AG in terms of preci-
G 



390 J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 

Fig. 6. Parameter sensitivity analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sion and Micro-F1, indicating that it is reasonable and effective to characterize bots from both meta-paths and meta-graphs

simultaneously. 

5. Stability and scalability evaluation 

5.1. Parameters sensitivity analysis 

In this section, we conduct a large volume of comparative experiments to analyze the sensitivity of different parameters

in Bot-AHGCN. We mainly focus on these hyper-parameters, including embedding size of node attributes, dropout rate,

learning rate, and activation function. 

Specifically, embedding size of node attributes is one of the key factors to Bot-AHGCN; improper embedding dimen-

sion can cause model overfitting or underfitting. Here, we restrict other parameters to fine-tune the embedding size in

(30, 50, 80, 100). As illustrated in Fig. 6 (a), different embedding sizes show different detection performances, and the per-

formance of our model is outstanding in terms of accuracy and stability when the embedding size is set to 100. 

Dropout is an effective way of avoiding overfitting. As shown in Fig. 6 (c), we find that dropout will directly affects the

generalization ability of Bot-AHGCN. Obviously, the model without dropout is extremely divergent in the test dataset, which

means that the generalization of the model is too feeble to be practical. When we set dropout = 0 . 5 , our model can converge

to a stable range. 

Learning rate is an important parameter for controlling the stride of gradient descent in minimizing the loss function of

Bot-AHGCN, which determines whether the model can find a set of global optimal solutions. As illustrated in Fig. 6 (d), All

error losses with different learning rates can collectively decrease to a specific range, which means that our model is valid.

Here, we set learning rate = 0 . 001 , it allows the model to achieve minimal error loss and fluctuation. In addition, we assess

the effect of different activation functions in our model, and the results are shown in Fig. 6 (b). 

In summary, Bot-AHGCN randomly initializes other parameters and optimizes the model using back-propagation and 

stochastic gradient descent. Here, we leverage Relu activation function to nonlinearize the weights and set the learning rate

to 0.001. In order to avoid overfitting, we set the drop rate to 0.5, and adopt the early stopping strategy with iteration 500,

and attribute information of hosts is converted into the 100-dimensional vector by training a word2vec model [26] . 

5.2. Availability and scalability analysis 

We further analyze the availability and scalability of Bot-AGHGCN. Fig. 7 demonstrates the availability of Bot-AHGCN, its

average true positive are 0.9912 and 0.9927 on Honeypot dataset and CTU-13 dataset respectively, which means that our

method can effectively mitigate the problem of false alarm fatigue (i.e., misjudging the normal hosts as bots). Apparently,

Bot-AHGCN is more effective and stable than GCN-AG as it shows less fluctuations in the optimization process. 

We further evaluate the scalability by analyzing the computational complexity of Bot-AHGCN. Obviously, the complexity

of Bot-AHGCN mainly consists of two parts: O = P + Q, where P and Q represent the computational complexity of similarity

graph embedding ( A M 

and A G ) and graph convolution ( GCN ( A M 

, X ) and GCN ( A G , X )), respectively. Particularly, given the AHIN

G = (V, E, A ) and a meta-path ψ and a meta-graph φ, the time complexity of meta-path based similarity embedding is

P ψ 

= O (V ψ 

NN + E ψ 

N) , where V ψ 

is the number of hosts (i.e., source IPs), E ψ 

denotes the number of meta-paths connected

nodes, and N is the size of adjacency matrix associated with the V ψ 

. The time complexity is linear with the number of hosts

and meta-paths. Correspondingly, we can obtain the computational complexity of meta-graph based similarity embedding

P φ = P ψ i 
◦ P ψ j 

, where P ψ i 
and P ψ j 

represent the computational complexity of meta-paths ψ i and ψ j , and ◦ is Hadamard

product. Furthermore, given a similarity embedding graph (adjacency matrix of hosts) A ∈ R 

N×N and feature matrix X ∈
R 

N×D , the computational complexity of graph convolution is Q = O (‖ ξ‖ N N D ) , where N is the number of hosts, D is the

feature dimensionality of host attributes, and ‖ ξ‖ is the number of edges in the graph, which is linear in our constructed

similarity graphs. Comparing to the popular GCN model [27] , Bot-AHCGN introduces the computational complexity P to

measure the similarity between hosts, yet, the operation can be executed offline before detecting bots. 



J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 391 

Fig. 7. Availability evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Related work 

In this section, we review some work related to bot detection, heterogeneous information networks, and graph convolu-

tional networks. 

6.1. Bot detection 

As mentioned in Section 1 , the existing bot detection methods can be roughly divided into flow-based and graph-based.

Particularly, flow-based bot detection methods utilize machine learning or deep learning to extract bot features from each

individual network flow to discern malicious bots. Pektas et al. [8] proposed a botnet detection method based on network

flow summary and deep learning. They applied deep neural networks to learn the attack behaviors from network flows

and found that bots’ behavior in terms of access record is useful for detecting botnets. Acarman et al. [9] studied the most

expressive features in network flows for building an efficient botnet detection system, yet, these features may be obsolete

as network flows are altered frequently for evading detection. Zeidabloo et al. [12] presented a bot detection approach by

leveraging K-Means to find similar communication patterns and behaviors to identify suspicious clusters. Afterward, A larger

volume of cluster-based botnet detection methods have been established [13–16] . 

Stevanovic et al. [10] and Dua et al. [11] comprehensively compared the popular botnet detection method using machine

learning, and they argued that the basic premise behind the methods is that bots pose patterns of network activity signifi-

cantly different from behavior of legitimate hosts, and these patterns can be extracted by machine learning. Unfortunately,

botnet attacks are becoming more and more concealed and sophisticated as botnet flows are often disguised as legitimate

traffic. Therefore, such methods are noneffective for discovering the well-disguised bots. In addition, these methods ignore

the topological structure among bots, inevitably leading to drop in detection performance. 

Another stream of studies utilize graph-based features (e.g., in-degree, out-degree, community structure, etc.) to de-

tect botnets [22,30–36] . Particularly, literature [33–35] have been presented community-based patterns to identify botnets.

However, the community patterns or subgraphs mostly are feeble against various network flows with different topological

structures and distributions. Daya et al. [36] proposed a two-phased graph-based bot detection approach that used both

unsupervised and supervised machine learning. Sudipta et al. [17] proposed a graph-based feature clustering method, which

can isolate bots in clusters of small sizes while containing the majority of normal nodes in the same big cluster. Over-

all, the majority of existing graph-based detection approaches focus on building a homogeneous graph that involves only

hosts (each IP address is treated as a host), which can barely capture interactive semantic relationships among fine-grained

network flow objects. 

6.2. Heterogeneous information networks 

Heterogeneous information networks (HIN) [23] can effectively handle richer entities and meaningful semantic informa-

tion through nodes and links, and it can be regarded as a conceptual representation of graph with a wide variety of entities

and relationships. It has been widely used in network analysis [37] , social media analysis [38] , and document classifica-

tion [39] . Recently, HIN has attracted attention from different application areas such as malware detection [40] , opioid user

identification [41] . Indeed, demystifying botnet behavior is a challenging task because of its heterogeneity in terms of differ-

ent flow objects and relationships. In this paper, we build attributed heterogeneous information networks (AHIN) to model

various fine-grained network flow objects to comprehensively characterize the interactive behavioral patterns between bots.



392 J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Graph convolutional networks 

Graph convolutional networks (GCN) [27] has become an effective tool for addressing the task of graph-based scenarios,

such as semi-supervised node classification [27] , event classification [42] , clustering [43] , link prediction [44] , and recom-

mended system [45] . Given a graph, GCN can directly conduct convolutional operation on the graph to learn the nonlinear

embedding of nodes. In our work, to discern and reveal the behavioral patterns of bots, we utilize GCN to learn more

comprehensive and discriminative bot features. 

7. Conclusion 

In this paper, we propose a novel bot detection framework, namely Bot-AHGCN, which characterizes the network flows

as a multi-attributed heterogeneous graph, and then transforms botnet detection problem into semi-supervised node classi-

fication problem on the graph. More specifically, we first build an AHIN of network flows, which models source IPs, destina-

tion IPs, protocols, ports, requests, responses, and their interdependent relationships. Then, we present the weight-learning

based embedding method to measure the similarity of hosts from the perspective of meta-paths and meta-graphs, respec-

tively. After that, we perform graph convolution on the embedded host similarity graphs (i.e., adjacency matrix of hosts) to

characterize more comprehensive and discriminative behavioral patterns among bots. Finally, we feed the learned features

into a forward neural network to train an automated model to identify bots. Our experimental results show that Bot-AHGCN

achieves better detection performance than the state-of-the-art methods in bot detection. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper. 

CRediT authorship contribution statement 

Jun Zhao: Methodology, Writing - original draft. Xudong Liu: Conceptualization. Qiben Yan: Methodology, Writing - 

review & editing. Bo Li: Project administration. Minglai Shao: Data curation. Hao Peng: Formal analysis. 

Acknowledgments 

This work was supported by the National Key R&D Program of China ( 2018YFB0803503 ), the 2018 joint Research Founda-

tion of Ministry of Education, China Mobile ( MCM20180507 ) and the Opening Project of Shanghai Trusted Industrial Control

Platform (TICPSH202003020-ZC). NSFC for innovative Research Group Science Fund project ( 62141003 ). Specifically, Qiben

Yan is supported in part by the National Science Foundation grants CNS1950171 , CNS-1949753 . 

References 

[1] M. Albanese , S. Jajodia , S. Venkatesan , G. Cybenko , T. Nguyen , Adaptive cyber defenses for botnet detection and mitigation, in: Adversarial and Uncer-

tain Reasoning for Adaptive Cyber Defense, Springer, 2019, pp. 156–205 . 
[2] C. Kolias , G. Kambourakis , A. Stavrou , J. Voas , DDoS in the IoT: mirai and other botnets, Computer 50 (7) (2017) 80–84 . 

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J.A. Halderman, L. Invernizzi, M. Kallitsis, et al., Understanding
the mirai botnet, in: 26th USENIX Security Symposium (USENIX Security 17), 2017, pp. 1093–1110. 

[4] H.R. Zeidanloo , M.J.Z. Shooshtari , P.V. Amoli , M. Safari , M. Zamani , A taxonomy of botnet detection techniques, in: 2010 3rd International Conference
on Computer Science and Information Technology, 2, IEEE, 2010, pp. 158–162 . 

[5] S. Sonawane , A review on botnet and botnet detection methods, Int. J. Comput. Sci. Innov. 1 (2016) 107–116 . 

[6] S. Ryu , B. Yang , A comparative study of machine learning algorithms and their ensembles for botnet detection, J. Comput. Chem. 6 (5) (2018) 119–129 .
[7] K. Alieyan , A. ALmomani , A. Manasrah , M.M. Kadhum , A survey of botnet detection based on DNS, Neural Comput. Appl. 28 (7) (2017) 1541–1558 . 

[8] A. Pekta , T. Acarman , Botnet detection based on network flow summary and deep learning, Int. J. Netw. Manag. 28 (6) (2018) 20–39 . 
[9] A. Pektas , T. Acarman , Effective f eature selection for botnet detection based on network flow analysis, In: International Conference on Automatics and

Informatics, 1 (2017) 1–4 . 
[10] M. Stevanovic , J.M. Pedersen , On the use of machine learning for identifying botnet network traffic, J. Cyber Secur. Mobil. 4 (2) (2016) 1–32 . 

[11] S. Dua , X. Du , Data Mining and Machine Learning in Cybersecurity, Auerbach Publications, 2016 . 

[12] H.R. Zeidanloo , A.B. Manaf , P. Vahdani , F. Tabatabaei , M. Zamani , Botnet detection based on traffic monitoring, in: 2010 International Conference on
Networking and Information Technology, IEEE, 2010, pp. 97–101 . 

[13] S. Arshad , M. Abbaspour , M. Kharrazi , H. Sanatkar , An anomaly-based botnet detection approach for identifying stealthy botnets, in: 2011 IEEE Inter-
national Conference on Computer Applications and Industrial Electronics (ICCAIE), IEEE, 2011, pp. 564–569 . 

[14] P. Amini , R. Azmi , M. Araghizadeh , Botnet detection using NetFlow and clustering, Adv. Comput. Sci. 3 (2) (2014) 139–149 . 
[15] W. Lu , G. Rammidi , A .A . Ghorbani , Clustering botnet communication traffic based on n-gram feature selection, Comput. Commun. 34 (3) (2011)

502–514 . 

[16] B. Al-Duwairi , L. Al-Ebbini , Botdigger: a fuzzy inference system for botnet detection, in: 2010 Fifth International Conference on Internet Monitoring
and Protection, IEEE, 2010, pp. 16–21 . 

[17] S. Chowdhury , M. Khanzadeh , R. Akula , F. Zhang , S. Zhang , H. Medal , M. Marufuzzaman , L. Bian , Botnet detection using graph-based feature clustering,
J. Big Data 4 (1) (2017) 14 . 

[18] B. Venkatesh , S.H. Choudhury , S. Nagaraja , N. Balakrishnan , BotSpot: fast graph based identification of structured P2P bots, J. Comput. Virol. Hacking
Tech. 11 (4) (2015) 247–261 . 

https://doi.org/10.13039/501100012166
https://doi.org/10.13039/501100002338
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0017


J. Zhao, X. Liu and Q. Yan et al. / Information Sciences 537 (2020) 380–393 393 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[19] A .A . Daya , M.A . Salahuddin , N. Limam , R. Boutaba , A graph-based machine learning approach for bot detection, in: 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), IEEE, 2019, pp. 144–152 . 

[20] P. Jaikumar , A.C. Kak , A graph-theoretic framework for isolating botnets in a network, Secur. Commun. Netw. 8 (16) (2015) 2605–2623 . 
[21] S. Nagaraja , P. Mittal , C.-Y. Hong , M. Caesar , N. Borisov , BotGrep: finding P2P bots with structured graph analysis, in: USENIX Security Symposium, 10,

2010, pp. 95–110 . 
[22] K. Henderson , B. Gallagher , T. Eliassi-Rad , H. Tong , S. Basu , L. Akoglu , D. Koutra , C. Faloutsos , L. Li , Rolx: structural role extraction & mining in large

graphs, in: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2012, pp. 1231–1239 . 

[23] Y. Sun , J. Han , X. Yan , P.S. Yu , T. Wu , PathSim: meta path-based top-k similarity search in heterogeneous information networks, Proc. VLDB Endow. 4
(11) (2011) 992–1003 . 

[24] J. Shang, M. Qu, J. Liu, L.M. Kaplan, J. Han, J. Peng, Meta-path guided embedding for similarity search in large-scale heterogeneous information net-
works, (2016) arXiv: 1610.09769 . 

[25] H. Zhao , Q. Yao , J. Li , Y. Song , D.L. Lee , Meta-graph based recommendation fusion over heterogeneous information networks, in: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2017, pp. 635–644 . 

[26] T. Mikolov, K. Chen, G.S. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv: Computation and Language (2013). 
[27] T. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv: Learning (2016). 

[28] S. Garcia , M. Grill , J. Stiborek , A. Zunino , An empirical comparison of botnet detection methods, Comput. Secur. 45 (2014) 100–123 . 

[29] Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S. Heterogeneous graph attention network, in: The World Wide Web Conference, 2019, pp.
2022–2032. 

[30] Q. Ding , N. Katenka , P. Barford , E. Kolaczyk , M. Crovella , Intrusion as (anti) social communication: characterization and detection, in: Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2012, pp. 886–894 . 

[31] C.C. Aggarwal , Outlier ensembles: position paper, Sigkdd Explor. 14 (2) (2013) 49–58 . 
[32] A. Zimek , R.J.G.B. Campello , J. Sander , Ensembles for unsupervised outlier detection: challenges and research questions a position paper, Sigkdd Explor.

15 (1) (2014) 11–22 . 

[33] D. Zhuang, Peerhunter: detecting peer-to-peer botnets through community behavior analysis, arXiv: Cryptography and Security (2017). 
[34] D. Zhuang , J.M. Chang , Enhanced peerhunter: detecting peer-to-peer botnets through network-flow level community behavior analysis, IEEE Trans. Inf.

Forensics Secur. 14 (6) (2019) 1485–1500 . 
[35] S. Lagraa , J. François , A. Lahmadi , M. Miner , C. Hammerschmidt , R. State , Botgm: unsupervised graph mining to detect botnets in traffic flows, in: 2017

1st Cyber Security in Networking Conference (CSNet), IEEE, 2017, pp. 1–8 . 
[36] A .A . Daya, M.A . Salahuddin, N. Limam, R. Boutaba, A graph-based machine learning approach for bot detection, arXiv: Cryptography and Security(2019).

[37] Y. Sun , B. Norick , J. Han , X. Yan , P.S. Yu , X. Yu , Pathselclus: integrating meta-path selection with user-guided object clustering in heterogeneous

information networks, ACM Trans. TKDD 7 (3) (2013) 11 . 
[38] J. Zhang , X. Kong , P.S. Yu , Transferring heterogeneous links across location-based social networks, in: Proceedings of the 7th ACM International Con-

ference on Web Search and Data Mining, ACM, 2014, pp. 303–312 . 
[39] C. Wang , Y. Song , H. Li , M. Zhang , J. Han , Text classification with heterogeneous information network kernels, 13th AAAI, 2016 . 

[40] S. Hou , Y. Ye , Y. Song , M. Abdulhayoglu , Hindroid: an intelligent android malware detection system based on structured heterogeneous information
network, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2017, pp. 1507–1515 . 

[41] Y. Fan , Y. Zhang , Y. Ye , X. Li , Automatic opioid user detection from twitter: Transductive ensemble built on different meta-graph based similarities over

heterogeneous information network., in: IJCAI, 2018, pp. 3357–3363 . 
[42] H. Peng, J. Li, Q. Gong, Y. Song, Y. Ning, K. Lai, P.S. Yu, Fine-grained event categorization with heterogeneous graph convolutional networks, (2019)

arXiv: 1906.04580 . 
[43] W. Chiang , X. Liu , S. Si , Y. Li , S. Bengio , C. Hsieh , Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks, Knowl.

Discov. Data Min. (2019) 257–266 . 
[44] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding (2018), arXivpreprint

arXiv:1802.04407, 2609–2615. 

[45] R. Ying , R. He , K. Chen , P. Eksombatchai , W.L. Hamilton , J. Leskovec , Graph convolutional neural networks for web-scale recommender systems, in:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, 2018, pp. 974–983 . 

http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0022
http://arxiv.org/abs/1610.09769
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0034
http://arxiv.org/abs/1906.04580
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30293-0/sbref0036

	Multi-attributed heterogeneous graph convolutional network for bot detection
	1 Introduction
	2 Preliminary
	3 Bot detection using multi-attributed heterogeneous graph convolutional network
	3.1 Problem definition
	3.2 AHIN construction
	3.3 Weight-learning based similarity embedding
	3.4 GCN based bot detection

	4 Experimental evaluation
	4.1 Datasets and settings
	4.2 Evaluation of meta-paths and meta-graphs
	4.3 Performance evaluation of Bot-AHGCN

	5 Stability and scalability evaluation
	5.1 Parameters sensitivity analysis
	5.2 Availability and scalability analysis

	6 Related work
	6.1 Bot detection
	6.2 Heterogeneous information networks
	6.3 Graph convolutional networks

	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References


