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a b s t r a c t

Automaton or table-based multi-pattern matching methods have been widely used in cloud services,
i.e., virtual Firewall service, virtual IDS service, etc. In cloud, a large scale of patterns in such services
are frequently updated causing by users’ joining or quitting and adjustment of security and management
policies. Therefore, how to quickly and accurately update the Automaton and Table becomes an important
issue. In this paper, we propose Eagle+, an incremental approach for updating the matching Automaton
and Table whilst avoiding recalculating the whole patterns after each change. In Eagle+, we attain
efficiency by computing only the latest update set of patterns when updating the Automaton and Table.
Moreover, Eagle+ achieves accurately local updating based on three atomic operations, adding, updating
and deleting, each of which modifies values on classical Aho–Corasick (AC) automaton, Set Backward
Oracle Matching (SBOM) automaton and Wu–Manber (WM) table. Compared with existing pattern
updating methods, Eagle+ reduces the computation complexity from O(n2) to O(n). The experimental
results show that Eagle+ can save nearly 72%–92% of the time consumption in updating automatons and
perform 100X faster in WM table.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Public clouds, taking advantage of cluster computing, virtual-
ization and Internet-based computingmodel, have becomeapopu-
lar processing resource formany organizations. Increasingly, cloud
technologies are being widely used in many service fields [1,2] to
offer vast amount of computation capabilities, and also to build a
service platform to accommodate a huge number of concurrent
computations for different application usages. The simultaneous
presence of a large amount of concurrent data streams and hugely
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or frequently varied computational requirements introduces sig-
nificant complexity in managing, deploying and validating dy-
namic services in the clouds.

Many cloud services, for example, virtual firewall, web server,
and intrusion detection systems [3,4] extensively employ pattern
matching methods to deal with such complexity. In these services,
new patterns are frequently added, and existing patterns are con-
stantly modified, according to the needs of dynamic services in the
cloud environment, for example, dynamic security filtering [5,6].
In practice, a frequently arise situation is to perform updates for
multi-pattern matching, where multiple updates of patterns are
concurrently performed in one or more cloud services. Thus, the
efficiency of updating pattern set becomes critical for multi-
pattern matching in cloud services.

In clouds, there exist two classic approaches for multi-pattern
matching, automaton or table based methods [7]. AC and SBOM
are two typical automaton methods, where the former is based on
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prefix searching, whilst the latter is based on factor searching.WM,
a typical table-basedmulti-patternmatchingmethod, uses charac-
ter block-based suffix searching [8,9]. All of the supply links, σ -shifts
and values go in global transversal order through the hierarchical
tree to build matching automaton or character block list to build
matching table. It is, therefore, computational expensive to per-
form localized modifications of pattern set as this process requires
global compilation and matching engine generated repeatedly.

Existing automaton or table-based multi-pattern matching
methods are both too (computationally) expensive to be employed
by dynamic clouds that involve frequently updated services for
massively online tasks. More specifically, the classic automaton
and table updating methods have two problems. (1) It can take a
long time to recompile large pattern set, in the order of minutes
for tens of hundreds of policies, when the environment changes.
Thus, during the process, the cloud service cannot response to
new requests, incurring a significantly degraded level of service.
(2) Global recompilation needed for automaton or table-based
methods consumes a huge amount of precious online computa-
tional resources of the cloud. In other words, a cloud platform
needs to dedicate a large quantify of computing resources to satisfy
the online computational requirements incurred by the expensive
pattern matching process, which would subsequently reduce the
availability and reliability of the cloud service. Thus, improving
the efficiency of real-time multi-pattern matching and updating
mechanisms becomes an important pathway to improve the ser-
vice quality of cloud services.

Contributions. We propose a fast incremental approach,
Eagle+, to provide a real-time updating in multi-patternmatching
automaton and table for massively online users-oriented cloud
services.

(1) Eagle+ satisfies a great number of online users’ pattern up-
dating needs and meets the multi-pattern matching requirements
of cloud services. It is an incremental approach that is able to
perform online updates on partial states, links and values in both
automaton and table.

(2) Eagle+ adds, deletes or updates batches of patterns and
compiles them in fast incremental operations, namely adding,
updating and deleting, using depth-first traversal in Tries which
are used in AC automaton, Factor Oracle structure-based SBOM
automaton and List which is adopted in WM table. Moreover, the
supplying connection information contained in AC automaton, σ -
shift jump information contained in SBOM automaton and the
minimumsliding step information contained inWMtable, are used
together to incrementally update pattern set.

(3) Eagle+ is not only applicable for AC automaton and SBOM
automaton [10] but also for WM table. For all cases, a detailed
theoretical analysis shows that Eagle+ can reduce the computa-
tional complexity of updating patterns from O(n2) to O(n). Further-
more, our experimental results demonstrate that Eagle+decreases
nearly 72%–92% of time consumption in AC automaton and SBOM
automaton and performs 100X faster in WM table. Thus, Eagle+ is
the first incremental updating approach for automaton and table,
whilst enabling the throughput rate of high-speed and highly-
concurrent cloud services that serve massive number of online
users.

Our paper contains four further sections. Section 2 surveys
related work on multi-pattern matching algorithms and compi-
lation methods used by automaton and table-based approaches.
Section 3 explains the concept and its operations implemented for
updating automaton and table. Section 4 gives a practical case to
demonstrate the process about updating pattern set in Eagle+. Sec-
tion 5 presents the experimental results, analysis, and discussion
with existing global and local updating matching approaches and
Eagle+.

2. Related Work

In multi-pattern matching based cloud services [11,12], string
patterns are compiled in automaton or table. Generally, for AC
automaton and SBOM automaton, complicated status nodes and
supply links are built in different types of prefix or factor oracle
searching mechanisms [13]. And WM table, the characters block-
based efficient suffix searching algorithm is an extended version
of BM (Boyer–Moore) under multi-pattern matching. Here we
present the current works of multi-pattern matching and compil-
ing approaches in pattern matching-based cloud services.

2.1. Current status of multi-pattern matching algorithms

ACautomaton and SBOMautomaton are two classic automaton-
based multi-pattern matching algorithms. AC automaton is the
extension of prefix searching KMP algorithm [14] under multi-
pattern matching, which constructs a special automaton based on
patterns. The algorithmgoes in traversal order through Trie to build
supply links SAC [15]. So the time complexity of establishing an AC
automaton is O(mn), in which n is the quantity of patterns and m
is the average length of patterns [13].

SBOM algorithm employs the Factor Oracle-based automaton.
Factor Oracle-based automaton builds Factor Oracle from the re-
versed sub-string of the first lmin length of characters for each
pattern, in which lmin refers to the minimal length of patterns, and,
for each node, calculates the existing σ -shift path and current state
along the path [16]. So the time complexity of establishing SBOM
automaton is O(nlmin) in which n is the quantity of patterns and
lmin is the minimal length of patterns [17].

WM table, a characters block-based suffix searching algorithm,
is an extended version of BM under multi-pattern matching com-
puting. There is a special jumping sliding window, whose length is
the same as the minimum length of pattern. In the processioning,
it needs to construct a Shift table and a Hash table with fixed block
size. Hash table stores the corresponding relationship between
end of plain pattern characters and pattern’s index, and Shift table
stores sliding step for every block of characters in slidingwindows.
The time complexity of establishing WM table is O(mn), in which
n is the quantity of patterns and m is also the average length of
patterns. In general terms, as string pattern sets change, three
algorithms, AC, SBOM andWM, need to recompile for establishing
the new automaton or table to replace the existing.

2.2. Current status of automatons and tables updating approaches

Updating string pattern set means, by the traversal order
through the Trie, rebuilding the supply paths, σ -shifts and values
for automaton and minimizing sliding windows for table. So, the
global compilation are unnecessary when patterns are constantly
changing. However, automaton and table, in cloud services, are
sophisticated to be modified from thousands to millions times
traversal order by traditional global compiling methods [18,19].

Liu-Dynamic approach [20] is a typically fast approach for
adding and deleting patterns in automaton and table, but it cannot
guaranteematching speed of recompiling automaton and table and
consumes more memory. Basically, this algorithm cannot guaran-
tee the global optimal solution for supply links, σ -shifts and sliding
steps in table value. The matching speed drops significantly in [20]
and our cloud experimental environment.

In this paper, based on the multi-pattern matching algorithms
in cloud services, we present an accurately and rapidly incremental
compiling approach to update structure and value in automaton
and table. Specially, all operations of our compiling approach are
based on the local optimal strategy, which not decrease matching
efficiency.Moreover, using thenovel operations of adding,updating
and deleting in complicated of automatons and tables, our ap-
proach shortens the time-consumption of updating.
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Fig. 1. Add, Update and Delete string pattern set into the automaton and table in a cloud.

3. Incremental updating approach for automatons and tables

Different automatons or tables have different pattern updating
approaches. For example, AC automaton adopts Trie and SBOM
automaton applies Factor Oracle structure, while WM table uses
the byte block shifting. These approaches, during the realization of
building automaton or table, calculate the global optimal solution
for all nodes which is the minimum value chosen from the new
value and previous value.

In order to achieve the incremental updating for automaton and
table, the local operations are implemented by depth-first traversal.
Such incremental updating operations executed on each slave node
in cloud, adding, updating and deleting, are self-adaptive in the
pattern set. Fig. 1 shows the process of frequently updating pattern
set including a batch of tasks from various users and environments
in cloud. Themaster node collects and sorts out the pattern set and
delivers it to each slave node. Then each slave node incremental
updates its Automaton and Table. Next, we will illustrate the real-
ization of the three kinds of operations in detail.

3.1. Notations and definitions

In this section, we illustrate the detailed notations and defini-
tions of basic concepts for multi-pattern matching and updating
approaches in automaton and table.

Basic Concepts. Given a text T = t1t2 · · · tn where tn is
extracted from a finite alphabet set Σ , multi-pattern matching
problem is to search simultaneously for a set of string pattern
P = {p1, p2, p3, . . . , pn}, where pi = pi1p

i
2p

i
3 · · · pi

mi is a string,
and pi

mi is extracted from Σ . In precise, we summarize all symbols
(functions) and their explanation as Table 1.

For AC, SBOMandWM, there are three basic searchingmethods,
given as follows. (1) Prefix searching, on the pattern set, builds
automaton A by forward matching the characters one by one
in the text T . (2) Suffix searching is implemented by backward
matching, where the position is sliding along the text T . The pos
is shifted according to next probable position of the suffix read in
P . (3) Factor Oracle searching is implemented by sliding matching
in the text T with a position, from which the backward factor,
minimal size lmin of the pattern string in P , is read. In this paper, as
traditional way, AC automation uses the prefix searching method
and SBOM automaton adopt suffix searching, while WM table
utilize Factor searching and suffix searching methods. And the

(a) AC automaton. (b) SBOM automaton.

Fig. 2. Automaton. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

incremental updating operations are brought into AC, SBOM and
WM to perform fast matching in text T .

Automatons and Tables. In this paper, automatons represent
AC and SBOM, built on P . On the one hand, AC automaton is a Trie
of P amplified ‘supply function’ SAC (). Formally, q represents a state
in Trie, and L(q) represents the label of the path from initial state
to q. The reached state means that automaton reads the longest
suffix of L(q) which is also a prefix of some pi∈P . A supply link
goes from each state q to SAC (q), and the supply path is a chain of
supply links. On the other hand, our approach creates, in addition,
a transition labeled by character σ from each state on the supply
path to the state where original transitions occur. The states of
the factor oracle are of the Trie including the initial state l and the
terminal states. Our approach calculates outgoing connections by
formula δ(Current, σ ) = δ(SAC (Current), σ ) for each new σ . Hence,
the factor oracle has atmost |P|+1 states, including the initial state.
As before, Trie is a prefix tree used to store dynamic or associative
strings, and Factor Oracle is a finite state automaton to search sub-
strings in a body of text.

Fig. 2(a) shows the AC automaton contained pattern strings
{she, his, her}. Our approach calculates ‘supply function’ for every
node in Trie. For example, N6 points to node N5 for the longest
prefix sub-string ‘he’. The dashed links represent the state-to-
state supply function. It is same for other nodes pointing to corre-
sponding longest prefix sub-string nodes. Note that the red nodes
represent final matching status.

The SBOM automaton shown in Fig. 2(b) implies the suffix Trie
of multi-pattern set {app, ape, pla}. The multi-pattern may be
the reverse set of {app, aperitif, plain}, or {app, apec, play} can
also be. The state goes down the supply links from the parent
of current state for an outgoing transition labeled with the same



278 J. Li et al. / Future Generation Computer Systems 80 (2018) 275–285

Table 1
Symbol notations.

Symbol Explanation

σ The current character in text∑
The alphabet set

|P| The sum of lengths of the string in P , formally
|P| =

∑r
i=1|P

i
| =

∑r
i=1|m

i
|

lmin The minimum length of pattern in P
lmax The maximum length of pattern in P
B The size of block for splitting pattern in P , formally log|

∑
|(2 ∗ lmin ∗ r)

L(σ ) The longest suffix of current node in automaton
SAC Supply function
Ni The ith node
Reverse() Reverse string pattern, formally P rv

= (P1)rv, . . . , (P r )rv
Shift Shift steps, formally s[qposk] = min(max(d1[q], d3[tpos−kk]), d2[q])

Table 2
Shift table and Hash table in WM.

SHIFT HASH

Index Value Index Value

H(ll) 1 H(ll)
H(no) 3 H(no)
H(ou) 3 H(ou)
H(an) 4 H(an)
H(un) 1 H(un)
H(nc) 1 H(nc)
H(ua) 0 H(ua) 2(annual)
H(al) 0 H(al) 2(annual)
H(ly) 0 H(ly) 1(annually)
H(nn) 2 H(nn)
H(nu) 2 H(nu)
H(ce) 0 H(ce) 3(announce)
H(∗) 5 H(∗)

character as between current and its parent, creating it if it does not
exist. For example, N3 points to N9 for the same suffix sub-string
‘p’. Similarly, red nodes represent terminal nodes, and it matches
the remained suffix to determine results. Dash lines are σ -shift
pointing to shift nodes for efficient matching.

In addition,WM table is another important structure formatch-
ing pattern. WM table consists of Hash table and Shift table. Shift
table stores the minimum of the shifts of the blocks Bl such that
h1(Bl). Precisely, our approach initializes Shift table by hashing
lmin −B+1 characters in blocks.When the value in shift is zero, the
string on the left of the search position may be one pattern string.
So, we use a new hash table HASH to store index of pattern set.
In Table 2, the pattern set is {announce, annual, annually} and
the size of best matching block is 2. Please refer to [21] for more
information about building AC automaton and SBOM automaton,
and WM table.

3.2. Adding operation in automaton or table

The procession of adding string pattern into automaton and
table by incremental operations is involved in the operation,
adding , in Algorithm 1, which includes initialization, inserting and
depth-first traversal constructing for automaton and table.

Initial Steps (Line 2–3). The newpatternwill be prefixmatched
with Trie in AC automaton or Factor searching with reversed sub-
strings in SBOM automaton or, in WM tables, spited into character
blocks by the sliding window whose size is log|

∑
|(2 × lmin × r)

where |
∑

| is the size of the alphabet set. So, the processed pattern
set are located and added into Trie of AC automaton and SBOM
automaton, named Branches or inserted into table, named Blocks.
Such as, adding new pattern ‘Durian’, when the common sub-
string is ‘Dur’ with automaton, the Blocks = ‘ian’. In WM tables,
the Blocks= {ri, ia, an}, when the size of sliding window uses the
default settings 2. In the process, the key operation is matching,

whose time complexity is O(n). Thus, the time complexity of this
step is O(n).

Determine the added agile (Line 4–13). To perform a depth-
first traversal for building new supply paths, σ -shifts and values, we
need to firstly retrieve Branches or Blocks in existing trie and table
rather than doing a transversal order from root node. For any node
v(v ∈ Branches or v ∈ Blocks), Pd

v denotes the depth-first traversal
optimal solution, and P l

v denotes thetransversal order’s. The final
result Pd

v and P l
v depend on current value of nodes in Trie or Table,

so the hypothesis that Pd
v is equal to P l

v for some optimal solutions,
is tenable. For thedepth-first searching, the total time complexity of
this steps is O(n), where n refers the length of Branches or Blocks.

3.3. Deleting operation in automaton or table

The procession of deleting string pattern from automaton or
table by the incremental operation is also involved in initialization
and deleting in Algorithm 2. Here, we will minutely illustrate the
realization of deleting operation in automaton or table.

Determine the deleted agile (Line 4–13). Firstly, all non-
shared nodes and supplying connections that point to deleted
nodes are deleted in Trie. Secondly, the exclusive blocks, such as
key and value, are removed from Shift table andHash table. Finally,
all nodes that point to deleted nodes will not be used for matching.
The Algorithm 2 describes deleting realization for deleting pattern
from automaton and table. Such as, deleting pattern ‘Durian’ from
automaton or table, when the unique sub-string is ‘ian’. So we
firstly delete all supplying connections that point to nodes ‘i’, ‘a’
and ‘n’ in automaton. Then, our approach deletes all supplying
connections that point from these located and deleted nodes. In
WM table, the unique Blocks = {ri, ia, an}, when the size of
slidingwindowuses the default settings 2.We can delete all Blocks
values in Shift table and corresponding index value ‘Durian’ in
Hash table. And then match and limited depth compute {Du,ur}
in remaining pattern. Lastly, we choose the minimum sliding step
in current pattern set for character blocks {Du,ur}. Thus, the total
time complexity of this steps for freeing illegal pointers and nodes
is also O(n).

3.4. Updating operation in automaton or table

Both adding and deleting string pattern in automaton and table
are involved in the operation updating in Algorithm 3. In addition,
we can decompose the updating string pattern into local deleting
and adding pattern in Algorithms 1 and 2.

Determine the updated agile (Line 2–11). On the one hand,
the algorithm finds the optimal solution and new node is pointed
to new Branches or Blocks during the process of adding pattern.



J. Li et al. / Future Generation Computer Systems 80 (2018) 275–285 279

On the other hand, we rebuild connection among nodes affected
by deleting operations in automaton, or local calculate Shift in
table. Such as, new supply paths pointing to ‘r’, ‘i’ and ‘a’ nodes or
deleted supply paths pointing to these nodes need to be updated
in automaton. Thus, the time complexity of this step is O(n). In
WM table, the realization of updating the best slide step from
updated shift value and limited depth decomposing shift value is
the summarization of Algorithms 1 and 2. The time complexity
of limited depth decomposed is O(n). For example, the deleted

pattern contains character block {ur}. Our approach searches for
pattern {ur} and calculates shift value in current matched pattern.

Reducing Order Mechanism. In adding, updating and deleting
operations, the time-consumption is O(n) and all operations are
chosen separately. Thus, the time-consumption of Eagle+ is O(n).
Comparing Eagle+ with traditional global updating approaches, it
reduces the computational complexity of updating automaton and
table from O(n2) to O(n). In Table 3, n represents the quantity of
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Table 3
Time complexity of Eagle+ and global approach.

Items AC SBOM WM

Global approach O(nm) O(nl) O(nl)
Eagle+ approach O(n) O(n) O(n)

patterns, and m represents the average length of patterns and l
represents the minimal length of patterns.

4. A case study of updating in automaton and table

In this section, we present a detailed example about updating
operations, adding, deleting and updating in AC automaton, SBOM
automaton and WM table individually.

4.1. Updating pattern in AC automaton

As is shown in Fig. 3(a), AC automaton contains patterns
{annual, annually, announce}. The red nodes represent terminal
status, whichmean a successfullymatching process. The dash lines
are supply links meaning where the current node goes to when
matching failures.

4.1.1. Adding pattern into AC automaton
As is shown in Fig. 3(b), the new pattern, like {nonce}, will be

added into AC automaton. Firstly, our approach compares {nonce}
with existing pattern and locates the last prefix matched node in
Trie, which is null in current case. Null common prefix means root
N0, as a new node i.e. {nonce}. Then, the remaining characters of
the new pattern are added into Trie beginning of the shared N0.
Next, each supply path of nodes, ‘n’, ‘o’, ‘n’, ‘c’ and ‘e’, is calculated
through depth-first traversal. For example, nodes N14, N15, N17 and
N18 point to the root node, and node N16 points to node N14, as
shown in Fig. 3(b). Finally, the existence of some new supply paths
between old nodes and new nodes is checked, and the deeper path
is chosen from old supply link and new supply link that points to
new nodes. The time complexity of limited depth-first traversal is
O(n). For example, there are old supply links from nodes N2, N3, N5

and N9 to node N0 and new supply links from nodes N2, N3, N5 and
N9 to nodes N14 and N15, so our approach chooses the latter links
as the optimal path. All optimal supply paths and new-nodes are
recorded into automaton.

4.1.2. Deleting pattern from AC automaton
When our approach needs to delete pattern {nonce}, the pro-

cess of deleting is shown in Fig. 3(c). Firstly, our approach locates
non-shared nodes corresponding to {nonce} in Trie. Then, all nodes
following the shared root (e.g., node N14, N15, N16 and N17) are
deleted, and the supply links corresponding deleted nodes are
removed. Lastly, our approach recalculates the supply links that
point from remaining nodes to deleted nodes, and stores links into
automaton. For example, nodes N2, N3, N5 and N9 point to the
deleted nodes, N14 and N15, and the latest supply link pointing to
node N0 are updated, as shown by green dash lines.

4.2. Updating pattern in SBOM automaton

The original SBOM automaton is shown in Fig. 4(a), which rep-
resents the Factor Oracle structure of patterns {annually, annual
announce}. The reverse string of the first lmin elements of patterns
are {launna, nuonna}, in which lmin is equal to 6 referring to the
shortest length of pattern {annual}. Red nodes mean terminal
nodes, and the dash lines are the σ -shift from each node on the
supply path to next node.

4.2.1. Adding pattern into SBOM automaton
The new prefixal {snnosc} patterns will be added into SBOM

automaton. Firstly, our approach reverses the pattern string and
truncates the first lmin characters which are described as {csonns}
shown in Fig. 4(b). Secondly, our approach locates the shared root
from the root node, and adds ‘c’, ‘s’, ‘o’, ‘n’, ‘n’ and ‘s’ nodes into the
automaton. Then the σ−shift for new added nodes is calculated by
depth-first traversal. For example, the σ -shift of node N14 points to
nodeN1. Finally, the existence of some new optimal paths between
old nodes and new nodes is checked. For example, there are new
supply links from nodes N2 and N10 to node N18, so we choose the
latter link as the optimal path. All optimal supply paths and new-
nodes are recorded into Factor Oracle structure automaton.
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(a) Original AC automaton. (b) Add pattern ‘‘nonce’’ into AC automaton. (c) Delete pattern ‘‘nonce’’ from AC automaton.

Fig. 3. Update pattern in AC automaton.

(a) Original SBOM automaton. (b) Add prefixal ‘‘snnosc’’ into SBOM automaton. (c) Delete pattern ‘‘nonce’’ fromSBOMautomaton.

Fig. 4. Update pattern in SBOM automaton.

Table 4
Original WM Shift table and Hash table.

SHIFT HASH

Index Value Index Value

· · · 2 · · ·

H(sh) 1 H(sh)
· · · 2 · · ·

H(he) 0 H(he) 1(she)
H(hi) 1 H(hi) 5(shi)
H(er) 0 H(er) 2(hers)
· · · 2 · · · · · ·

H(ki) 1 H(ki) · · ·

H(is) 0 H(is) 3(his)4(kiss)
· · · 2 · · · · · ·

· · · 1 · · · · · ·

Table 5
Added WM Shift table and Hash table.

4.2.2. Deleting pattern from SBOM automaton
The original patterns are represented as {announce, an-

nual,annually, snnosc}. Two patterns, {annual}and {annually},
will be deleted. Firstly, we reverse pattern string and truncate
the first lmin elements, which is {lauonna}. Finally, our approach
locates the shared root (node N2) and deletes corresponding nodes
following the shared root, such as node N2, N4, N6, N8, N10 and
N12, and all the related σ−shift are drawn by red lines. Then, the
new target nodes for σ -shift that point to the deleted nodes are
recalculated in automaton. For example, nodes N16 and N17 point
to nodes N9 and N11, as shown in Fig. 4(c).

4.3. Updating pattern in WM table

Table 4 records the original WM shift table and Hash table,
which contains patterns {she, hers, his, kiss}. While the size of
block is set to 2 in current scenario, the bestmatchingwill perform.
The Hash table lists the corresponding relation of the last block
of characters and indexes value of patterns. And the shift table
stores the important moving steps for every block during the pro-
cess of character matching. H is a mapping function representing
moving steps and indexes relationship in SHIFT table and HASH
table.

4.3.1. Adding pattern into WM table
The new patterns {shi, niss} will be added into WM table.

Firstly, our approach adds the exclusive last block of characters into
hash table and indexes value i.e. {(H (hi), 5), (H (is), 6)}, as is shown
in Table 5. Then, the moving steps for new block of characters
i.e. {(H (ni), 1)} are added into table, and the shift table is updated
byminimum newmoving step i.e. from {(H (hi), 1)} to {(H (hi), 0)}.
The values of hash table and shift table are the samewith calculated
by global compiling.

4.3.2. Deleting pattern from WM table
Table 6 represents the process of deleting patterns {niss} from

{she, hers, his, kiss, has, niss}. Since WM tables have some same
characters on different patterns, our approach just traverses seg-
mented bytes and search minimum shift value from remaining
patterns. Firstly, our approach removes the deleted pattern’s value
from hash table. For example, the pattern {H(is), niss} will be
removed from Hash table. The deleted or updated index and value
set in Shift table cannot be removed by only character matching
with fixed block. Lastly, the approach traverse remained patterns,
segmented characters by deleted patterns, with limited depth, and
choose a minimum shift value. If the minimum shift equals 0, then
remove same with current’s index and value from Hash table, as
shown in Table 6 with red bold style.

5. Experiments and results

In this section, we evaluate the performance of Eagle+ ap-
proach via simulating multi-tenant controlled cloud matching
services.
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Table 6
Deleted WM Shift table and Hash table.

Experimental Setup. In order to verify the validity of accu-
rately incremental updating in Eagle+ via reducing many–many
backtracking to a limited depth of one-many and many-one back-
tracking, our approach frequently adds or deletes batch of patterns
into or from automaton and table. Thus, Eagle+ is applied to cloud
gateway device and open network intrusion detection system of a
multi-user and multi-services oriented cloud platform. Core hard-
ware configuration includes Intel Xeon E5-240 1.9 GHz CPU, 64 GB
DDR3 memory, 10 Gbit network card in Mid-range firewall, cloud
gateway and cloud engine switch. And the main programming
language is C++.

According to the discussion in [22–24], Eagle+, in the process
of incremental building automaton, preserves consistency as the
level order traversal based on all data. Therefore, we only consider
two benchmark, speed and acceleration.

Experimental Data Set. We choose two different types of ex-
perimental data set for simulating cloud security services. One data
set is a flooded streaming captured in network and mixes with a
variety of harmful string traffic, while its maximal peaking is up
to 128 Gbps in hybrid cloud platform. The other data set consists
by the rules that contain patterns, e.g., Snort and ModSecurity,
URLs of phishing websites, harmful porn websites. However, the
requirements being URLs of phishing websites and harmful porn
websites vary greatly to 10000 different simulate cloud-users.

Simulated user-behavior about adding, deleting, updating
harmful patterns is evenly distribution, and is linearly dependent
with users-flow. In cloud security services, the maximum parallel
of filter engine increased by peak flow is up to 100. Tables 7–9
record the time consumption of the Eagle+, Liu-Dynamic approach

and global updating approach to add or delete patterns in AC
automaton, SBOM automaton and WM table.

Comparison in AC Automaton. Table 7 shows the time con-
suming of random adding and deleting 20 types of patterns under
various quantity in AC automaton. Comparing the Eagle+ with
Global updating approach and Liu-Dynamic approach under the
same quantity of patterns, the time consuming of all approaches
increases when the quantity of patterns is rising. However, the
time consuming of global updating approach is farmore than other
approaches. In addition, the time consuming of Liu-Dynamic is a
little less than our approach, even though the complexity of Liu-
Dynamic and Eagle+ is O(n).

Fig. 5(a) shows the matching speed of different approaches
under various quantity of patterns in AC automaton. Note that
Y -axis describes the scale of log. Obviously, Eagle+ and global
approach keep a stable matching speed, but the Liu-dynamic ap-
proach cannot guarantee the matching speed when the quantity
of patterns increases. And both global approach and Liu-dynamic
approach are not suitable for matching vast amount of patterns
which are frequently updating in cloud. For Eagle+, the experi-
mental results of speedup are shown in Fig. 5(b). When the quan-
tity of existing patterns is too less or too more, the speedup for
AC automaton is more significant. The deleting operation imple-
mented in Eagle+ can accelerate 92% of matching speed by incre-
mental learning, while the matching speed of the add operation
rises 72%.

Comparison in SBOMAutomaton. The time consuming of ran-
dom adding and deleting 20 types of patterns under various quan-
tity in SBOMautomaton is shown in Table 8. The time consumption
rises with the increase of the size of pattern string. Comparing
with AC automaton, SBOM automaton has less computational cost
because of shorter length of structure limited by lmin. However, we
can see that Liu-dynamic adding and deleting approaches consume
a lot of time.

The matching speed of different approaches under changing
pattern requirements in SBOM automaton is shown in Fig. 6(a).
Note that Y -axis also describes the scale of log. Obviously, Eagle+
and global approach keep a stable matching speed, but the Liu-
dynamic approach cannot guarantee thematching speedbecause it
is not optimization and global σ -shift affected nodes in updating.
Both global approach and Liu-dynamic approach are not suitable
for matching vast amount of patterns with frequently updating in
cloud.

Table 7
Time consumption among the Eagle+, the global approach and Liu-Dynamic approach in AC automaton.

Quantity of
patterns

Global
adding approach

Liu-Dynamic
adding approach

Eagle+
adding approach

Global
deleting approach

Liu-Dynamic
deleting approach

Eagle+ deleting approach

100 0.0144 0.00058 0.001352 0.0127 0.0003036 0.002244
1000 0.12096 0.005481 0.025772 0.11563 0.0028188 0.019512

10000 1.1602 0.051632 0.28944 1.1475 0.0235383 0.14472
100000 10.89011 0.31335 1.960044 10.8486 0.1817513 1.220344

1000000 74.09892 1.470087 9.443248 74.01473 0.8337808 5.214928

Table 8
Time consumption among the Eagle+, the global approach and Liu-Dynamic approach in SBOM automaton.

Quantity of
patterns

Global adding
approach

Liu-Dynamic
adding approach

Eagle+
adding approach

Global
deleting approach

Liu-Dynamic
deleting approach

Eagle+
deleting approach

100 0.0064 0.00121 0.0051 0.000313 0.000112 0.00136
1000 0.04032 0.008699 0.03786 0.002584 0.0013488 0.009485

10000 0.43204 0.10884 0.42092 0.025057 0.007356 0.089244
100000 2.97003 0.70161 2.94639 0.158163 0.0287964 0.53176

1000000 24.69964 4.862568 24.64238 0.658248 0.5025548 2.184632
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(a) Matching speed comparison of AC automaton after global updating ap-
proach, Liu-Dynamic approach, and Eagle+.

(b) Speedup for Eagle+approach in AC automaton.

Fig. 5. Performance of AC automaton.

(a) Matching speed comparison of SBOM automaton after global updating
approach, Liu-Dynamic approach, and Eagle+.

(b) Speedup for Eagle+approach in SBOM automaton.

Fig. 6. Performance of SBOM automaton.

Fig. 6(b) shows the speedup of Eagle+ in SBOMupdating. X-axis
demonstrates the size of pattern that describes the log scale. The
speedup for SBOM automaton rises to 91% in deleting approach.
To further arises the speedup in deleting and adding approaches,
SBOM automaton employs Factor Oracle structure, while the AC
automaton is built by Trie.

Comparison in WM Tables. The time consumption of ran-
dom adding and deleting 20 types of patterns under various
quantity in WM tables is shown in Table 9. The time con-
sumption rises with the increase of the size of pattern string.
Comparing with AC automaton and SBOM automaton, WM ta-
ble has less time consumption because of smaller computa-
tional complexity in selecting smaller slide step. Both Liu-dynamic
and Eagle+ approaches have shorten updating time consump-
tion than global approach, and perform about 100X faster in
table.

From Fig. 7(a), there are significantly decrease in Liu-dynamic
add approach. Thus, Eagle+ in WM approaches can be applied
into frequently updating patterns for matching-based cloud ser-
vices. Since the difference between Eagle+ adding and deleting in
time consumption is relatively smaller than global approach, the
speedup curves of Eagle+ approaches are adjacent, as in Fig. 7(b).

Comparing with global approach, the experimental results
show that Eagle+ reduces 72%–92% time consumption in automa-
tons and performs 100X faster in matching table. Meanwhile, the
time consumption of deleting operation in our approach is even
less in AC and SBOM automatons, and the time consumption of
adding operation is less in WM tables. Not only can Eagle+ be
applied to multi-pattern matching based cloud services, also it can
be applied to other network security filtering, such as traditional

DPI/IDS/IPS/NBA, etc. Besides, the experimental results show that,
inWMalgorithm, sometimes there is no need considering the time
consumption for Eagle+. Our approach successfully reduces the
computational complexity of adding and deleting patterns from
O(n2) to O(n), and, as shown in Tables 7–9, Eagle+ maintains a
high match efficiency under a high-speed and high-volume cloud
network environment.

6. Conclusion

In this paper we present a fast incremental approach Eagle+
to automaton and table online updates for cloud services. Eagle+
performs adding, updating and deleting operations for batch of
new patterns in AC automaton and SBOM automaton and WM ta-
ble. To demonstrate the effectiveness and efficiency, we performed
systematic evaluation on both updating time consumption and
matching speed. The results show that our incremental approach is
significantly faster than global updating, and performsmore stable
matching efficiency. In theory, our approach successfully reduces
the computational complexity of updating multi-pattern set from
O(n2) to O(n). The natural future work is to extend our approach to
other advanced incremental DFA and NFA [25] matching for more
widely used cloud services.

As far as we know, this paper is the second one to give a
detailed illustration on operations, adding, deleting and updating,
in automaton and table to update patterns. In [10], we only give
a general concept of updating in automaton. In the future, the
proposed approachwill be applied to somemore complex and var-
ious cloud services environment, and refine in regular expressions
matching algorithms.
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Table 9
Time consumption among the Eagle+, the global approach and Liu-Dynamic approach in WM table.

Quantity of
patterns

Global
adding approach

Liu-Dynamic
adding approach

Eagle+
adding approach

Global
deleting approach

Liu-Dynamic
deleting approach

Eagle+
deleting approach

100 0.0006 1.2×10−7 1.2×10−7 0.0005 3.2×10−8 4.8×10−7

1000 0.0063 1.76×10−7 1.7×10−7 0.0061 4.3×10−8 5.44×10−7

10000 0.0600 1.76×10−7 2.2×10−7 0.0596 1.76×10−7 8.8×10−7

100000 0.5799 2.48×10−7 3.1×10−6 0.5742 2.24×10−6 1.14×10−6

1000000 5.5443 4.86×10−7 5.4×10−5 5.5329 1.16×10−5 2.1×10−5

(a) Matching speed comparison of WM table after global updating approach,
Liu-Dynamic approach, and Eagle+.

(b) Speedup for Eagle+ in WM table.

Fig. 7. Performance of WM table.
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