
Future Generation Computer Systems 86 (2018) 1503–1512

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Incremental term representation learning for social network analysis
Hao Peng a,1, Mengjiao Bao a,1, Jianxin Li a,*, Md Zakirul Alam Bhuiyan b, Yaopeng Liu a,
Yu He a, Erica Yang c

a School of Computer Science and Engineering, Beihang University, Beijing, China
b Department of Computer and Information Sciences, Fordham University, NY, USA
c Scientific Computing Department, STFC Rutherford Appleton Laboratory, Oxfordshire, UK

h i g h l i g h t s

• An incremental matrix factorization model designed for term representation.
• An incremental term representation learning method for social network analysis.
• The model convergence is proved based on stochastic gradient method.
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a b s t r a c t

Term representation methods as computable and semantic tools have been widely applied in social
network analysis. This paper provides a new perspective that can incrementally factorize co-occurrence
matrix to query latest semantic vectors.We divide the streaming social network data into old and updated
training tasks respectively, and factorize the training objective function based on stochastic gradient
methods to update vectors.We prove that the incremental objective function is convergent. Experimental
results demonstrate that our incremental factorizing can save a substantial amount of time by speeding
up training convergence. The smaller the updated data is, the faster the update factorizing process can be,
even 30 times faster than existing methods in certain cases. To evaluate the correctness of incremental
representation, social text similarity/relatedness, linguistic tasks, network event detection, social user
multi-label classification and user clustering for social network analysis are employed as benchmarks in
this paper.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Social network analysis is the mining, measuring, and rep-
resentation of relationships and flows between people, groups,
organizations, computers, URLs, and other connected informa-
tion/knowledge entities [1,2]. In essence, social influence propa-
gation, user behavior analysis andmodeling community influence,
can be attributed to social network text and structure. Therefore,
text and structure representation learning methods [3–8], capable
to capture a variety of latent semantic features from social network
analysis scenarios s, including social text similarity/relatedness
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and word analogy [7,9,10], social event detection [11–13], infor-
mation retrieval, document classification [14–17], social network
structure analysis, user multi-label classification and user cluster-
ing tasks [5,6], have become significant tools for social network
analysis.

For most social network analysis models, an outstanding issue
remains. Despite their focus on static social co-occurrence relation-
ships, they lack the textual information related to users. There are
numerous social network applications such as social influence and
user analysis, which require incremental update of the text and
structure representation so as to keep pace with the fast evolving
in working domains. For example, the semantic distance between
‘Leonardo DiCaprio’ and ‘Kate Winslet ’2 increases after they each
produce many movies with other actors/actresses. There are two
typical representation learning methods, namely Neural-Network

2 Leonardo DiCaprio and KateWinslet were the heroes of the famous film Titanic.
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Models [6,7,9], such as Skip-gram (SG) and CBOW, and Non-
negative constraints Matrix Factorization Models (NMFMs) [3,4],
likeGloVemodel. But neither is capable for dynamic social network
analysis. This is because the latent dimension for which social
representation has is typically too big to cope with for dynamic
evolution. Furthermore, when the changes of semantic and social
network structure are relatively small compared with the existing
one, these methods are inefficient to retrain with the updated
social network data.

This paper jointly learns hybrid representation form text and
social network and incrementally learns the representation for dy-
namic social network data. In particular, the popular GloVe [3,4,18]
tool is adopted, due to its relatively high interpretability and time
efficiency than other matrix factorization models [18–20] and
Neural-NetworkModels. SG and CBOWmodels depend on compli-
cated neural network parameters,which are adverse to decompose
the objective function incrementally [8]. In our method, social
network semantic and structure representation learning share the
unique object function of GloVe. When using GloVe to generate
term vectors, there is a preprocessing step of building a global
statistical term context co-occurrence matrix [3,4,18,19,21,22].
More precisely, it uses co-occurrence counts to construct matrix
over the whole social network data, and conducts weighted least
squaresmodel [3,18,21] to train on thematrix.When the frequency
of terms is changed, term co-occurrence matrix will be updated
accordingly. To tackle this problem, we retain the dimension of
thematrix and perform incremental iterations on the added values
between old and new matrices. When updating vectors for the
raised weighting function, we follow the original matrix factor-
ization algorithms in GloVe based on stochastic gradient descent
method. When updating the vectors for the reduced weighting
function, stochastic gradient ascent is used to modify changes. In
this way, only the second incremental iteration is performedwhile
all other vectors remain identical to those trained based on the
old data. Since the updating process is independent of all bias
parameters and semantic term vectors, the parallel incremental
term representation method based on GloVe has been successfully
developed. Our system is publicly available at https://github.com/
RingBDStack/Incremental-GloVe.

Contributions. To solve this complex problem,we design an in-
cremental matrix factorization model for term co-occurrence ma-
trix to provide evolving representation for social network analysis.
Specifically, we make the following contributions in this paper:

(1) We propose a novel incremental model, which is based on
matrix factorization method, to satisfy the analysis requirements
for dynamic social network. The model achieves precisely decom-
posing renewal objective function for feature embeddings.

(2)We also put forward an incremental algorithm to realize the
term representation, and prove the convergent of the algorithm
based on stochastic gradient method. Not only the weight func-
tion enlarges with the updated social network streaming, but all
parameters can be inherited.

(3) We conduct extensive experiments on social network data
representing that incremental term representation learningmodel,
for updating features, obtains great acceleration. The smaller the
updated social network data is, the faster the update training
process can be, even 30 times faster than before in certain cases.

Experimental results show that we have achieved almost the
same term embeddings as fully re-trained GloVe in different
benchmark tasks. In order to demonstrate the correctness of this
model, we examined both individual vectors’ cosine similarity and
downstream society network applications, such as word similar-
ity/relatedness, linguistic tasks and social event detection for word
representations, and user multi-label classification and comple-
mentary visualized social clustering tasks for user representations.

In addition, we proved that the incremental objective function has
the characteristic of convex optimization in convergence analysis.

Our paper contains four further sections. Section 2 surveys
related work on term representation learning and incremental
learning used in social network analysis. Section 3 investigates the
background of matrix factorization based GloVe model. Section 4
explains the principle of incremental GloVe model and conver-
gence analysis. Section 5 presents the experimental results, analy-
sis, and discussion with existing global and incremental models.

2. Related work

In this paper, we consider the problem of training social net-
work term representation based on new data incrementally. In
particular, the popular unsupervised matrix factorization GloVe
model is adopted due to its interpretable and time efficiency,
and quality performance to other representation learning models
[4–7,9,23]. To handle term evolution, we explain the principle of
incremental learning problem [8,24–28].

Representation learning. In general, representation learn-
ing models adopt two typical unsupervised learning techniques,
namely Neural Network Language Models [6,7,9] and Non-
negative Constraints Matrix Factorization Models [3,4,18–20], so
as to speed up the process of feature learning and querying. Hi-
erarchical softmax was first proposed by Mnih and Hinton [10]
where a hierarchical tree is constructed to index all the words in a
corpus as leaves, while negative sampling is developed based on
noise contrastive estimation [21,29], and randomly samples the
words not in the context to distinguish the observed data from
the artificially generated random noise. It is empirically shown
that hierarchical softmax performs better in the case of infrequent
words while negative sampling performs better in case of frequent
words [7,9]. Negative sampling uses random sampling to sample
the non-context words, which is more likely to emphasize the
frequent words [7,9]. The Non-negative Constraints Matrix Factor-
ization Models for representing learning like GloVe, via stochastic
gradient methods, factorizes the original matrix for learning ef-
fective representation that outperforms other models for text and
network structure.

Incremental learning. Incremental learning is amachine learn-
ing paradigm where the learning process takes place whenever
newexample(s) emerge and adjustswhat has been learned accord-
ing to the example(s) [8,24,25,30]. The most prominent difference
between incremental learning and traditional machine learning
is that the former does not assume the availability of a sufficient
training set before the learning process, but the training examples
appear over time [24–26]. In fact, the desirable way to cope with
such situations is to enable the object function to learn incre-
mentally through updating the current model in accordance with
the newly arriving data. Incremental Matrix Factorization models,
such as incremental Singular Value Decomposition (ISVD) [28],
incremental Regularized Matrix Factorization (IRMF) [27] have
significant improved accuracy and scalability in online recom-
mendation system. Compared with existing incremental matrix
factorization methods [28], we also take into consideration the
error boundedness analysis and the convergence of incremental
objection function in the weighted least squares regression based
matrix factorization model, GloVe, for scalability and robustness.

3. Background

This section introduces the background of the GloVe model
based on factorizing the term co-occurrence matrix. It is supposed
that the term co-occurrence matrix has been constructed from a
given social network task data setW , where all unique terms inW
have unigram and uniform distributions.

https://github.com/RingBDStack/Incremental-GloVe
https://github.com/RingBDStack/Incremental-GloVe
https://github.com/RingBDStack/Incremental-GloVe
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3.1. The GloVe model

In the GloVe model, given the term co-occurrence matrix X
constructed by task data W , the training objective is to minimize
the average log-likelihood function.

J =

V∑
i,j=1

f0(Xij)(W T
i W̃j + bi + b̃j − log(Xij))2. (1)

Where Xij is the number of co-occurrences between termwi andwj,
V as the size of trainingmatrix built byW .W T

i and W̃j are semantic
vectors, bi and b̃j are bias vectors related to term and context re-
spectively. And f0 is a down-weighting rare co-occurrence function
[3] whose formalization is

f0(x) =

{
(x/xmax)α, x < xmax
1, otherwise. (2)

The performance of the model hardly depends on the cutoff,
which is fixed according to artificial experience of xmax for all ex-
periments. Moreover, when α = 3/4 showsmodest improvement,
it is the same coefficient with NNLMs [4–6,9,23]. The weighting
function obey the following properties:

• f0(0) = 0. Weighting function is a continuous function, so it
vanishes as x → 0 fast enough that the lim xx→0f0(0)log2x is
finite.

• Weighting function will non-decreasing so that rare co-
occurrences will not be over-weighted.

• Weighting function will be relatively small for large values
of x, so that frequent co-occurrences are not over-weighted.
So when x exceed the threshold xmax, weighting function
f0(x) will be the upper bound 1.

Using stochastic gradient descent, the bias vectors bi and b̃j, as
well as term vectors Wi and W̃j in the context can be updated as
follows:

W T
i := W T

i − ηf (Xij)(W T
i · W̃j + bi + b̃j − log Xij)W̃j

W̃j := W̃j − ηf (Xij)(W T
i · W̃j + bi + b̃j − log Xij)W T

i

bi := bi − ηf (Xij)(W T
i · W̃j + bi + b̃j − log Xij)

b̃j := b̃j − ηf (Xij)(W T
i · W̃j + bi + b̃j − log Xij).

(3)

Where η is a degenerative learning rate.

3.2. Learning rate

The learning rate η is an important parameter of stochastic
gradient iteration [31]. In the GloVe model, an adaptive rate using
AdaGrad [32,33] is set to be:

∆ητ = −
η√∑t

τ=1 g2
τ + ϵ

. (4)

Where η is the initial learning rate, and gτ is the gradient in τ

round of iteration. In order to avoid the circumstance where the
denominator value is zero, ϵ is initialized to be a very small positive
number. The learning rate is governed by the accumulation of
gradients

∑t
τ=1gτ , which controls the rate to decrease ητ after a

certain number of iterations, e.g., updating ητ after every iteration.
In GloVe, a minimum value ηmin is also set to enforce the update
vectors based on the gradients.

4. Incremental learning model

It can be learned from the above sections that learning term
vectors involve not only the term vectors themselves, but also

the bias vectors, which rely on the decomposition of the term
co-occurrence matrix. When new data is added to the old one, it
is necessary the re-build the decomposition matrix based on the
combined data, as shown in Fig. 1. Term co-occurrence matrix is
sensitive to the term frequency’s distribution, and the increased
data will affect the determination of xmax. Therefore, the change in
matrix may influence the vector representations of both term and
bias. We decompose the objective function into an old matrix and
an incremental matrix, then distinguish the update between parts
from old and new social network data.

4.1. Notations and definitions

In this section, we illustrate the detailed notations and defini-
tions of basic concepts for incremental decomposition of term co-
occurrence matrix for vector representations.

Basic Concepts.Given an original term co-occurrencematrixX
and an objective function J , wheref0(x) is the weighting function
and xmax represents maximum threshold in W . More importantly,
all term representation vectors and bias vectors are W T

i , W̃j, bi, b̃j.
The incremental matrix factorization problem is to re-build re-
newed term co-occurrence matrix, and retain all machine learning
parameters for iterative training. To be more precise, all symbols
(functions) and explanations are summarized in Table 1.

4.2. Matrix initialization and inheritance

Suppose we have old data W and new data W
′

= W ∪ ∆W .
We can then build the term co-occurrence matrices M and M

′

respectively. We fix the size of term co-occurrence matrix by V ,
and initialize its value to zero. Concerning the matrix’s value, if
the word has not been observed in corpus, it is simply initialized
to zero. When increasing data, new matrix’s value with Xij′ =

Xij + ∆Xij, i, j = 1 · · · V will be formalized. If the term is new,
then it will be randomly initialized as a random vector:

W
′

i =

{
Wi, wi ∈ W
random, wi ̸∈ W,

(5)

whereWi is the vector of term wi for old and newmatrices respec-
tively. Similarly, new W̃j, bi, b̃j vectors and bias parameters are also
initialized as random values.

4.3. Model updates

Given the term vectors and bias parameters by comparing old
and new data, we also decompose the log-likelihood functions
for GloVe models. For GloVe model, we consider to factorize log-
likelihood function by aggregating the cost term f0(Xij)(W T

i W̃
+

j bi +
b̃j − log(Xij))2 in Eq. (1).

J
′

=

V∑
i,j=1

f1(Xij + ∆Xij)(W ′T
i W̃ ′

j + bi + b̃j − log(Xij + ∆Xij))2. (6)

Here we first split the weighting function by f1(Xij + ∆Xij) =

f0(Xij) + h̄, we assume that the term distribution will not mutate,
so h̄ = (x

′

/xmax)3/4 is a small variation. As to the words inW , it will
be factorized based on the common iterative function:

J
′

= J +

V∑
i,j=1

f0(Xij)(L2(Xij) − 2ṀL(Xij)) +

V∑
i,j=1

h̄(M − L(Xij))2 (7)

whereM = W ′T
i W̃ ′

j +bi+ b̃j−log(Xij) and L(Xij) = log(1+∆Xij/Xij).
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Fig. 1. Illustration of incremental term representation learning in social network data.

Table 1
Symbol notations.

Symbol Explanation

W
′

The renewed social network data
∆W The incremental social network data
Xij The renewed term wi and wj co-occurrence matrix value
∆Xij The incremental term wi and wj co-occurrence matrix value
Wi ’ The renewed term wi representation vectors
W

′

j The renewed term wj representation vectors
bi The renewed bias of term parameter of wi

b
′

j The renewed bias of term parameter of wj

J
′

The renewed object function in social network data W
′

x
′

max The renewed maximum threshold
f1(Xij

′

) The renewed weighting function of Xij in co-occurrence matrix value

To train a new set of term vectors, it is necessary to re-scan and
re-train thewhole dataW

′

= W∪∆W basedon stochastic gradient
descent in the first place. Given the above factorization analysis
of the objective function, it can be inferred that the following
approach can be applied to the old dataW in order to save training
time. Our goal is to find a new set of (local) optimal term vectors
Wi and bias parameters bi to approximate the re-training results.
We first assume that all term vectorsWi are already (local) optimal
and can thus further calibrate them. Then stochastic gradient based
optimization based onM and∆M respectively is performed. Dur-
ing the training of the incremental matrix∆M, all vectors and bias
parameters can be updated according to the following formulas:

W ′T
i := W ′T

i − η
′

f (Xij)MW̃ ′

j + η
′

f (Xij)L(Xij)W̃ ′

j

− η
′

h̄(Xij − L(Xij))W̃ ′

j

W̃ ′

j := W̃ ′

j − η
′

f (Xij)MW ′T
i + η

′

f (Xij)L(Xij)W ′T
i

− η
′

h̄(Xij − L(Xij))W ′T
i

b
′

i := b
′

i − η
′

f (Xij)M + η
′

f (Xij)L(Xij) − η
′

h̄(Xij − L(Xij))

b̃′

j := b̃′

j − η
′

f (Xij)M + η
′

f (Xij)L(Xij) − η
′

h̄(Xij − L(Xij))

. (8)

where η
′

is a new incremental degenerative learning rate.
In increment training, the following iterative formula for term

vectors and bias parameters is performed.

W ′T
i := W T

i + η
′

(f (Xij)L(Xij) − h̄(Xij − L(Xij)))W̃ ′

j

W̃ ′

j := W̃j + η
′

(f (Xij)L(Xij) − h̄(Xij − L(Xij)))W ′T
i

b
′

i := bi + η
′

(f (Xij)L(Xij) − h̄(Xij − L(Xij)))

b̃′

j := b̃j + η
′

(f (Xij)L(Xij) − h̄(Xij − L(Xij))).

(9)

The procession of adding social network data into W′, updat-
ing term co-occurrence frequency X′ in matrix M′, and correctly

factorizing the objective function J ′ and conduct incremental iter-
ations is indicated in Algorithm 1, which includes all parameters
initialization and inheritances, as well as updating function model
and incremental parameter iterations.



H. Peng et al. / Future Generation Computer Systems 86 (2018) 1503–1512 1507

4.4. Convergence analysis

This section presents the theoretical analysis of the incremental
learning algorithm by using the GloVe model. The log-likelihood
functions in Eqs. (6) and (7) are positive. Thus, the minimizing of
objective is limited by zero. However, since the objective function
involves the dot product of term vectors and summation of bias
parameters and matrix values, it is a non-convex optimization
problem. By using an alternative optimization to alter term vectors
and bias parameters, fixing one and optimizing the other is a con-
vex problem. In this incremental decomposition, the convergence
of optimizing over the updated data ∆W is the same as it is in
the original GloVe model. When optimizing old data, we assume
term vectors are already (local) optimal, and can thus optimize
parameters over all data on this foundation. That means we have:

∇
2
W ′T

i
=

V∑
i,j=1

2f1(Xij + ∆Xi,j)(W̃ ′

j · W̃ ′T
j ) (10)

where f1 ∈ [0, 1] and W̃ ′

j · W̃ ′T
j ≥ 0 by checking the second order

derivative of the term vectors and bias parameters in incremental
GloVe model.

Comparedwith the original second order derivative over the old
data, variation of f0(Xij) by f1(Xij+∆Xij) is added. This is guaranteed
by the use of stochastic gradient descent in Eqs. (8) and (9), thus
leading the process towards another local optimum.

∇
2
W̃ ′

j
:=

V∑
i,j=1

2f1(Xij + ∆Xi,j)(W̃ ′T
i · W̃ ′

i ) (11)

∇
2
bi := ∇

2
b̃j

= 2.

Hence the ∇
2
W̃ ′

j
, ∇2

bi
and ∇

2
b̃j
have similar convergence properties.

5. Experiments

Experiments are conducted in this section to demonstrate the
effectiveness and efficiency of the incremental factorizing forword
representations and user representations in network big data anal-
ysis tasks.We first evaluate time and quality of the vectors by com-
paring global factorizationwith incremental factorization then text
and network user analysis tasks, i.e., word similarity/relatedness,
linguistic tasks, social event detection, multi-label classification
and user clustering to evaluate the term vectors.

5.1. Training time and quality

In order to build term co-occurrence matrices, streaming social
text data is extracted as the source and the data is divided into
several temporal data sets. Then we use 2 GB data set as the
initial data, which is the old one in previous sections. The 2 GB
data contains 474,746,098 tokens and 100,278 uniquewords. Next,
we select 10 KB, 100 KB, 1 MB, 10 MB, 100 MB, and 1 GB data
as new update data to compare the performances of algorithms.
We fix the size of co-occurrence matrix by 104740 × 104740,
and initialize it by zero. The number of words arising with new
updated data is shown in Fig. 2(a). In a limited range, arising words
emerge log-scale in accordance with the log-scale of incremental
streaming data. Then, we check the change of the distribution of
weight function h̄ = f1(Xij + ∆Xij) − f0(Xij) is checked. Fig. 2(b)
shows the changing rate of the distribution of weight function
h̄ that are affected by the incremental data when 2 GB data has
1 GB incremental data and xmax increases from 40 to 49. It should
be noted that x-axis represents the index of randomly sampling
words and y-axis represents h̄. The change of the distribution of
weight function shows the tendency of both ascent and descent. In

(a) The changing quantity of words affected by the incremental data.

(b) The change of weighting affected by the incremental data.

Fig. 2. Words change with incremental corpus.

addition, it is a normal phenomenon that increase and decrease in
the change of weight function are balanced.

For original global matrix factorizing, old data with new data
is combined and run by the original the GloVe model. For incre-
mental training, we use themodel trained based on the 2 GB initial
training corpus, and then run our algorithm to update the words
co-occurrence as well as the word vectors and bias parameters. All
experiments mentioned above are run with 10 CPU threads and
generate word embeddings with 300 dimensions.

Then we check the training time and speedup by using our
incremental factorizing algorithm. The results of the training time
can be seen in Fig. 3(a). It indicates that the time curve of GloVe
is linear with the training size. Since the adding of data from
10 KB to 100 MB is relatively small compared with the original
training size 2 GB, the time curve for GloVe with global training
is flat until 1 GB of additional training data is added. Furthermore,
incremental training for GloVe benefits from the algorithm and
is faster than that of the global training. Again, the scale is linear
with the number of additional updated data. The results of speedup
are shown in Fig. 3(b). It can be seen that the speedup is more
significant in the case of smaller update corpus. The GloVe model
can achieve up to 30 times speedup with this incremental training
algorithm.
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(a) Time performance by comparing global and incremental factorizing.

(b) Speedup performance by comparing global and incremental factorizing.

Fig. 3. Training performance of global and incremental training.

To further understand the speedup of increment, the cost func-
tion at each epochs between global training and incremental train-
ing is shown in Fig. 4(a) when scanning the 2 GB old data and new
increased 1 GB of data. It can be seen that the number of updates
exponentially decreases with the increase of epochs. As to the top
incremental training, the extension curve indicates that there is
indeed significant speedup by inheriting from previous learned
term and bias vectors. It can be observed that incremental factor-
izing can be convergent after iterating five times, while the global
training has to iterate 30 times to achieve same performance.
The x-axis represents training time, and y-axis represents cost of
objection function (1 6). The convergence of cost almost reaches
0.02. There is no obvious cost boundary between incremental and
global training for future training indicating that the former is
faster than the latter.

We also randomly select 5000 word vectors to test the differ-
ences among word vectors. Furthermore, cosine similarity is used
to evaluate differences between these two sets of word vectors.
For global training, the same algorithm is run twice, using different
random initializations. As to the incremental training, the results of
incremental training are compared with those of global training.
It can be observed from Fig. 4(b) that the cosine distance be-
tween global training and incremental training is approximate and
comparable. Both curves are extremely close, and the differences
between incremental training vector and global training vector
belong to the scale of 10−3 in cosine distance.

(a) Cost comparison between global and incremental factorizing.

(b) Cosine distance between global and incremental factorizing.

Fig. 4. Training performance and cosine distance of global and incremental word
representations.

5.2. Word similarity/relatedness

As mentioned in previous sections, word similarity/relatedness
evaluation is used as a benchmark to evaluate the correctness
of our incremental training algorithm. Specifically, we use the
data set collected by Faruqui and Dyer [34] which includes MC-
30, TR-3k, MTurk-287, MTurk-771, RG-65, RW-STANFORD (RW),
SIMLEX-999, VERB-143, WS-353-ALL, WS-353-REL, WS-353-SIM,
and YP-130.3 Cosine value is employed to compute the similarities
between words, as well as to rank the words similar/related to
each other. The Spearman’s rank correlation coefficient [35] is
used to check the correlation of ranks between human annotations
and computed similarities. Due to limited space, only the results
trained over 10 KB, 100 KB, . . . , 1 GB update data are shown. From
Fig. 5, it can be observed that the results of incremental training
are comparable and sometimes better than the results of global
training.

5.3. Linguistic tasks

Other downstream linguistic tasks [36,37] are also tested.
Different from word similarity/relatedness tasks, linguistic tasks
consist of questions, for example, ‘‘a is to b as c is to ?’’, whose
correlations are measured by human ratings. Thus, it is more

3 http://www.wordvectors.org/

http://www.wordvectors.org/
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Fig. 5. Training performance and cosine distance of global and incremental word representations.

Fig. 6. Linguistic tasks comparison of global and incremental training in word
representations.

Fig. 7. Semantic event detection comparison of global and incremental training in
word representations.

Fig. 8. Multi-Label classification comparison of global and incremental training in
user representations.

complicated than simply comparing similarity/relatedness be-
tween words. We conduct linguistic tasks’ experiments based on
Syntactic data set [6] containing 19544 semantic and syntactic
subset questions, to answer corresponding words based on the
word embeddings produced by our experiments. The analogy
questions include capital-common-countries(ccc), capital-world
(cw), currency(c), city-in-state(cis), family(f), gram1-adjective-
to-adverb(gaa), gram2-opposite(go), gram3-comparative(gc),
gram4-superlative(gs), gram5-present-participle(gpp), gram6-
nationality-adjective(gna), gram7-past-tense(gpt), gram8-plural
(gp), gram9-plural-verbs(gpv), which are answered by using
Levy and Goldbergs similarity multiplication method [4]. Follow-
ing [3,4], the incremental processes is tested. The results are shown
in Fig. 6. It can be seen that the incremental training and global
training show similar results, and incremental training possesses a
slightly better performance than global training. This demonstrates
again that the performance of incremental training is comparable
to global training. Furthermore, we remark that the performance
of our incremental method continuously improves when more
training data is incorporated.
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(a) Global by 2 × 1/4 parts of edges. (b) Incremental by 2 × 1/4 parts of edges. (c) Global by 3 × 1/4 parts of edges.

(d) Incremental by 3 × 1/4 parts of edges. (e) Global by 4 × 1/4 parts of edges. (f) Incremental by 4 × 1/4 parts of edges.

Fig. 9. Complementary visualizations p2p network user clustering comparison of global and incremental matrix factorization for user representations. Note that we first
cluster user network then reduce user features dimension from 64 to 3, and the rotation effects are produced by dimension reduction. As the edges increase, the effect of
user clustering becomes more intensive and clearly separated.

5.4. Semantic network event detection

Word vectors carrying semantics can be applied in social net-
work big data mining areas. Social streaming process and mining
for big data computing are both issues of great importance. The
streaming social short text fromOpen SinaWeibo34 can be used to
detect abnormity and burst of social network events [38–42]. The
Open Sina Weibo API produces more than fifty million streaming
data every day, containing about 30000 public burst social events.

Experimental data set from Sina Weibo Open Platform can be
collected by the API provided by Sina Weibo. First, the raw text
is retrieved by using word-split tools like NLPIR4 or BosonNLP5

from NLP. Then the co-occurrence of words is counted. By extract-
ing words whose co-occurrence exceeds a certain threshold, the
event graph could be constructed. It is an undirected graph whose
node represents each single word. The weight value on the edge
is the co-occurrence, which can measure the heat of the event.
However, this is only the discovery from physical phenomena
based on emergence of word and abnormal sub-graph of words.
But social network events are the basis of semantic understanding
influenced by different group of social users. By using NLP and
datamining technology for abnormal graph ofwords, interpretable
event representation [42–44] contains event time, place, partici-
pant, emotion, keywords, title and relatedweibos, etc. Finally, both
the graph of words and interpretable event representations can be
used to represent social event.

Traditional physical phenomena and semantics based methods
do not consider the changes in semantics of word over time.
However, when combining abnormal sub-graph with incremental
word semantics, if the semantics of the words in the graph become
closer, nodes representing these words can bemerged. In this way,
the number of the nodes and the scale of graph used tomerge event
can be reduced, thus lower the impact by noise.

On this basis, the word vectors are trained respectively by the
one-month periodic renewing and online incremental social data.

4 http://open.weibo.com
5 http://bosonnlp.com

These word vectors are used to measure the semantic distance
between words among abnormal graphs of words. Cosine distance
of word vectors is adopted to merge nodes that are semantically
similar among graphs. Compared the number of events detected
by word vectors trained from the one-month periodic renewing
and the streaming online incremental social data in 48000min, the
results are shown in Fig. 7. It can be observed that online learning
word vector based event detection method fell at the rate of 200
events/100 min on average.6

5.5. User multi-label classification

This section presents an experimental analysis of the incremen-
tal representations in network user multi-label classification [45].
Network user vectors are extracted from DeepWalk, a novel ap-
proach for learning latent representations of vertices in a net-
work [5], in which the Skip-gram model is substituted by matrix
factorizationmodel forword representations. Themulti-label clas-
sification task by user representations in network is evaluated in
this section. The training data on the BlogCatalog [46] network is
then increased from 10% to 90%. In BlogCatalog network data set,
there are 10312 nodes and 333983 edges. The results are presented
in Fig. 8, where X-axis refers to the percentage of incremental net-
work data, and Y-axis refers toMicro-F1 score andMacro-F1 score.
The performance of incremental and global matrix factorization
are similar. Moreover, the speedup of training time conforms to
the laws in Fig. 3(b).

5.6. User clustering

This section shows another experimental analysis of the in-
cremental representations in P2P network user complementary
visualizations clustering. The Gnutella peer-to-peer network data
set [47] contains 6301 nodes and 20777 edges. The network data
set is evenly divided into 4 parts by edges. We use one of the 4
parts as base training data, and take another 3 parts as incremental

6 http://ring.cnbigdata.org/

http://open.weibo.com
http://bosonnlp.com
http://ring.cnbigdata.org/
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training data one by one. The network user vectors are extracted
from node2vec, an algorithmic framework for learning continuous
feature representations for nodes in networks [6], where matrix
factorization model for word representations is adopted. Then we
cluster feature representations by k-means [48]. For more distinct
user feature, each network in 2-D planewith nodes assigned colors
based on their clusters is visualized. The performance is presented
in Fig. 9. It can be concluded that the comparison between incre-
mental and global matrix factorization for user feature represen-
tations cluster are close, and incremental training does a slightly
better job than global training in some situations. Besides, the
speedup of training time conforms to the laws in Fig. 3(b).

6. Conclusion

This paper proposes an incremental term representation learn-
ing method for word and user representations for social network
analysis. In order to support social network analysis, we develop a
model based on the GloVe, which is one of the most popular un-
supervised learning algorithm for term representation. To demon-
strate its effectiveness and efficiency, a systematic evaluation of
both the training time and the quality of vectors is conducted.
Our results are also evaluated in the following social network
analysis applications, including word similarity/relatedness, lin-
guistic tasks, semantic event detection, user multi-label classifica-
tion and user clustering. Experimental results demonstrated that
the incremental training significantly outperforms global training
in processing speed as well as quality performance on various
tasks. The smaller the updated network data is, the faster the
update factorizing process can, even up to 30 times faster than
in certain cases. In addition, theoretical analysis can also help in
better understanding the performance of the incremental model.
For futurework, we plan to extend our approach to other advanced
feature learning models beyond GloVe, such as Neural network
language models [49], dependency RNN [50], LSTM and deeper
RNN models [30].
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