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Abstract—Using machine to generate text has attracted con-
siderable attention recently. However, low quality text generated
by machine will seriously impact the user experience due to
the poor readability. Traditional methods for detecting machine
generated text heavily depend on hand-crafted features. While
most deep learning methods for general text classification tend to
model the semantic representation of topics, and thus overlook
the semantic coherence that is also useful for detecting machine
generated text. In this paper, we propose an end-to-end neural
architecture that learns semantic coherence of text sequences.
We conduct experiments on both Chinese and English datasets
with more than two million articles containing manually written
and machine generated ones. Results show that our method is
effective and achieves the state-of-the-art performance.

Index Terms—Deep Learning,Neural Network,Semantics,Text
Classification

I. INTRODUCTION

Machine generated texts are documents or sentences that

are automatically written by following artificial rules or ma-

chine learning approaches. Recently, generating specific text

has become a popular research topic and much work has

made progress on it. It is a foundational task in many NLP

applications, such as automatic text summarization [9], [10]

and machine translation [3], [38]. In these tasks, texts are

usually generated through automated processes [5] with super-

vised training such as the encoder-decoder model [6]. Despite

the breakthroughs have been made, to put it into practical

application still remains a big problem because there are

no effective and automatic methods for checking the quality

of the generated text. As a result, automatically generated

documents, for example, news written by robot, like figure

1, have appeared on the web even without careful verification.

This will hurt user experience and fool the web search engines

because low quality documents are supposed to have low rank

scores while they can rank high in search results due to web

spamming [11]. Moreover, even some fake papers generated

by machine have been used to manipulate the index score

[20]. Therefore, there is a urgent need of an effective detection

method to accurately identify the machine generated texts from

the real ones.

Existing researches for detecting machine generated text are

mainly based on a large range of carefully designed hand-

crafted features which can evaluate the different properties of

text samples, such as richness of vocabulary and POS [2],

    Dieticians: red skin, 
green skin, white eggs, 
nutritional value really 
difference?"

...

machine 
translation

Word Wide Web

web crawler republish

Spam content

Fig. 1: Machine generated Spam text example: some web pages di-
rectly copy news texts from other languages source through machine
translation and web crawler. ”Red skin” which means ”red eggs” is
confusing caused directly poor translation.

[16]. For example, the richness of vocabulary is measured

by the distinct ratio of words or n-grams. However, in order

to generalize the methods on different data, especially to

process corpus in different languages or generated by differ-

ent algorithms, traditional approaches need to be exquisitely

remodeled to fit the new dataset. In other words, different

features need to be extracted and the model parameters need to

be tuned, which brings substantial manual effort. On the other

hand, deep learning methods have shown their superiority in

text classification, which is quite similar to this task. General

text classification aims to automatically extract text semantics

[23] from the raw text. These methods include convolutional

neural networks (CNN) [17], recurrent neural networks (RNN)

[21] and RNN with attention mechanism [39]. However, most

of them only intend to capture the semantic representation

of texts so as to obtain the latent main topics or sentiments.

Hence these models are insufficient for learning semantic

coherence in machine generated text detection task. CNN-

based models aim to capture the local features [17] directly

over the embedding matrix via different sizes of convolution

filters. A filter with n-size slide window can capture the n-

gram feature [40]. But the word order information will be lost

after the operation of max-over-time pooling. In fact, word

order is one of the key features to measure the coherence of

semantics. RNN-based models aim to capture the semantics

of context. Long Short-Term Memory (LSTM), a variant of
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RNN, is capable of learning long-term dependency and widely

used in text classification. It usually tries to get the semantic

representation through average or attention pooling applied

to hidden states. This is effective in capturing the global

meaning of a document, which is the key point in general

text classification. However, such practices will also weaken

the capability of models to obtain the semantic coherence.

In this paper, we propose a novel approach that con-

centrates on capturing the semantic coherence of texts to

more accurately detect machine generated text. We refer to

our model as SC-Net and formulate this task as a binary

classification problem. In this task, semantic coherence rep-

resents the naturalness of the text. For instance, whether

an article has word order errors or incompatible sentences.

The basic idea is to exploit deep learning methods to make

semantic errors (e.g., word order error) propagate as the

length of text grows, such that the deep features of machine

generated text is more discriminative. Specifically, we first

train word embeddings only using the natural texts written

by humans. Then, Bidirectional Gated Recurrent Units (Bi-

GRU) in pre-trained Language Model(LM) are adopted to

model the naturalness of both kinds of texts. At the same

time, hidden units of Bi-GRU in pre-trained LM can fully

obtain semantic coherence representations. Also, to reduce the

influence of position where semantic incoherence occurs, we

utilize max pooling on the obtained feature maps and combine

the pooling results. Finally, the combined features are used

for classification. Experimental results on different datasets

indicate that our SC-Net outperforms existing state-of-the-art

text classification approaches in detecting machine generated

text.

Our contributions are as follows:

• We formulate the problem of detecting machine generated

text when automatic text generation is rising to be a

popular application in NLP community. Correspondingly,

we provide two large scale datasets for further study.

• We propose a novel end-to-end approach that can au-

tomatically learn semantic coherence of texts instead of

manually designing textual features.

• We evaluate the effectiveness of our approach against

both traditional machine learning and deep learning based

methods. Furthermore, we visualize the mechanism of

capturing semantic coherence and do a theoretical anal-

ysis for better exploring this problem.

II. METHODS

In this section, we first introduce the architecture of the

proposed model SC-Net for machine generated text detection.

Then, we explain the mechanism of modeling the semantic

coherence and how it can extract such features automatically.

The architecture of SC-Net is shown in figure 3. In our

model, we make full use of GRU in pre-trained LM which

have the memorizing capability [12] to model the semantic

coherence. These semantic features are consecutive hidden

states of LM that contain semantic incoherence locally. Thus

You       are       right  that ...       

You       are       

sum by axis      

concatenate

feature in LM

word embedding

right  that ...       

Fig. 2: Two ways to utilize features generated by bidirectional LM.

we apply conventional filters to capture such local features for

classification.

A. Pre-trained language model

Pre-trained word embedding shows great effect in many

NLP tasks [28], [30]. But such static word embedding can

not capture the polysemy. For Example, in the sentence ”You

are right that post office is on the right.”, the word ”right” is

used as both an expression of directions and a definite attitude.

However context semantics is essential to NLP systems. Re-

cent work has also shown the top layer of LSTM can encoder

context semantics [26]. ELMo [32], GPT [33] and BERT [8]

show great gains from powerful context semantics. Similarly,

we apply LM on unlabeled well written data for pre-trained

to capture the task specific context semantics, that is encoding

the semantic error and abnormal semantic. Different from

above methods, we make use of all the time sequence features

encoding by LM, rather than get a fix dimension sentence

representation for a specific classification task. A Language

model predicts a word sequence s1, s2, s3, ..., sN

p(s1, s2, s3, ..., sN ) =

N∏
i=1

p(si|s1, s2, s3, .., si−1) (1)

In order to capture bidirectional feature in LM, a reverse LM

is applied. A reverse LM predicts the previous word si by the

future word sequence si+1, si+2, ..., sN .

p(s1, s2, s3, ..., sN ) =

N∏
i=1

p(si|si+1, si+2, .., sN ) (2)

Both the LM and reverse LM can produce features by the

hidden layer of LSTM or GRU. In our model, we use the LM

and the reverse LM as two separate feature generator after

removing the projection and softmax layer. We maximizes

the log likelihood as following equation, θgru represents

parameters in GRU while other parameters like softmax layer

are θother:

N∑
i=1

(log p(si|s1, s2, s3, .., si−1; θgru, θother)

+ log p(si|si+1, si+2, .., sN ); θgru, θother))

(3)
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Fig. 3: The overall architecture of SC-Net.

More details about how to use GRU in pre-trained LM will

discussed in the following subsection.

B. Semantic Coherence Modeling

In our task, we use GRU in pre-trained LM for modeling

coherence. GRU in language model are able to propagate

historical information in a time sequence, because it generates

the current hidden state hi ∈ R combing the current input

xi ∈ R with the previous hidden state hi−1. The transition

functions of GRU are as follows:

zt = σ(Wzxt + Uzht−1)

rt = σ(Wtxt + Utht−1)

h̃t = tanh(Wxt + U(rt � ht−1))

ht = (1− zt)� ht−1 + zt � h̃t

(4)

Here � stands for element-wise multiplication, σ is the logistic

sigmoid function that outputs values in the range of [−1, 1],
and Wz ,Wt,W ,Uz ,Ut,U adaptively select new vector and

remove history vector for semantic composition. That is the

mechanism of capturing long-term dependency in sequences.

Since text can be regarded as a sequence of words, it is

natively supported by pre-trained LM for modeling the seman-

tic change. On top of this, we perceive that the bidrectional

semantics is of equal importance, as the natural language

usually has contextual information. Therefore, we apply the

Bi-GRU to enhance the capability of LM for processing such

sequential data.

We pre-train the word embeddings and store them as a look-

up table. The input text sequence s : [s1, s2, s3, ..., sn] ∈ R

will be transformed into the word embedding sequence x :
[x1, x2, x3, ..., xn] ∈ R. The n above is the length of text

sequence.

The transformed words are high dimensional vectors and

then fed into the Bi-GRU, core component in pre-trained LM,

which can process the input vectors and generate one hidden

state at each time step. For time step t, the input word st
will be transformed into the embedding xt. The hidden unit

will generate the hidden state ht. As mentioned above, we use

pre-trained LM to model the semantics from both directions.

The bidirectional LM has the forward hidden state
−→
ht and

the backward hidden state
←−
ht in Equation 5. The forward

one process the embedding sequence form x1 to xn, and the

backward one process the embedding sequence from xn to x1.

xi
t = Wes

i
t, t ∈ [1, n]

−→
hi
t =

−−−−−→
LM(xi

t), t ∈ [1, n]
←−
hi
t =

←−−−−−
LM(xi

t), t ∈ [1, n]

(5)

The We ∈ R
d×|V | can be considered as the word embedding

transform matrix or a look-up table. Here d is the dimension

of word embedding and |V | is vocabulary size.

After the pre-training procedure on well written data, we

have two ways to combine the context feature in Figure 2, one

is concatenating, another is summing by its axis. The summing

way has a half parameters than concatenating. Two ways to

make use of features generated by LM is formulated as

M = [
−→
h1,

−→
h2, ...,

−→
hn;

←−
h1,

←−
h2...,

←−
hn].

M ′ = [
−→
h1 +

←−
h1,

−→
h2 +

←−
h2, ...,

−→
hn +

←−
hn].

(6)

Then we obtain the matrix M,M ′ formed by the features of

all time steps, which can represent the semantic consistency

and continuity of the input sequence. The reason is that when

there is a semantic incoherence at time t, such information
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will be captured by both
−→
ht and

←−
ht . More importantly, it will

also be transmitted along time steps in both directions, that

is, LM propagates this feature to make the incoherent time

longer. In this way, we construct semantic coherence features

automatically. The mechanism of feature extraction will be

discussed in the following subsection.

C. Semantic Coherence Feature Extraction

CNNs are proved to be not only superior in computer vision,

but also effective in natural language processing. In our model,

we treat CNN as an automatic feature extractor whose input

is the semantic coherence matrix. Note that semantic error

in a given text can be tiny, for example, only two words

are out of order. Therefore, we apply a global max pooling

layer following the convolution filters to produce the most

distinctive feature vectors. As explained above, h
(i)
t ∈ R

m

represent the semantics at time t, and also denote t-th row

in semantic matrix M (i). A convolution filter m convolves at

each position to generate a feature map c as like as processing

an image by Equation 7:

cj = f(Wc � h
(j)
i:i+k−1 + b), (7)

where b ∈ R is a bias term and f is the nonlinear function

such as rectified linear unit(ReLU ), tanh and sigmoid. In our

case, we choose ReLU ,defined as f(x) = max{0, x}, x ∈ R,

as the nonlinear function. After convolution operation on

the semantic matrix M (i), we get the feature maps. Each

convolution filter generates a feature map c ∈ Rl−k+1, where

l and k are the sequence length and the kernel size of a filter

respectively. Global max pooling is applied to the feature map

to get the most important feature. Given a feature map c ∈ R
p

of length p, global max pooling choose the highest value in c.

The semantic coherence features are the outputs of global

max pooling on feature maps of both directions, denoted as

c(f), c(b) ∈ R
n×p. We can concatenate them as follows:

V = [c
(f)
1 ; c

(f)
2 ; ...; c(f)n ]⊕ [c

(b)
1 ; c

(b)
2 ; ...; c(b)n ]. (8)

Here n is the number of filters and ⊕ is the concatenation.

Thus we get the final abstract feature vectors V ∈ R
2n and

use it as the input of fully connected layer for determining

whether a text is generated by machine.

D. Training

We conduct the supervised learning for training the model.

We denote the set of training data as X and the label of

data as Y . In our case, machine generated text detection is

a binary classification task with negative and positive labels.

The parameters of model to be trained are defined as Θ. For

each x ∈ X , the model gives the probability p(y;x,Θ) ∈ [0, 1]
of positive label y. We choose the sigmoid function to obtain

such probability before computing the binary cross-entropy

loss L(Θ). The target of training is to optimize the binary

cross-entropy as follows:

L(Θ) = −
1

N

∑
x∈X

[ỹlnp(x) + (1− ỹ)ln(1− p(x))], (9)

where ỹ is the ground truth of sample x and N is the total

number of samples in datasetX . We use the adamax [18]

to optimize the loss function. Adamax is a variant of adam

[18] based on the infinity norm, an algorithm for first-order

gradient-based optimization of stochastic objective functions

with adaptive estimates of lower-order moments. For regular-

ization, we apply the dropout [34] before the fully connected

layer. Finally, if p(x) is less than the threshold θ, we deem x

as machine generated text.

III. EXPERIMENTS

We conduct experiments to evaluate our approach to ma-

chine generated text detection. We describe datasets, experi-

mental setting and methods to compare in this section.

A. Dataset Description

We test all the methods on two different datasets including

Chinese and English corpus respectively. We will present

information about each dataset in the following paragraph and

summarize the statistics in Table I.

There are three main ways of generating text, including

using artificial rules, Markov model and RNN-based model.

However, those generated texts are often incomprehensible due

to various kinds of semantic errors. For example, a generated

sentence can be very long or have many repetitive words

etc. Among all the errors, word order error and incompatible

words/sentences are most representative and difficult to rec-

ognize. For instance, “The new economy looks to forward the

collaborative policy” and “The new economy looks forward

to the collaborative policy after they got the salary” should be

“The new economy looks forward to the collaborative policy”.

The semantic errors are in italics.

To this end, we provide such datasets that mainly include

the above errors. Initially, we collected a dataset presented

by Qihoo 360 Search that contains over one million samples

whose contents are Chinese daily news. Apart from normal

news that are deemed as positive samples, there are also

machine generated news serving as negative samples including

machine translation tools generated, text auto summarization

generated and machine writing-bots generated articles. The

typical features of negative samples include word order error

and sentence whose meaning is incompatible with the topic

of a document. There are also some repetitive words or

sentences in a few negative samples. For further evaluation, we

downloaded the New York Times(NYT) corpus. NYT corpus

contains nearly every article published in the New York Times

between January 01, 1987 and June 19th, 2007. As a large

scale corpus, NYT was widely used in document routing,

document categorization, entity extraction, cross document

coreference resolution, and information retrieval etc. We ran-

domly converted selected NYT articles into negative samples

by making small perturbations(e.g, swapping positions of two

words) to the words or sentences. Another part of negative

samples are generated by translating NYT articles into Chinese

and back to English. The other part generated by text auto

summarization. In this way, we produced a new dataset of
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English written news that is analogous with the Chinese

dataset.

For illustration purposes, we denote the two datasets as

QiHoo Generated News(QHGN) and Modified New York

Times(MNYT). Both datasets do not come with separate test

sets since they are reprocessed, thus we randomly divided all

samples into 90% for training set and 10% for test set.

TABLE I: Summary of datasets:positive, negative samples number
and average, max token number.

Dataset Positive Negative Avg token Max token

QHGN 420,632 599,531 605 2,618
MNYT 599,994 417,521 1,306 69,517

B. Experimental Settings

We conduct experiments on the datasets mentioned above.

We train all the model with an early-stopping strategy and save

the best parameters. To speed up the training process, we train

our model on GPUs which benefits from parallel computation

of the tensors. For data processing, we tokenize Chinese

corpus using jieba, and tokenize and lowercase English corpus

using NLTK. Word embeddings trained by word2vec are used

in our model. LM is pre-trained on the large 400 millions

English Wikipedia corpus and 400 millions Chinese Wikipedia

corpus. The length of document in evaluating task is restricted

to 1000 and the exceeding words are truncated. In our model,

we set the number of GRU cells in LM to be 400, the filter size

to be 3, the dimension of word embedding to be 256 and the

dropout rate to be 0.2. For classification, we set the threshold

θ that mentioned in Section 2 to be 0.5. The evaluation metrics

are F1-score F1 = 2∗PR
P+R

and accuracy.

C. Methods for Comparison

We compare our method with several state-of-the-art ap-

proaches in general text classification:

• SVM We choose SVM, a classical statistical machine

learning method, using handcrafted features such as tf-idf,

n-gram, word count, POS and word richness etc. Word

richness can be measured by the ratio of vocabulary size

and total number of words.

• TextCNN [17] This method adopts convolution operation

on the word embedding to get the text representation.

Multi-channel CNNs are used so that different sizes of

kernels can capture the n-gram features.

• LSTM The hidden state vectors of LSTM are averaged

or applied by attention mechanism to get the text repre-

sentation.

• RCNN [21] This method learns representation that com-

bines each word in the sentence or document with left

side context and right side context.

• HAN [39] This method has a hierarchical structure

with attention mechanisms applied at the word-level and

sentence-level, enabling it to capture important features

of both levels.

• fastText [13] Word representations are averaged for ob-

taining the text representation. In our experiments, n-gram

features are used for classification.

• Structured [24] This model achieves state-of-the-art

results on document modeling tasks. Structure-aware

document representations are learned from data without

recourse to a discourse parser or additional annotations.

This model encodes a document while automatically

inducing rich structural dependencies.

Among them, there are mainly two categories: statistical

machine learning methods using hand-crafted features and

deep learning methods using neural networks. These neural

networks can be further categorized into CNN-based, RNN-

based and mixed methods. For example, RCNN takes advan-

tages of both CNN and RNN.

IV. RESULTS AND ANALYSIS

A. Discussion of Results

The results on QHGN and MNYT datasets are shown

in table II. On the one hand, we can see that our model

significantly outperforms traditional methods, i.e., SVM with

hand-crafted features. On the other, our proposed method also

achieves best results on both datasets. This demonstrates that

our method indeed learns semantic coherence features while

the general text classification methods pay more attention to

the semantics itself.

Comparing SVM with deep learning methods on QHGN,

we can see that deep learning methods using automatic fea-

ture extraction exceed SVM using hand-crafted features by

more than 19%. Also, fastText which is the simplest neural

model using n-gram features still performs well. Results of

CNN-based and RNN-based models indicate that RNN-based

models are more suitable for this task. LSTM with attention

performs better than LSTM with average pooling, and both

of them are comparable to RCNN. It proves that attention

mechanism can boost the weight of particular hidden state

which contains more important features. Structured and HAN

are both hierarchical models, but Structured achieves much

better result than HAN on QHGN. This can be explained that

Structured can capture the structural information of text which

is more important than just semantics. However, this model

is tricky in that it can not coverage on MNYT although we

preprocess the MNYT corpus for it the same as for HAN.

We conjecture that Structured is sensitive with the length of

sentences and documents because MNYT contains many short

sentences and a document can be very long(see Table II).

Meanwhile, it consumes larger GPU memory and spends much

more time in training than all other models, which leads to

being difficult for fine-tuning.

The performance of TextCNN is worse than RNN-based

model on QHGN. Features generated by convolution filters

using max-overtime-pooling will lose the word order infor-

mation, which is central in modeling the semantic coherence.

RNNs can encode the semantics of context into hidden states

and learn long term dependencies better. But most of the

Learning Semantic Coherence for Machine Generated Spam Text Detection
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TABLE II: Comparison of results on QHGN and MNYT dataset.

Models
QHGN MNYT

F1score Acc F1score Acc

SVM 0.4230 0.5816 0.7159 0.6090

TextCNN [17] 0.8489 0.8619 0.8122 0.7553
fastText [13] 0.7248 0.7757 0.7051 0.6412

LSTM+Attention 0.9006 0.9175 0.8076 0.7424
LSTM+Average 0.8870 0.9064 0.7858 0.6982

RCNN [21] 0.8936 0.9116 0.8786 0.8451
HAN [39] 0.8474 0.8677 0.8307 0.7667

Structured [24] 0.9146 0.9268 - -

SC-Net(non-static pre-trained LM) 0.9234 0.9364 0.8935 0.8682
SC-Net(random initialized parameters without LM) 0.8823 0.9013 0.8875 0.8552

SC-Net(static pre-trained LM) 0.9219 0.9343 0.9034 0.8783

baseline models do an operation of combining the semantics

representation via averaging or attention pooling, thus the local

semantic error is more likely to be ignored. While on MNYT,

TextCNN performs better than LSTM models. This can be

explained that local features are more effective than contextual

features when the text is too long.

TABLE III: Comparison of results by different merge mode applying
to hidden states by bidirectional GRU in LM.

Merge Mode
QHGN MNYT

F1score Acc F1score Acc

sum by axis 0.9173 0.9251 0.8916 0.8659
concatenate 0.9219 0.9343 0.9034 0.8783

TABLE IV: Comparison of results by different size parameters in
Language models. All language models use same parameters except
single or bidirectional, numbers of hidden states and projections.

Language Model
QHGN MNYT

F1score Acc F1score Acc

Single GRU-256-256 0.9156 0.9279 0.8912 0.8631
Single GRU-400-256 0.9178 0.9283 0.8923 0.8643

Bidirectional GRU-256-256 0.9189 0.9308 0.8997 0.8705
Bidirectional GRU-400-256 0.9239 0.9343 0.9034 0.8783
Bidirectional GRU-1000-256 0.9193 0.9312 0.9013 0.8694

Fig. 4: Comparison of results by random initialized parameters in
GRU and the pre-trained one.

Further experimental results and observations are as follows:

• Pre-trained LM shows great improvement in this task.

This suggests that unsupervised pre-trained LM contains

a lot of priori knowledge that is advantageous to semantic

representation. In contrast, supervised model structure,

that is, SC-Net, random initialized parameters without

Language Model, is prone to be overfitting. What’s more,

pre-trained parameters in LM reach a faster convergence

result as shown in Figure 4. After initialized with pre-

trained parameters in LM, it exceeds the random initial-

ized one’s best result at epoch 3.

• Hierarchical models like HAN and Structured take more

time to converge because they encode both sentences and

documents at the same time. To realize such approaches,

they set up the max length of a sentence and the max

number of sentences in a document. However, it suffers

from the variation of the sentence length, for instance,

sentences and documents must be processed to be fixed

length, which breaks the semantic coherence or even clips

wrong sentences.

• Traditional text classification methods usually remove

stop-words and punctuations, for these tokens have no

useful information about semantics. But in this task, stop-

words and punctuations are indispensable, because the

position extremely influences the grammar correctness.

We have tried the Google pre-trained embedding, which

has no punctuations and degradation in performance is

over 10%.

• Comparison of results by different merge mode applying

to hidden states by bidirectional LM are shown in Table

III. Using concatenate to build the semantics coherence

matrix can give us more information generated by bidi-

rectional LM.

• Comparison of results by different parameters in LM are

shown in Table IV. We can learn that bidirectional LM

can help a lot in capture context features. We decreased

model size to 400, for 1000 hidden states show more time

consumption and less accuracy promotion.

B. Visualization and Theoretical Analysis

Now we dig into the mechanism of modeling semantic

coherence. We visualize the matrix of hidden states in the

process of inference. Thus the difference of parameters be-

tween negative and positive samples will be shown in the

visualization. In another words, if we treat the matrix of hidden

states as an image, the incoherent area will show the difference

from normal coherent sequence. As shown in Figure 5, we take
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Fig. 5: Here is the visualization to explain the mechanism of capturing
semantic coherence. As shown in this figure, inserting sentence will
take a large area of semantic incoherence in a normal sentence.
Changing the position of two words will also cause semantic in-
coherence around the position of exchanged words.

out the hidden state matrix of normal coherent text sequence

and minus the matrix of negative samples. The result proves

that our model captures the incoherent features so that it can

distinguish positive samples from negative samples effectively.

As shown in Figure 5(b), if we exchange the position of two

words in text sequence, for example, “Deep learning is a state-

of-the-art tool in natural language processing” to “processing

learning is a state-of-the-art tool in natural language Deep”,

there are two obvious incoherent intervals where the words

are exchanged. Considering such local features, we believe

that convolution filters can take full advantage of them.

It is worth mentioning that the incoherent area is an interval

rather than just a point in space, which is also shown in

Figure 5. The memory mechanism of RNNs may explain it,

that is, RNNs can store long-term dependencies. Therefore

the incoherent information will spreads along with the text

sequence but will not last too long. Next we attempt to explore

how long it could propagate that caused by the change of input

xt.

If we set Uz ,Ut,U to zero matrix, then we get the simplified

GRU as follows:

zt = σ(Wzxt)

h̃t = tanh(Wxt)

ht = (1− zt)� ht−1 + zt � h̃t

(10)

Suppose there is a change
−→
Δx of xt at time t, then we get

x′
t = xt +

−→
Δx. So there is a change on hidden state Δht =

Δzt � ht−1 + Δzt � h̃t + (zt + Δzt) � Δh̃t, where Δzt
and Δh̃t are the change of two gates, and Δht denote the

change of hidden state at time t. This change will spread by

ht+i = (1−zt+i)�ht+i−1+zt+i� ˜ht+i, i ∈ N+. We denote εt
as one element in Δht. As shown in Fig 5, εt propagating with

sequence causes the shadow area, whose gray shade measures

the scale of semantic change. We assume 1 − zt = p, p < 1
and zt+i� ˜ht+i = q , thus εt+i = εtp

i−1. In another words, it

decays p at each time step, εt+i will vanish with iteration. How

long εt+i will converge to zero is determined by p. Actually,

p changes with the iteration, for forget gates can learn how

much to forget automatically and adaptively. We can see in

Fig 5, εt propagation will last a few time steps in the case of

exchanging two words.

V. RELATED WORK

The existing work of detecting machine generated text can

be classified into two categories. One mainly bases on sta-

tistical machine learning method using hand-crafted features.

Lavoie [22] propose several features like word repetition score

and reference score to detect machine generated academic

papers. Tien and Labbé [36].Amancio [1] present a com-

plex network(CN) to recognize SCIgen generated documents.

Nguyen and Labbé [27] use distance/similarity measurement

to detect automatic generated text. All methods above need

hand-crafted features on different data.

Recently, motivated by the success of deep learning in many

domains, several deep learning methods for text classification

have been presented. Kalchbrenner et al. [14] used a dynamic

CNN for sentence modeling, and show significant improve-

ments over traditional tasks such as sentiment classification.

Another novel model proposed by Kim [17] applied a much

simpler CNN using different kinds of word embedding to

sentence classification and get competitive results. Graph CNN

has also been used to handle large scale text classification

[29]. Except for CNN-based models, RNN-based models also

have excellent performance. For example, hierarchal RNN has

been proposed for long document classification [35] and later

attention mechanism [39] is also introduced to emphasize

important words and sentences. Recently Liu and Lapata

[24] proposed a method that can automatically induces rich

structural dependencies. However, all of these models aim to

model the semantics into a single vector.

Language models are important in many NLP systems,

such as statistical machine translation [19]. Language models

[4] in neural network methods are also applied in machine

translation. LMs above are usually single forward. There

are also bidirectional LMs used in machine translation [31]

and handwriting recognition [25]. Recently, how to interpret

RNN states have been attracted some researchers. Karpathy

et al. [15] use character-level language models to reveal

the existence of interpretable cells that keep track of long-

range dependencies such as line lengths, quotes and brackets.

Our work using GRU in LM shows that RNN can encode

interpretable features to capture the semantic coherence. Se-

mantic coherence modeling using CNNs [7], [37] aimed to

get a coherence score or sentence ordering between several

sentences. Here we capture the semantic coherence features

for machine generated text detection and evaluate these models

on both Chinese and English datasets.

VI. CONCLUSION

We have proposed a novel method that learns the coherence

of semantics for machine generated text detection. Gated

recurrent neural networks in Language Model are effective to

Learning Semantic Coherence for Machine Generated Spam Text Detection
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model the semantic coherence. Convolution filters are applied

to extract the features of semantic coherence from the hidden

state matrix generated by Language Model. We evaluate our

approach on machine text detection task with different datasets

and experimental results show its advantages. The mechanism

of capturing semantic coherence is further explored by both

visualization and theoretical analysis.
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