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Highlights

• The paper proposes a novel dynamic graph recurrent convolutional neural network model, named Dynamic-GRCNN,
to deeply capture the spatio-temporal traffic flow features for more accurately predicting urban passenger traffic flows.

• The paper presents incidence dynamic graph structures based on historically passenger traffic flows to model traffic sta-
tion relationships. Different from existing traffic transportation network topological structures based graph relationships
between stations, the incidence dynamic graph structures firstly model the traffic relationships from historical passenger
flows.

• For real urban passenger traffic flows, the paper demonstrates that dynamic spatial-temporal incidence graphs are more
suitable to model external changes and influences.

• The paper compares Dynamic-GRCNN with state-of-the-art deep learning approaches on three benchmark datasets
which contain different types of passenger traffic flows for evaluation. The results show that Dynamic-GRCNN signifi-
cantly outperforms all the baselines in both effectiveness and efficiency in urban passenger traffic flows prediction.
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Abstract

Accurate and real-time traffic passenger flows forecasting at transportation hubs, such as subway/bus stations, is a practical
application and of great significance for urban traffic planning, control, guidance, etc. Recently deep learning based methods
are promised to learn the spatial-temporal features from high non-linearity and complexity of traffic flows. However, it is still
very challenging to handle so much complex factors including the urban transportation network topological structures and the
laws of traffic flows with spatial and temporal dependencies. Considering both the static hybrid urban transportation network
structures and dynamic spatial-temporal relationships among stations from historical traffic passenger flows, a more effective
and fine-grained spatial-temporal features learning framework is necessary. In this paper, we propose a novel spatial-temporal
incidence dynamic graph neural networks framework for urban traffic passenger flows prediction. We first model dynamic
traffic station relationships over time as spatial-temporal incidence dynamic graph structures based on historically traffic pas-
senger flows. Then we design a novel dynamic graph recurrent convolutional neural network, namely Dynamic-GRCNN, to
learn the spatial-temporal features representation for urban transportation network topological structures and transportation
hubs. To fully utilize the historical passenger flows, we sample the short-term, medium-term and long-term historical traffic
data in training, which can capture the periodicity and trend of the traffic passenger flows at different stations. We conduct
extensive experiments on different types of traffic passenger flows datasets including subway, taxi and bus flows in Beijing.
The results show that the proposed Dynamic-GRCNN effectively captures comprehensive spatial-temporal correlations sig-
nificantly and outperforms both traditional and deep learning based urban traffic passenger flows prediction methods.

Keywords: Traffic Passenger Flows Prediction, Graph Convolutional Neural Network, LSTM, Importance Sampling, Urban
Computing

1. Introduction

The goal of traffic passenger flow forecasting on transportation hubs is to predict the future traffic passenger inflow and
outflow of traffic stations based on previous traffic flow measured by sensors [1]. Traffic passenger flows forecasting plays
an important role in urban traffic route planning, traffic control, management and everybody’s daily life, which is also one of
main functions of the smart city system. Widely used intelligent transportation services, such as travel recommendation and
navigation for traveler, also rely heavily on a high-quality traffic flows evaluation. Even with the development of urbanization
and urban population expansion, intelligent transportation systems are increasingly affecting everyone’s travel and even social
security [2, 3]. An accurate and real-time traffic flows forecasting can not only provide a scientific basis for traffic managers
to sense traffic congestions and limit vehicles in advance but also provide security for urban travelers to choose appropriate
travel routes and improve travel efficiency.

However, accurate and real-time traffic flows forecasting has always been a challenge task due to its complex spatial and
temporal dependencies, and inherent and dynamic difficulties with hybrid urban transportation network topological structures
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in the long term forecasting. On the one hand, the changes in traffic passenger flows consist of all transportation hubs, such
as subway/bus stations, in the topological structure of the urban transportation network. Moreover, the traffic passenger flows
change dynamically over time and are reflected in closeness, periodicity and trend [4, 5]. On the other hand, it’s hard to
model the traffic passenger flows generated by tens of thousands of passengers in a urban traffic network at anytime. Since
different passengers of inflows travel to different traffic stations to form different outflows, the relationship among different
traffic passenger stations will dynamically change with external influences such as time, social events, traffic accidents, etc.
Furthermore, different urban transportation network topological structures also affect the modeling of traffic passenger flows,
such as square transportation network topological structures and irregular transportation network topological structures.

There are many existing traffic forecasting methods, some of which consider temporal dependence, including the Autore-
gressive Integrated Moving Average (ARIMA) model [6], historical average (HA), vector Autoregressive (VAR), gaussian
process based [7], Kalman filtering model [8], etc, and others consider multi-source data fusion, including mixed gaussian
probability model [9], coupled matrix and tensor factorization model [10, 11], etc. Despite the above methods consider
the dynamic change of traffic conditions and the compelling results achieve by these studies, their prediction accuracies
remain unsatisfactory for building reliable and more complicated traffic passenger flows forecasting systems in practice. Re-
cent years, deep learning methods have shown promising results in dynamic prediction over spatial-temporal traffic flows
data [1, 12, 5]. For example, there are three mainstream deep learning architectures which have attracted more researchers’
attention in spatial-temporal data mining, i.e., recurrent neural networks (RNNs) based models [13, 14, 15], convolutional
neural networks (CNNs) based models [2, 4, 16, 17] and graph convolution networks (GCNs) based models [18, 19, 20] due
to their powerful ability in learning different-levels of features of spatial-temporal traffic data. The above methods consider
the temporal dependency and spatial dependency, respectively, but ignore modeling the dynamic traffic station relationships
from historical traffic passenger flows. So that considering both traffic transportation network topological structures and po-
tential relationships among stations from historical traffic passenger flows will benefit to accurately traffic passenger flows
forecasting.

In this paper, we propose a novel spatial-temporal incidence dynamic graph neural networks framework for urban traf-
fic passenger flows prediction. We first model dynamic traffic station relationships over time as spatial-temporal incidence
dynamic graph structures based on historically streaming traffic passenger flows of the same type of vehicle. The graph
structures consider incidence dynamic relationships of both inflows and outflows. Then we design a novel dynamic graph re-
current convolutional neural network model, namely Dynamic-GRCNN, to learn the spatial-temporal features representation
for urban transportation network topological structures and transportation hubs. Different from previous deep learning based
models [4, 21, 18, 14], they either take external influences such as holidays, weekends, events, etc. as a hyper-parametric
variable of the model, or ignore external influences, and we model the traffic flows affected by external influences as dynamic
graph structures of traffic stations with specific periodic features. To fully utilize the historical passenger flows, we also use
periodic sampling, including the short-term, medium-term and long-term historical traffic flows, and importance sampling
of historical traffic flows in training, which can capture the periodicity and trend of the traffic passenger flows for different
transportation hubs. Specifically, the whole architecture of the proposed model is as follows.

Graph Structures Input. Instead of modeling the urban traffic passenger flows as traffic transportation network based
matrix [4, 5, 2, 22] or topological graph [21, 20, 23, 24, 18], we propose to utilize historical traffic passenger flows to construct
dynamic incidence relationships among traffic transportation hubs as graph structures, where the node refers to the traffic
stations, and the edge refers to the interaction between the two traffic stations. Even, we use the dynamic graph structures to
model the different influences of different time, festivals and events on the relationships among traffic stations. For the traffic
passenger inflows and outflows, we take them as two attributes of the node in the above graph structures. Then, we use the
spatial structure information of the graph to convert the graph into a matrix of traffic stations. So, we can utilize standard deep
convolutional neural network to learn different-levels of features.

Graph Recurrent Deep Convolutional Neural Network Layers. In order to effectively learn the spatial and temporal
features of traffic passenger flows, we propose to utilize recurrent deep convolutional neural networks to capture the feature
representation. For each graph, we use the deep convolutional neural networks to extract the spatial features. Then, we sample
the short-term, medium-term and long-term historical traffic flows, such as week periodicity, daily trendiness and recentness,
to learn temporal features of traffic passenger flows by multiple LSTM units. Even we sample the recent samples with a larger
probability than periodicity and trend’s since the most recent traffic passenger flows of a region are highly correlated to the
traffic passenger flows of the region in the next time slot. It’s an importance sampling instance when extracting training traffic
flows with different probabilities.

Output. After extracting spatial and temporal features of traffic passenger flows, we employ both two-layer fully con-
nected networks and one Sigmoid layer as the final output layer for the prediction of each traffic’s inflow and outflow. Unlike
the matrix-based output that contains a large number of non-traffic regions, the output of the proposed model is directly the
traffic inflow and outflow for each station. We use RMSE and MAP to measure the loss between the predicted flows and
ground truth flows, respectively. We calculate the accumulated loss for each station in mini-batch.
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The main contributions of this paper are:

• We propose a novel dynamic graph recurrent convolutional neural network model, named Dynamic-GRCNN, to deeply
capture the spatio-temporal traffic flow features for more accurately predicting urban traffic passenger flows. Different
from previous deep learning models, Dynamic-GRCNN models graph convolutional neural network, LSTM units, pe-
riodic sampling and importance sampling to better fit the historical traffic passenger flows and predict the future traffic
flows.

• We propose incidence dynamic graph structures based on historically traffic passenger flows to model traffic station
relationships. Different from existing traffic transportation network topological structures based graph relationships
between stations, the incidence dynamic graph structures firstly model the traffic relationships from historical passenger
flows among stations.

• For real urban traffic passenger flows, we demonstrate that dynamic spatial-temporal incidence graphs are more suitable
to model external changes and influences. This can be a general framework for deep learning model to be applied in
modeling real traffic passenger flows data.

• We compare Dynamic-GRCNN with traditional methods and state-of-the-art deep learning methods on three benchmark
datasets which contain different types of traffic passenger flows for evaluation. The results show that Dynamic-GRCNN
significantly outperforms all the baselines in both effectiveness and efficiency in urban traffic passenger flows prediction.

The rest of the paper is organized as follows. We first review related work in Section 2. Second, we present how to build
incidence dynamic graph in Section 3. Third, the detail of the Dynamic-GRCNN framework is introduced in Sections 4.
Then, we present the introduce of datasets, baseline methods and experimental settings in Sections 5. Next, we evaluate the
effectiveness comparison and efficiency analysis of the proposed model in Section 6. Last, we give the conclusion of this
work in Section 7. All source codes of this work will publicly available at https://github.com/RingBDStack/
GCNN-In-Traffic.

2. Related Work

In this section, we briefly review the related work. traffic passenger flows prediction models can be roughly categorized
into traditional machine learning based prediction models and recent deep learning based prediction models. Next we review
the related work in the following two categories.

2.1. Traditional traffic passenger Flows Prediction Models

Traditional traffic passenger flows prediction models rely on feature engineering and selection from history data and
existing traffic transportation networks to extract features for prediction task. Generally, traditional traffic passenger flows
prediction methods can be categorized into classic statistical models, including Auto-Regressive Integrated Moving Average
(ARIMA) based methods [25, 26] and parametric learning methods, including K-nearest neighbor (KNN) nonparametric
regression methods, historical average(HA), vector Autoregressive (VAR) [27], gaussian process based [7, 28], support vector
machine (SVM), neural networks (NN), etc [29, 30]. On the one hand, traditional works naturally focus on predicting the
traffic passenger flows of one particular region, such as a street or a local region, and they do not generate the city-level traffic
passenger flows prediction. For instance, ARIMA-based models are not suitable for analyzing time series with missing data,
since they rely on uninterrupted time series data. HA model cannot effectively capture dynamic changes of the traffic data,
such as incidents or social events. VAR model can capture the linear inter-dependencies among inter-related time series, but
the correlation between the predicted values is neglected. On the other hand, these shallow models depend on hand-crafted
patterns and can not fully explore complex spatial-temporal features among the big traffic data, which greatly limits their
performances. In addition to parametric learning based predictive models, there are some researchers having attempted to
integrate multi-source traffic data including external factors such as traffic accidents, festival, weather, etc [31, 32, 33, 10, 11].

2.2. Deep Learning based traffic passenger Flows Prediction Models

With the growing popularity of deep learning techniques and the success of various deep learning algorithms in many
fields such as computer version, natural language processing and speech recognition, recent years, some works also try to ap-
ply various neural network architectures in traffic prediction tasks and have achieved state-of-the-art results. To extract spatial
patterns, some methods [4, 2, 34, 12, 35, 36, 37, 15] first model traffic flows as multi-channel matrices representation, then
employ deep convolution neural networks to learn hierarchical of features. Other methods [18, 21, 20, 23] model traffic flows
as traffic transportation networks and stations based graph representation, and employ kinds of graph convolution networks
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to learn different-levels of features. To extract temporal patterns, similar to object tracking in video, some advanced meth-
ods [22, 18, 13, 14] either employ recurrent neural networks or residual based periodic sampling techniques [4, 5] to learn
temporal features. For example, Deep CNNs based DeepST [38], ST-ResNet [4], AttConvLSTM [39], DMVST-Net [40],
and GCNs based DCRNN [18], STGCN [23] and G-CNN [21], have been proved to achieve the state-of-art performance.
ST-ResNet [4] introduces four major components to model the temporal closeness, period, trend and external information,
and utilizes the residual neural network to predict the crowd flows of a city. Although ST-ResNet can incorporate prior im-
pacts to sample the input historical traffic flow data in different time periods for forecasting the future traffic flows, it still
lacks the analysis of the potential relationship among traffic flows and stations. AttConvLSTM [39] employs convolutional
LSTM units and the attention mechanism to emphasize the effects of representative citywide demand patterns on each-step
prediction. However, it ignores the periodicity of the traffic flow data. DMVST-Net [40] employs local CNN, LSTM and
semantic graph embedding to integrate the spatial, temporal, and semantic views, respectively. DCRNN [18] captures the
spatial dependency by using bidirectional random walks on the transportation network and the temporal dependency by using
the encoder-decoder architecture with scheduled sampling. STGCN [23] integrates traffic transportation networks based graph
convolution and gated temporal convolution. However, both DCRNN [18] and STGCN [23] models ignore the fact that the
relationship among traffic flows in different stations is not equivalent to the traffic transportation network topological struc-
tures. Different from the above two graph models, G-CNN [21] quantifies the relationship among traffic flows by measuring
traffic flows between different stations. Compared to the proposed Dynamic-GRCNN model, the G-CNN [21] belongs to
static graph model, and ignores both external influences and periodic laws of traffic flows.

3. Incidence Dynamic Graph Construction

In this section, we first give some definitions, concepts and necessary notations. Then, we give a brief introduction on the
traffic passenger flow data studied in this work, and present how to convert urban transportation network topological structure
to the spatial-temporal incidence graph of traffic stations representation based on historical traffic passenger flows records.

Definition 1 Incidence Dynamic Graph. In this study, we model real-world urban transportation network topological
structure as an incidence dynamic graph function G = f(V,E,W,A, t), where vertex V refers to traffic station, directed edge
E refers to an incidence relationship between stations at time t, W refers to the weights of the edges at time t, and A refers to
the inflow and outflow of the stations.

Different from the static line relationship between stations in the actual urban transportation network topological structure,
the incidence relationship between stations refers to a probability relationship between the stations in the flow of passengers
in and out. For example, in the Beijing subway transportation network, a large number of passengers travel between Huoying
subway station (residence) and Xizhimen subway station (work) every day. Although the two subway stations are separated
by at least 8 stations on the subway transportation network, there are two direct connections between the two stations on the
incidence graph, and the weight of this interaction relationship is the probability of passenger flow distribution, which checked
in from one station and checked out in the other station. In historical traffic flow, the more frequent the interaction between
stations, the greater the weight of the edges. In this study, the raw data is the travel records of the anonymous passengers
collected from Beijing public transport system. Each record contains the traffic route number/train number, the entrance
station ID and time, the exit station ID and time and the locations (longitude, latitude).
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Figure 1: Illustration of converting urban transportation network topological structure to an incidence graph of traffic stations representation based on
historical traffic passenger flows.

Next, we present how to build an incidence dynamic graph of traffic stations representation from historical traffic passenger
flows. First, we assume the total number of station is N , and select the historical traffic flows F from start time ts to end
time te. The traffic flows of any station si, i ∈ [1, N ] include the total numbers of check-in passengers Xin,si and check-out
passengers Xout,si , respectively, in the historical traffic flows. Second, we count the total number of traffic passenger flows
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Tsi,sj from any source transportation station si to any destination station sj in the historical traffic flows. Therefore, we can
calculate a probability from the station si to the station sj , as following:

p̃si,sj =

∑te
t=ts

Xout,sj (t)∑te
t=ts

Xin,si(t)
. (1)

So, for each traffic station, we can count the above probability between traffic stations from the historical passenger flows.
For example, the Huilongguan community, having Huilongguan Subway Station, in Beijing suburb is home to IT engineer
families of 500,000 people, and most IT engineers work in Zhongguancun, having Zhongguancun Subway Station, in Beijing
city. There is a large amount of daily commute traffic passenger flows between the two subway stations. Therefore, the
probability between passengers in both Huilongguan Subway Station and Zhongguancun Subway Station are relatively large.
As shown in the step 1 of Figure 1, we select the top T relevant traffic stations for each traffic station from the historical traffic
passenger flows, to represent its neighbor nodes. Note that the number of T depends on the connectivity of urban traffic flows
between traffic stations. In general, more than 80% of the traffic flow needs to be associated with selected stations. Third, we
give the normalized probability as

Psi,sj =
p̃si,sj∑T
k=1 p̃si,sk

, j ∈ [1, T ] (2)

for the traffic station si to the top T relevant traffic stations, respectively, where
∑T

k=1 Psi,sk = 1. Then, we rank the T
relevant traffic stations in descending order of the normalized probability, and we get a N × T traffic stations arrangement
matrix, as shown in the step 2 of Figure 1. Here, the same color represents the same station in the step 2 of Figure 1. Therefore,
we can build a weighted and directed traffic station passenger flows network, namely incidence graph, where the vertex refers
to traffic station, the directed edge refers to one relevant relationship, and the weight is incidence probability Psi,sj from traffic
station i to traffic station j, as shown in the step 3 of Figure 1.

However, the structure of the incidence graph will be affected by many external factors, such as weekends, concerts,
gatherings, sports events, etc. For example, at weekends, tourist attractions and fitness and entertainment venues, such as
the Bird’s Nest Subway Station and the Xiangshan Subway Station, have a relatively large traffic flows from the residential
area, such as Huilongguan community, Tiantongyuan community, Wangjing community, etc. So, the incidence graph will be
dynamically changing over time and other external factors. Different from external parameters estimation and naive learning
based models [4, 11], we employ the incidence dynamic graph to model the more adaptable and flexible relationship among
traffic stations. Therefore, our incidence dynamic graph can be adjusted automatically or semi-automatically based on external
factors, such as weekdays and weekends, holidays, large gatherings, extreme weather, etc. At last, similar to the multi-channel
representation in image or text, for any traffic station sj , i ∈ [1, N ], there are two properties of check-in and check-out
passenger flows as Xin,sj (t) and Xout,sj (t) at time slot t. Next, we introduce how to implement traffic flow prediction model
based on the spatial-temporal dynamic incidence graph.

4. Dynamic Graph Recurrent Convolutional Neural Network

After modeling both the complex traffic passenger flows and urban road network topological structures as dynamic inci-
dence graph, we introduce the proposed dynamic graph recurrent convolutional neural network framework in detail. Before
using the dynamic graph recurrent convolutional neural network, we first convert the incidence graph into matrix based traffic
passenger flows representation. Then, we make use of the dynamic graph recurrent convolutional neural network to learn
different levels of spatial and temporal features of traffic flows to predict the future traffic passenger flows.

4.1. Graph Processing

Similar to the standard process in learning convolutional neural networks for graphs [41, 42, 43], the converting from
graph data to matrix contains four major parts, the incidence graph generation unit, the subgraph generation unit, normalized
matrix unit and the traffic flows matrix representation unit. The illustration of converting spatial-temporal incidence graph to
matrix based representation is shown in Figure 2.

First, when converting the real traffic passenger flows of stations to the weighted and directed incidence graph, we can
follow the steps of data processing and graph modeling presented in Section 3. We have denoted the incidence graph as
G = f(V,E,W,A, t). We also see that the weighted and directed incidence graph can be updated by changing of the
relationship of passenger flows between traffic stations and external urban events, such as weekends, concerts, gatherings,
sports events, etc. Therefore, the incidence graph will dynamically change over external urban events and time.

Second, we extract top-K central vertexes (traffic stations) from the incidence graph G based on vertex’s closeness cen-
trality feature. Here, in order to calculate closeness centrality for each vertex (traffic station), we use d(v, u) to denote the

5

                  



Traffic Flows Matrix 
RepresentationNormalizated Matrix

Traffic Stationce

d

h

b a

g
e

dk

b
a

SG(a)

SG(b)

…

SG(K)

Subgraph GenerationIncidence Graph Generation

Traffic Station

Incident Relationship

Urban Traffic and 
Events

…

❶ ❷ ❸ ❹ 

Update

InflowOutflow

K

S

K1

K2

❺ 

Convolution Kernel

Spatial Features Learning

T1

N1 N2

T2J

i

Figure 2: Illustration of converting urban traffic passenger flows to matrix based representation and spatial features learning by convolutional neural networks.

weighted and directed based shortest-path distance between any vertexes v and u. For each vertex v, its closeness centrality
can be calculated as following,

Cv = (n− 1)/
∑

u∈V,u6=v

d(v, u). (3)

We sort the vertexes according to their closeness centrality features in descending order, and then select the Top-K central
vertexes (traffic stations). Considering both the computational complexity and the representative traffic stations are guaranteed,
the value of K should be more than half of the total number of stations in our work.

Third, we extract the vertexes and edges from the neighborhood of each central vertex in the order of breadth first search
(BFS), depth first search (DFS) and the vertex’s closeness centrality feature to build a subgraph. Meanwhile, we limit the
number of vertexes in the subgraph to be no more than S, as shown in the step 2 of Figure 2. In this way, the sub-graph
SG(i), i ∈ [1,K] contains both the non-consecutive and long-distance information of the i-th central vertex in the incidence
graph. Given a sub-graph, we want to have an order of vertexes for a convolution mask to convolve. Thus, a labeling of
stations is expected to make the convolution consistent over all sub-graphs and across graphs. An optimal labeling is defined
as follows. Suppose graphs GA and GA′ with S vertexes are in a collection of graphs GA. Given the labeling s of a graph
GA, we can construct an adjacency matrix As(GA). Then an optimal labeling is defined as

s∗ = argmin
s
E[DA(As(GA),As(GA′))−DGA(GA,GA

′)], (4)

where DA(·, ·) is a distance measure of two matrices, such as ||A −A′||L1, and DGA(·, ·) is a edit distance measure of two
graphs. However, such labeling is NP-hard and thus we follow [41] to have an alternative labeling. Starting from the root,
which is the node that triggered the sub-graph in previous step, we first follow breadth-first-search to use the depth to rank the
stations. Then in the same tier (depth) of the graph based spanning tree, we use the degree to rank the stations. Then if two
stations in the same tier have the same degree, we further use other factors to break the tier, such as the edges used in previous
step. Then after the above guarantee, we have S stations for each sub-graph. In general, the above extracted subgraphs must
cover all traffic stations. For the sub-graphs with more than S stations in the previous step, we simply use the rank filter out
them. For the sub-graphs with less than S stations, we add some dummy stations disconnected to any stations in the graph.
We can easily see that, in this way, the normalization applied to a 2-D lattice such as an image, will be exactly the same as
the way CNN’s first layer is applied to images. The complexity of this sub-graph normalization is given by [41]. Practically,
the complexity can be at most O(KS2) where K is the number of selected central stations and S is the size of the sub-graph.
To further save the above information of the subgraph, we order the stations in the sub-graph SG(i) by their node’s (traffic
station) closeness centrality feature. As a result, we can normalize each subgraph as a sequence of nodes (traffic stations) that
keeps the same length S. Here, the same traffic station may appear in different sequences. If the number of stations in the
sequence is less than S, it is padded with zeros. Finally, we concatenate all the normalized sequences of the K central stations
into an arranged normalized matrix, as shown in step 3 of Figure 2.

Fourth, for better representing the original traffic passenger inflows and outflows in the matrix, we use 2 channels of matrix
to represent them. In this way, we have a 3-dimensional tensor K ×S × 2 representation for one time slot of traffic passenger
flows, where the padded vectors are zero vectors with the same dimension, as shown in step 4 of Figure 2. So far, we can
use convolutional neural networks or recurrent neural networks to learn different levels of spatial-temporal features. Then the
deep convolution and recurrent neural networks introduced in the next section will be operated over the unified representations
of the urban traffic passenger flows.

4.2. Dynamic Recurrent Convolutional Neural Network
As shown in step 5 of Figure 2, we employ two-layers of convolutional neural networks to learn spatial features for

each time slot of traffic passenger flows. In the first layer of convolutional neural network, the size of convolution kernel is
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1 × 3 × 2 with a horizontal stride of 2 elements and a vertical stride of 1 element to extract local features among incidence
traffic stations. Here, the first layer uses K1 convolution kernels to generate a T1 × N1 × K1 feature map. Similar, in
the second layer of convolutional neural network, the size of convolution kernel is 1 × 3 ×K1 with a horizontal stride of 2
elements and a vertical stride of 1 element, and it uses K2 convolution kernels to generate a T2×N2×K2 feature map. We
use ReLU as the activation function to speed up the training process and avoid over-fitting. Here, convolution kernel serves as
a composition of the semantics in the receptive field to extract the higher level spatial features. Next, we employ the recurrent
neural operators, such as LSTM units, periodic sampling and importance sampling to capture high-levels of temporal features
for traffic passenger flows of stations.
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Figure 3: The framework of the proposed Dynamic-GRCNN, Conv: Convolution neural network; LSTM: Long Short Term Memory; LSTMout: the output
of LSTM.

The proposed dynamic graph recurrent convolutional neural network framework, namely Dynamic-GRCNN, is shown in
Figure 3. The framework includes both weekly spatial-temporal features learning (STFL) component, daily STFL component
and recently STFL component, which consists of periodic sampling based traffic passenger flows features learning. In addition
to the above periodic sampling, we also employ an importance sampling to select more recent samples to optimize the temporal
features learning. More specifically, the closer the time, the more samples are sampled. As shown in Figure 3, more dense
samples are chosen to train the recently STFL. For the short-term (recent) historic traffic passenger flows component, we
sample 12 snapshots of the traffic passenger flows data matrix in different time intervals. Here, the sampled recent data
consists of 6 traffic passenger flows samples in the last 6 time slots, 3 samples in the middle 6 time slots, 3 samples in the
front 3 time slots. For the medium-term (daily) historical traffic flows component, we sample 2 samples of previous days in
the same time interval. Similarly, the week component also samples 2 samples of previous week in the same time interval.
More formally, the convolution operator can be defined as

xlj = f(
∑

i∈Mj

xl−1i · klij + blj), (5)

where xlj represents the j-th feature map of the l-th layer of the convolution network. This formula shows the convolution

operation and the summation for all the associated feature maps xl−li and the j-th convolution kernel klij of layer l, and then
add an offset parameter blj . Here, a ReLU activation function f is applied. The output of the convolution network is input to a
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LSTM unit, and output of the LSTM unit is the feature map. The LSTM unit can be defined as:

ft = σg(Wfxt + Ufct−1 + bf ),

it = σg(Wixt + Uict−1 + bi),

ot = σg(Woxt + Uoct−1 + bo),

ct = ftct−1 + itσc(Wcxt + bc),

ht = otσh(ct),

(6)

where t refers to the index of the current feature map generated by convolutional sequences. ft refers to the forgotten gate, it
refers to the input gate, ot refers to the output gate, and ct is the cell state based on the previous time t− 1. Finally, although
the proposed incidence dynamic graph will change over time, the LSTM units can still learn the temporal impacts based on
the states before and after with supervised learning.

For each traffic passenger flows at a given interval, we first convert it to incidence graph, as presented in Section 3. Second,
we apply the proposed graph modeling technology, as presented in Section 4.1, to convert the incidence graph to the matrix
representation. Third, we use the two layers of convolutional neural networks to learning the T2 ×N2 ×K2 size of spatial
features. Then, we use three LSTM modules to integrate the spatial-temporal features of long-term, medium-term and short
term of traffic passenger flows, respectively. As shown in Figure 3, the LSTM1, LSTM2 and LSTM3 units refer to the three
LSTM modules. Next, we employ the fourth LSTM module to integrate the spatial-temporal features of the above three
components. The output of the fourth LSTM module is two layers of full-connected neural networks, and the number of
neurons in the output layer is equal to 2N , where each neuron refers to one inflow or outflow for traffic station, respectively.
Since this is a supervised model, we use the RMSE and MAE to measure the loss between the predicted values and ground
truth flows of stations, as shown in Figure 3. Here the traffic passenger flows is also normalized to the range 0 to 1. We
calculate the accumulated loss in min-batch of 32. To speed up training, we choose the momentum [44] method on multiple
GPUs.

5. Transportation Mode Setting Through Traffic Passenger Flows Datasets

In this section, we first introduce the three different traffic passenger flows datasets in detail, including subway, bus and
taxi in Beijing city, used in this work, and describe how to divide the training set and test set. Second, we present a set of
state-of-the-art models and associated datasets.

5.1. Traffic Flows Datasets for Transportation Mode Setting

We choose the following three datasets for evaluation, including the Beijing subway, Beijing bus and Beijing taxi datasets.
A summarization of the statistics of these three datasets is shown in Table 1. We can see that the three datasets represent
different types of transportation modes, respectively.

Table 1: Datasets Statistics

Dataset SubwayBJ BusBJ TaxiBJ

Data type e-card e-card Taxi GPS
Location Beijing Beijing Beijing

Time Span 7/1/2016-30/10/2016 7/1/2016-30/10/2016 7/1/2013-30/10/2016
Stations and Lines 329, 18 2321, 1020 -

Data frequency 15 minutes 15 minutes 30 minutes

• Beijing Subway (SubwayBJ): The Beijing subway data is collected from anonymous passengers’ check-in and check-
out records of their Beijing metro-card system. The time span of this data is from 1st Jul.2016 to 30th Oct. 2016. Beijing
subway has 329 traffic stations, 18 lines, and the time interval between statistical inflows and outflows is 15 minutes. For
this work, we obtain both inflows and outflows from the 329 traffic stations, and construct the corresponding incidence graph
structures with 329 nodes for this dataset. The data in the first three and a half months are used for training, and the remaining
data are used for testing.
• Beijing Bus (BusBJ): The Beijing Bus data is also collected from anonymous passengers’ getting on and getting off

records of Beijing buses by their bus e-cards system. The time span is from 1st Jul.2016 to 30th Oct. 2016. Beijing bus has
2321 traffic stations, 1020 lines, and the time interval between statistical inflows and outflows is also 15 minutes. We obtain
two types of crowd flows, and construct the corresponding incidence graph structures with 2321 nodes for this dataset. The
first two months data are used for training, and the remaining one month data are used for testing.
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• Beijing Taxi (TaxiBJ): The Beijing Taxi data is collected from the taxicab GPS data in Beijing in four time intervals:
1st Jul.2013 - 30th Oct. 2013, 1st Mar. 2014 - 30th Jun. 2014, 1st Mar. 2015 - 30th Jun. 2015, 1st Nov. 2015 - 10th Apr.2016.
We map the traffic passenger flows of this data into 2 channels, and construct the corresponding incidence graph structures
with 128× 128 nodes according to latitude and longitude coordinates for this dataset. The data of the last four weeks are the
testing data, and the other data are training data.

5.2. Candidate Models and Benchmark

We consider a set of existing models as candidate models for comparison and associated datasets in order to perceive the
benefits of Dynamic-GRCNN.
• Historical Average (HA) [45]: It simply uses the historical average of the same time period and same traffic station as

the prediction. For example, to predict the traffic passenger flows of station si in 9:00am-9:30am, we use the average traffic
passenger flows of station si in all the previous days in the same time interval 9:00am-9:30am as the prediction.
•Auto-Regressive Integrated Moving Average (ARIMA) [6]: It is a well-known model for understanding and predicting

the future trends of time series data, and widely used in traffic flow prediction.
• SARIMA [46]: It is a seasonal ARIMA model, and considers the seasonal terms, capable of both learning closeness and

periodic deeyond ARIMA.
• Vector Auto-Regressive (VAR) [27]: It captures the pairwise relationships among all flows, which is an advanced

spatio-temporal model and has heavy computational costs due to the large number of parameters.
• ST-ANN [47]: It extracts spatial (nearby 8 traffic station values) and temporal (8 previous time intervals) correlated

traffic passenger flows data as the input, and then they are fed into an artificial neural network.
• DeepST [38]: It is a deep neural network based prediction model, and models the spatial-temporal data as temporal

closeness, period and seasonal trend. This model shows state-of-the-art results on the crowd flow prediction.
• ST-ResNet [4]: It is currently the state-of-the-art deep convolution-based residual networks for predicting the future

urban traffic passenger flows.
•AttConvLSTM [39]: It employs an encoder-decoder framework based on convolutional and attentional LSTM to capture

the spatial-temporal features. It is a state-of-the-art model for multi-step passenger demands prediction in the mobility-on-
demand services.
•DMVST-Net [40]: DMVST-Net is a deep multi-view spatial-temporal neural network model for taxi demand prediction.

It incorporates information of the following three views: temporal view, spatial view and semantic view.
• DCRNN [18]: DCRNN is a diffusion convolutional recurrent neural network based model for traffic forecasting. It

uses bidirectional graph random walk to model the spatial dependency and recurrent neural network to capture the temporal
dynamics.
• STGCN [23]: STGCN model integrates both graph convolution network and gated temporal convolution network to

form spatio-temporal convolutional blocks.
• T-GCN [24]: T-GCN model combines the graph convolution network and the GRU. The graph network models the

urban transportation network in which the nodes on the graph represent roads, the edges represent the connection relationships
between roads.
• GCNN [21]: GCNN model quantifies the relationship among traffic flows by measuring traffic flows between different

stations. Compared to the proposed Dynamic-GRCNN model, the GCNN model belongs to static graph model, and ignores
both external influences and periodic laws of traffic flows.

We use both the Rooted Mean Square Error (RMSE) and the Mean Average Error (MAE) as the evaluation metrics,

MAE =
1

z

∑

i

||xi − x̂i||, (7)

RMSE =

√
1

z

∑

i

(xi − x̂i)2, (8)

where x̂ and x are the predicted value and the ground truth of passenger flows of traffic stations, respectively, and z is the
number of all the samples for prediction. For the sake of fairness, we directly calculate the error between the predicted and
ground truth values of sum of traffic passenger inflows and outflows for all models. The smaller the value is, and the better
the prediction effect is.

6. Experiments and Performance Analysis

In this section, we conduct quantitative evaluation of various models over the three datasets, and analysis the experimental
results. First, we give experimental settings including the default model parameters and the experiment environments. Then,
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we conduct quantitative evaluation of various models over the three datasets, and show the experimental results and analysis.
To demonstrate the efficiency of proposed models, we also show the running time of proposed models. Next, we give a
visualization analysis in a subway station.

6.1. Experimental Settings
For the input of the proposed Dynamic-GRCNN, we build incidence graph structures based on the number of the traffic

stations, and dynamically update the incidence graph by considering weekday, weekends, festivals, concerts, gatherings and
large sports events. All of our experiments were performed on 64 core Intel Xeon CPU E5-2680 v4@2.40GHz with 512GB
RAM and 4×NVIDIA Tesla P100-PICE GPUs. The operating system and software platforms are Debian 7.0, TensorFlow
r0.12 and Python 3.4. The K to be 200, 1500 and 10000 in the subway, bus and taxi datasets, respectively. The S to be 20, 50
and 100 in the subway, bus and taxi datasets, respectively. The numbers of convolution kennels K1 to be 128, K2 to be 256.
The parameters of the baseline methods are set following the setting in their original papers. We also use early-stop in all the
experiments.

6.2. Experiment Results on SubwayBJ
The experimental results of these methods over the Beijing subway dataset are shown in Table 2. We can observe that the

proposed Dynamic-GRCNN model can significantly outperform all the baselines in terms of RMSE and MAE. Compared to
the previous state-of-the-art models, Dynamic-GRCNN achieves the lowest RMSE 0.0016 and the lowest MAE 0.0005 among
all the methods, and the performance improvements are both significant on the two metrics.

Considering the traffic transportation network topological structures based graph representation, such as STGCN, T-GCN,
DCRNN, the experimental comparison on the subway dataset shows the advantage of traffic station relationships based on
historical traffic passenger flows. STGCN, T-GCN, DCRNN, GCNN and Dynamic-GRCNN have the same size of graph
structure with 329 vertex. The Dynamic-GRCNN model reduces the RMSE from 0.0065 to 0.0016 and the MAE from
0.0013 to 0.0005. Compared to the same traffic station relationships but lacking the dynamically updating of GCNN model,
our proposed Dynamic-GRCNN model reduces the RMSE from 0.0058 to 0.0016 and the MAE from 0.0012 to 0.0005.
This comparison again demonstrates the advantage of incidence dynamic graph with the external urban events. We also test
the Dynamic-GRCNN model without importance sampling (Dynamic-GRCNN (N-IS)) in selecting recent samples, and the
RMSE is 0.0042 and the MAE is 0.0011. In summary, the Dynamic-GRCNN model achieves the best results in the subway
traffic passenger flows forecasting.

Table 2: Comparison among different methods on SubwayBJ

Models RMSE MAE

HA 0.0245 0.0077
ARIMA 0.0193 0.0060

SARIMA 0.0217 0.0071
VAR 0.0174 0.0057

ST-ANN 0.0142 0.0043
DeepST 0.0113 0.0034
STGCN 0.0095 0.0031

AttConvLSTM 0.0081 0.0024
ST-ResNet 0.0079 0.0023

DMVST-Net 0.0072 0.0020
T-GCN 0.0068 0.0017

DCRNN 0.0065 0.0013
GCNN 0.0058 0.0012

Dynamic-GRCNN (N-IS) 0.0042 0.0011
Dynamic-GRCNN 0.0016 0.0005

6.3. Experiment Results on BusBJ
Compared to the traffic passenger flows of subway, there is no bus passenger who needs to transfer to different lines or

buses in records. Although there are more traffic stations, both more longer intervals between buses and more less numbers
of passengers are benefit for accurately passenger flows forecasting. In STGCN, T-GCN, DCRNN, GCNN and Dynamic-
GRCNN models, the nodes refer to traffic stations. The experimental results of these methods over the Beijing bus dataset are
shown in Table 3.
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Generally, previous deep learning models including DeepST, STGCN, AttConvLSTM, ST-ResNet, DMVST-Net, T-GCN,
DCRNN and GCNN perform better than traditional shallow methods such as HA, ARIMA, SARIMA, VAR, and ST-ANN.
Compared to the traffic transportation network topological structures based graph representation, such as STGCN, T-GCN,
DCRNN, the experimental comparison on the subway dataset again shows the advantage of the incidence graph modeling.
Here, STGCN, T-GCN, DCRNN, GCNN and Dynamic-GRCNN have the same size of graph structure with 2321 vertex. The
Dynamic-GRCNN model reduces the RMSE from 0.0017 to 0.0008 and the MAE from 0.0055 to 0.00031. Compared to
the same traffic station relationships but lacking the dynamically updating of GCNN model, our proposed Dynamic-GRCNN
model reduces the RMSE from 0.0017 to 0.0008 and the MAE from 0.0054 to 0.00031. This comparison again demonstrates
the advantage of incidence dynamic graph with the external urban events. We also test the Dynamic-GRCNN model without
importance sampling (Dynamic-GRCNN (N-IS)) in selecting recent samples, and the RMSE is 0.0011 and the MAE is 0.0004.

In summary, the Dynamic-GRCNN model achieves the best results in the bus passenger flows forecasting. It shows
again that the incidence dynamic graph based graph convolutional neural networks and LSTM models can better capture the
spatio-temporal features than traditional convolution kernel, graph convolution or recurrent networks.

Table 3: Comparison among different methods on BusBJ

Models RMSE MAE

HA 0.0082 0.0026
ARIMA 0.0067 0.0022

SARIMA 0.0088 0.0028
VAR 0.0041 0.0012

ST-ANN 0.0034 0.0011
DeepST 0.0028 0.00075
STGCN 0.0026 0.00073

AttConvLSTM 0.0025 0.00072
ST-ResNet 0.0022 0.00070

DMVST-Net 0.0018 0.00057
T-GCN 0.0018 0.00056

DCRNN 0.0017 0.00055
GCNN 0.0017 0.00054

Dynamic-GRCNN (N-IS) 0.0011 0.00040
Dynamic-GRCNN 0.0008 0.00031

Table 4: Comparison among different methods on TaxiBJ

Models RMSE MAE

HA 57.69 18.91
ARIMA 22.78 7.25

SARIMA 26.88 8.51
VAR 22.88 7.47

ST-ANN 19.57 6.23
DeepST 18.18 6.21
STGCN 18.09 6.03

AttConvLSTM 17.41 6.04
ST-ResNet 16.69 5.41

DMVST-Net 15.57 5.28
T-GCN 15.17 5.06

DCRNN 15.04 5.01
GCNN 14.33 4.74

Dynamic-GRCNN (N-IS) 13.88 4.59
Dynamic-GRCNN 10.25 3.42
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6.4. Experiment Results on TaxiBJ

Table 4 shows the experiment results of various methods on the Bejing taxi dataset. Different from subway and bus
passenger flows having fixed routes, taxi can stay on any road, and it’s difficult to build a fixed graph modeling the relationship
and vertex of taxi passenger flows. Even, the taxi route is instantly determined by passenger and traffic environments, such
as congestion status, passenger’s preferences and limited choices of traffic lines, etc. For the sake of simplicity, we divide
the different regions according to the latitude and longitude coordinates to represent the vertices, and then use the historical
passenger flow data to construct the relationship between the regions to build the incidence dynamic graph structures. For a
fair comparison, we take the regions based matrix representation or graph representation as input data for all the deep models.

We can see that the proposed Dynamic-GRCNN model still achieves the best performance with the smallest RMSE value
10.25 and MAE value 3.42. Because of the uncertainty and the randomness of the taxi flows, the traditional regressive and
average based models cannot achieve satisfied performance. The matrix representation based deep learning models, such
as DeepST, ST-ResNet and DMVST-Net, have significantly reduced errors. Both traffic transportation network topological
structures based graph representation, such as STGCN, T-GCN, DCRNN, and historical passenger flows based graph represen-
tation, such as GCNN and Dynamic-GRCNN, have better ability to learn spatio-temporal features than matrix representation
based deep learning models. Considering the above two types of graph models, the Dynamic-GRCNN model reduces the
RMSE from 15.04 to 10.25 and the MAE from 5.01 to 3.42. Compared to the same traffic station relationships but lacking the
dynamically updating of GCNN model, our proposed Dynamic-GRCNN model reduces the RMSE from 14.33 to 10.25 and
the MAE from 4.75 to 3.42.

This comparison again demonstrates the advantage of incidence dynamic graph with the external urban events. We also
test the Dynamic-GRCNN model without importance sampling (Dynamic-GRCNN (N-IS)) in selecting recent samples, and
the RMSE is 13.88 and the MAE is 4.59.

6.5. Computational Efficiency Analysis

We also compare our models trained with different devices with different settings on Dynamic-GRCNN model, shown
in Table 5. It shows that GPUs can speed up the training time by at least 7 times for the three datasets and also achieve
comparable performance than CPUs. Based on the same batch size, the train time of 1-Batch depends on the size of the
incidence graph and normalizated Matrix. The 1-Batch training time for the TaxiBJ data is much more than others, because
the number of vertex is 128×128. The subway traffic passengers flows prediction is the most efficient and effective than other
situations with less transportation hubs and more regular flows.

Table 5: Comparison of training time based on GPUs and CPUs. (Test evaluations for all the models were performed by CPUs.)

Type Datasets Batch(s) Train(h) RMSE MAE

CPUs SubwayBJ 280 2.6 0.0016 0.0005
GPUs SubwayBJ 35 0.3 0.0016 0.0005
CPUs BusBJ 680 4.5 0.0008 0.00031
GPUs BusBJ 86 0.5 0.0008 0.00031
CPUs TaxiBJ 1740 29 10.28 3.43
GPUs TaxiBJ 280 4.2 10.25 3.42

6.6. Visualization Analysis

To have a better understanding on the prediction performance of Dynamic-GRCNN model, we visualize the ground-truth
and forecasting results in the Xizhimen subway station within 24 hours, as shown in Figure 4. Xizhimen subway station is a
busy transfer station with three traffic lines 2, 4 and 13. From the figure, we can have the following observations. First, the
highest peak period of traffic flows is the working time period around 8:30 in the morning, and our Dynamic-GRCNN model
can accurately predict passenger flow peaks in rush hours of a day as well as multiple local peaks. Second, Dynamic-GRCNN
also performs well in predicting some sudden changes in the real passenger flows from 12:00 to 21:00. This is probably
because Dynamic-GRCNN can well capture the spatial-temporal features of passenger flows in associated neighborhood from
multi-channel lines.

7. Conclusion

In this paper, we have proposed a novel spatial-temporal incidence dynamic graph neural networks framework for fore-
casting the flows of crowds in transportation stations of a city. For the first time, we have modeled an incidence dynamic graph
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Figure 4: Ground-truth and predicted daily traffic passengers flows of Xizhimen Subway Station in 28/10/2016.

structures by the statistical historical traffic passengers inflows and outflows among traffic stations to consider both internal
relationships between traffic stations and external changes and influences. Our Dynamic-GRCNN model has integrated the
relationship of passengers, graph convolutional neural network and LSTM units to learn complex traffic spatial-temporal fea-
tures, and made use of an importance sample strategy to optimize the temporal feature learning. We have evaluated our model
on three types of crowd flows in Beijing city, achieving performances which are significantly beyond 13 mainstream baseline
methods, confirming that our model is better and more applicable to the crowd flows prediction tasks.

In the future, we plan to apply our dynamic-GRCNN model to real-time and fine-grained urban traffic flows forecasting
and warning system, and extend our model to more complex traffic order forecasting and route planning tasks.
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