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Abstract Real-life events are emerging and evolving in
social and news streams. Recent methods have succeeded
in capturing designed features of monolingual events, but
lack of interpretability and multi-lingual considerations. To
this end, we propose a Multi-Lingual Event Mining model,
namely MLEM, to automatically detect events and gener-
ate evolution graph in multilingual hybrid-length text streams
including English, Chinese, French, German, Russian and
Japanese. Specially, we merge the same entities and similar
phrases and present multiple similarity measures by incre-
mental word2vec model. We propose an 8-tuple to describe
event for correlation analysis and evolution graph genera-
tion. We evaluate the MLEM model using a massive human-
generated dataset containing real world events. Experimen-
tal results show that our new model MLEM outperforms the
baseline method both in efficiency and effectiveness.

Keywords Event Detection; Event Evolution; Stream Pro-
cessing; Multi-lingual Anomaly Detection.

1 Introduction

Real-life events are emerging and evolving in social and news
streams, which hold critical materials in real-world occur-
rences. Monitoring the critical events over time will help
policy makers to analyze the whole situation and make right
decisions referring to the evolution process. In such cases,
it is necessary to determine critical events and monitor them
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through timeline. Therefore, event detection and evolution
have become a focus in current research.

By sending out timely and precise alarms from massive
sources like emergent disasters, event detection model can
help people take promptly actions to alleviate huge life and
economic losses. The problem of event detection has been
studied widely in the literature. Bursty detection [1–6], topic
models [7–11] and other clustering algorithms [12–23] have
succeeded in detecting events from monolingual streams.
These techniques are monolingual-oriented, which are lack
of real-time and comprehensiveness. Because the foreign
startling news needs time to be delivered into domestic major
platforms, real-life events need more details and international
perspectives. Thus, the first challenge is how to integrate the
multilingual post.

In addition to falling short of handling this challenge, the
above methods cannot merge phrases appropriately because
phrase semantics change over time. For example, Aba was
the most relavant word to Wenchuan in 2012, but more related
to Jiuzhaigou recently because of Wenchuan Earthquake in
2012 and Jiuzhaigou Earthquake in 2017. Therefore, the sec-
ond challenge is how to handle semantic drift problem.

Furthermore, these techniques mainly focus on single
source stream either social streams or news streams and did
not treat them equally. But which channel discover events
earlier depends on circumstances. For example, disastrous
events like Las Vegas Shooting was perceived promptly in
tweets while political affairs like Trump’s Trade Policy was
reported on news media first. In order to ensure the reliabil-
ity and real-time capability of the event detection model, we
collect the multi-lingual text streams from different channels
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as the input of the model. So the third challenge is hybrid-
length text streams processing.

Previous research on event evolution from news represent
event evolution by graph [24–26], but are not fit for short-
text or long spanning event evolution. Since the rise of social
media, evolution on short-text streams has received much at-
tention, [8, 27] discover an event chain in microblog, but
cannot distinguish the evolution patterns such as spliting and
merging. [15, 28, 29] represent the evolution by volume on
time dimension,which is coarse-grained and lots of signifi-
cant events are discontinuous in time.

Events are described from different aspects by multi-
national official and social media. Observer will know the
event development well and make decision wisely and timely
based on a “panoramic view” with evolution patterns of it.
However, objective reports and full view of opinions from
home and abroad are hard to combine together through long
time period and extract a graph view of them. The fourth
challenge is evolution graph generation. In short, our major
challenges are multi-lingual post integration, semantic drift
problem, hybrid-length text processing and evolution graph
generation.

In seeking to address these challenges, we propose a
Multi-Lingual Event Mining (MLEM) model to automati-
cally detect events and generate evolution graph. Firstly, we
unified multi-lingual sources into same language, then main-
tain an evolving phrase graph from text streams, and focus
on anomalous phrases when time widow sliding across. Sec-
ondly, we utilize incremental word2vec model to merge syn-
onyms at linguistic level and semantic level and solve seman-
tic drift problem. Word2vec models are shallow, two-layer
neural networks trained to produce word embeddings. We
employ the incrementally learning of hierarchical softmax
function [30] rather than the matrix factorization [31] to save
time and space complexity. Thirdly, we put attributes time,
locations, participants, keywords, emotion, domain, sum-
mary and most-related posts together to form an 8-tuple to
represent event. We optimize TextRank model by word2vec
to generate event summaries. Posts are microblogs, breaking
news and forum messages in multiple languages. Fourthly,
we introduce word2vec for event filtering to save time in
event evolution set generation and adopt phrase subgraphs,
locations, participants and summary similarity measurement
to build event correlation. Finally, we adopt line clustering
to generate event evolution graph incrementally. We have
applied the MLEM model to the practical application RING

available online.1)

Here are some highlights of our proposed model MLEM:
1) MLEM can detect events from multi-lingual social
streams. 2) Our framework summarizes the information in
the stream and for each event as a graph. 3) With the help of
phrase graph, we translate event comparing into graph com-
paring. Thus, efficient graph algorithm can be applied. 4)
We present a novel framework to detect and track event in
very large, noisy, domain independent and multi-lingual so-
cial streams through a very long time.

We present a sketch of our MLEM model for event detec-
tion and evolution from multi-lingual text streams in Figure 1.
Phrase graph captures strong correlation between phrases. In
Figure 1(a), node size represents the phrase frequency, edge
thickness indicates the correlation strength. Core nodes and
core edges are dark colored in the final step and each event
is annotated by core nodes. As time goes on, edge frequency
decay and rise while the time window sliding following Eq. 6.
In Figure 1(b), event evolution graph grows incrementally
through long time period, typical evolution patterns include
evolute, merge, split and converge. All events in the evolu-
tion graph share same graph, and different graphs may merge
at some time point. Key nodes in the phrase graph are made
fully connected and each phrase graph is extended with de-
tail phrases, which are light colored, to represent events in the
evolution process.

The remainder of this paper is organized as follows. We
firstly introduce the related event detection and evolution
work in section 2. Then we present our MLEM model and
give the parameters configuration in section 3. Thirdly we
provide comprehensive comparison experiments on how our
model is efficient and effective comparing to the other meth-
ods in section 4. Finally, we conclude our work in section 5.

2 Related Work

In this section, we introduce the background of event detec-
tion and event evolution.

2.1 Event Detection in Social Streams

Lots of attention is attracted to event detection in social
streams. Mathioudakis et al. [1] presented a monitor that
identifies events by sharp rise of keywords number in a spec-
ified time slice. However, this monitor cannot distinguish
different events sharing the same keywords in bursty flow.

1) https://ring.act.buaa.edu.cn/

https://ring.act.buaa.edu.cn/
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Agarwal et al. [14] and Angel et al. [13] both described the
social streams as a highly dynamic entity graph, and extracted
dense subgraphs as events from the graph. These methods
suffer from the loss of single-entity-oriented events or only
post attributes like action of the entities.

Yan et al. [9] learn topics by modeling the word co-
occurrence patterns in the corpus, to emerge topics inference
effectively. But the topics are limited and not suitable for ar-
bitrary event tracking, since there exists future events belong
to unknown topics. Nguyen et al. [32] combines content-
based features from post text and the propagation of news
between viewers to extract and track events from a given so-
cial data stream. But it highly depends on friendship net-
works of users, but it is impossible to obtain whole friendship
networks in most cases. Liu et al. [33] detect events based
on knowledge base to merge duplicates, which still requires
prior knowledge and the time overhead of querying knowl-
edge base can be reduced by using word2vec in our model.
None of the above methods addresses the multi-lingual is-
sues.

Lejeune et al. [34] presented a multilingual event extrac-
tion system but limited in the epidemic domain. Agerri et
al. [35] proposed a multi-lingual framework for event detec-
tion, but it relies on extensive language-specific resources
and the main contribution is sophisticate pipelines for four
specific languages. Our MLEM model employs incremen-
tal word2vec model to cover multi languages and introduce
semantic information into phrase graph generation.

2.2 Event Tracking in Social Streams

Event Tracking works when events evolute in continuous
time. Lin et al. [36] adopt dynamic pseudo relevance feed-
back to collect related tweets together and generate event sto-
ryline. However, it requires a keywords query given by users,
which means the effectiveness totally relies on whether these
keywords cover the event well. Ge et al. [37] introduced a
learning-to-rank model to generate a topically relevant event
chronicles for certain period. Above methods need prede-
fined topics or knowledge, which share the same defect with
Event Detection based on Topic Model.

Lee et al. [29] modeled the social streams as a dy-
namic network and extracted (k,d)-core subgraphs to repre-
sent events. This model recognizes evolution patterns by
tracking the development of subgraphs across time window.
This model only monitor events in adjacent windows, which
is not applicable for events spanning over a long period.

2.3 Event Evolution with Correlation Building Methods

Yang et al. [25] defined an scoring function to estimate the
existence of evolution relationships. This function cannot
be applied to long-term spanning events because timestamp
measurement is misleading and essential attributes such as
summaries, locations, and participants are not taken into con-
sideration. Zhou et al. [38] adopted TFIEF and Temporal Dis-
tance Cost factor, Weiler et al. [8] utilized word matrix, Lu
et al. [27] used location and participants similarity and Liu et
al. [33] add subgraph similarity to measure the event relation-
ships and generate an evolution chain. Most of these meth-
ods miss semantic information and evolution patterns and
all of them cannot be applied to multi-lingual text streams.
Moreover, location and participant have different impacts in a
event but these methods treat them equal. We need summary
similarity measurement to build event correlation. Most im-
portantly, evolution as a chain is counterintuitive. There exist
evolution, splitting, merging and converging in the develop-
ment of an event.

In our evolution model, we adopt metrics including phrase
subgraphs, locations, participants and summaries to evaluate
event relationships. The most important part of recogniz-
ing relationships is phrase subgraphs similarity and summary
similarity measurement. We utilize incremental word2vec
model to measure phrase subgraphs similarity and generate
reliable summaries for events.

3 Model and Algorithms

In this section, we introduce our methods for detecting event
and generating event evolution graph from multi-lingual text
streams, which we call MLEM model.

3.1 Preliminaries

Event Definition. We define an event E as 8-tuple :

E =< t; desc; locs; pars; key; emo; dom; posts > (1)

where t is the timestamp when the event emerged in network.
desc outlines the event in short. locs is a set of locations the
event most related to. pars is a set of people or organiza-
tions who mainly participants in the event. key is a set of
key phrases of the event. emo is the emotion tendency of re-
lated posts, which can be positive, negative or neutral. dom is
the domain of the event, including natural disaster, safety ac-
cident, environmental pollution, health care, social security,
politics, military and entertainment. posts is related posts of
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Fig. 1 Illustration of event detection and evolution from multi-lingual text streams.

the event, with limit size of n̄ for each kind of media type
after duplication removal.

Event Evolution Graph Definition. Given a latest event
E0, we denote G0(V,E) as the evolution graph of E0, where
V indicates the set of events {E0, . . . , En} sharing the evo-
lution graph, E represents the set of relationships between
events. For example, E for the Figure 1(b) is {E1 ∼ E3, E2 ⇒

E4, E2 ⇒ E5, E3 ⇒ E7, E5 ⇒ E7, E3 
 E5, E4 t E5}. Ei ∼

E j means E j is merged by Ei. Ei ⇒ E j means E j is evolved
from Ei. Ei
 E j means Ei and E j are going to converge into
same event. Ei t E j means Ei and E j are split from same
event. Graph G0 traces back the whole development of event
E0 along the timeline.

Phrase Graph Definition. We assume that we get edge
sequences continuously from text streams, the phrase graph
is defined as G(V,E), where V represent the set of phrases
extracted from the text streams and E is the set of edges cor-
responding to co-occurrence relationships between phrases in
a text sliding window. Specifically, we accept multiple enti-
ties or verbs sharing the same meaning on one node in V.
The edge weights between the nodes in G will change signif-
icantly, as the graph evolves over time. We define the edge
weight between node gi and g j arrived at ts asW(gi, g j, ts).

Phrase Semantic Similarity. Given two phrases wi and
w j, we define the semantic similarity between them by cosine
distance:

S im(wi,w j) = −→vwi �
−→vw j (2)

where −→vw is the unit vector of word w calculated from
word2vec model, the normalization of vector vw is defined
as:

−→vw =
vw

‖ vw ‖
(3)

where ‖ vw ‖ is the module of vw.

Node Similarity. Given two nodes gi and g j, we define
the similarity between them by the max semantic similarity
of phrases on them:

S im(gi, g j) = max
wi∈gi,w j∈g j

S im(wi,w j) (4)

where wi ∈ gi means phrase wi is on the node gi.

3.2 Phrase Graph Generation

Figure 1(a) shows a rough process of phrase graph genera-
tion from text streams within the same time sliding window.
The size of the time sliding window is set as T in this paper.
We use news media type and social media labels to distin-
guish the type of languages, for example, HTML tag tweet-
language of the web pages. Twitter and Weibo are sometimes
written for advertising, which introduce lot of noises in multi-
lingual text streams. Therefore, we perform multi-lingual
standard text processing tasks using the Stanford CoreNLP
tool [39]. Specifically, we only retain entities and verbs and
texts more than three phrases to reduce noises. In addition,
we use a naive bayesian model to train a binary classier and
judge whether each post is noise or not.

In our model, we merge the same entities in different lan-
guages or expressions like pistol and pistolet (French), Amer-
ican and U.S.A., American President and Trump. First, the
phrase are unified to the same language, then we employ
word2vec model to merge multiple synonyms into one node.
For each phrase, we go through each node on the phrase
graph, if the similarity exceeds threshold Φ, we merge the
phrase to the exist node and represent it with the former
phrase in lexicographical order. The synonyms merge thresh-
old Φ is tuned to 0.82 in this paper. A phrase sequence is
generated for word2vec training and edge connections at the
same time. We only retain the sequence from news media
because it is informative and objective.
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In most cases, people tend to post something meaningful
first. For example, the first paragraph or even the first sen-
tence of a report basically sum up the full text, details are
available in the rest of the article. Moreover, some people
just put hot topics together for advertisement or just com-
ment on them together. Hence simply drawing edges by co-
occurrences in one post will introduce a lot of redundancy as
detailed information is useless in detection process. It will
even generate interfering information and mislead the con-
struction of phrase graph. Therefore, we introduce a text
sliding window to draw the weighted edges to distinguish
key information and redundant information. If two nodes gi

and g j co-occur in the same text window, a weighted edge is
drawn between them. We define the decay of edge weight Wk

through postk in the current time slice ts as:

Wk(gi, g j, d, ts) = W · 2−Λ· dl (5)

where W is a weight constant, Λ is the decay factor for de-
cline rate of information importance, d is the phrase count
text window slide away from the beginning of postk, l is the
width of window. Since news report are objective and author-
itative, we set W as 2 for it and 1 for the others.

For multiple co-occurrence in a single post, we update the
weight of this post by maximizing instead of accumulating.
After going through all the posts, if there are edges with the
same starting point and ending point discriminated by the
post ID, we merge them by adding the weights together. We
note that the impact of hot topic will slowly wane over time,
so the edge weight should not stabilize over a long period of
time. In order to model the temporal effect, We introduce a
decay factor λ to regulate the rate at which the weight of an
edge decays over time. We define the edge weight W at tn
as:

W(gi, g j, tn) = 2−λ ·W(gi, g j, tn−1)+
sn∑

k=1

max
d≺postk

Wk(gi, g j, d, tn)

(6)
where tn−1 is the last adjacent time slice, sn is the size of
posts at time tn and d ≺ postk means for each position d in
postk. Since the graph is assumed to be undirected, the value
of W(gi, g j, t) is the same as W(g j, gi, t). Finally, we get
phrase graph G(V,E) defined in 1.

3.3 Event Detection Model

After phrase graph generation, we detect anomalous hot
nodes on the phrase graph using the method proposed by
Yu et al. [40]. Then we extract subgraph based on the hot

phrases. Only retain the anomalous hot nodes and edges be-
tween them will miss some events during the detection pro-
cess which is explained in fig 2. The dark nodes represent hot
phrases and the dotted rectangle represent event. Therefore,
we retain anomalous hot nodes and nodes meeting the fol-
lowing conditions: node connected to 2 or more anomalous
hot nodes and one of its edge weight exceed 8. In this way,
we can obtain richer information and ensure the burstiness of
events.

No

Yes

E1

Missing E2!

Merge

miss merge chance

E1

E2

Yes

Fig. 2 Illustration of the subgraph extraction.

Moreover, we connect nodes to merge cliques telling the
same thing using word2vec. Since the phrase co-occurrence
possibility drifts from time to time, we train hierarchical soft-
max function every 2 hours on old corpus and new corpus
generated in 2 through this period incrementally. We connect
each node with nodes connected with the other node if co-
sine distance between two nodes exceeds threshold φ. The
weights of the newly connected edges are calculated with the
help of word semantic similarity. If cosine distance between
nodes gi and g j exceeds φ and we connect gi, gh, the weights
of new edge is defined as:

W(gi, gh, tn) = S im(gi, g j) · W(g j, gh, tn) (7)

Figure 3 shows an example of the linking process. The
solid line represents co-occur relationship, the dotted bidi-
rectional arrow means cosine distance of two nodes exceeds
φ and the dotted line represents the edge connected through
word2vec model. If cos(d, f ) exceeds φ, we connect b, d ,
c, d and a, f , merging cliques abc, ade and node f to abcde f .
For example, nodes d and f could be pistol and handgun,
toddler and child, and in Figure 3 they’re abuse and mis-
treatment. Community abc f and ade will be regarded as two
events without merging.

Finally, we remove edges with weight less than 1 and use
an optimized overlapping community finding algorithm [41]
on the subgraph to discover events. We define k-clique as a
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set of fully-connected k nodes and cliques share k − 1 nodes
are called ‘adjacent’, a community is the largest set the ad-
jacent cliques constitute. We regard each community as an
event and represent it by phrases in the community.

After we detect an event, we fill up the 8-tuple to make
it understandable. Firstly the time slice when the event is
discovered is set as t. Secondly phrases in the community
are naturally set as key. Thirdly we track down related posts
containing all these keywords by querying post index and put
them into set posts. To make it applicable to multi-lingual
text streams, we index posts with same language and the ori-
gin posts are stored in database.

Fourthly we extract desc from posts through our own al-
gorithm. The priority is to set desc as the sentence containing
most of the important phrases related to the event. We utilize
incremental word2vec to optimize the TextRank model [42]
to rank the phrases for event summarization. We use a sliding
window to draw edges by co-occurrence relationship within
the window to construct an undirected graph. The key idea
of TextRank is that the importance of a node depends on how
many adjacent nodes point to it, and the weight of the neigh-
boring nodes also affects it. The node weight is defined as:

WS (gi) = (1 − θ) + θ
∑

g j∈I(gi)

e ji

| O(g j) |
WS (g j), (8)

where the WS (gi) is weight of node gi, I(gi) is predecessor
set of gi, O(g j) is successor set of g j, e ji is the edge weight
of g j → gi, θ ∈ [0, 1] is damping factor, commonly set as
0.85. The default weight of each node is set to 1 in traditional
TextRank model, the successor weights are averaged by the
node weight, and they are iterative updated through adjacent
relationships. Obviously, a more reasonable way to initialize
the node state is to take the influence of each node as an initial
state. Our initialization for node gi is defined as:

WS 0(gi) = b ∗
∑

g j∈In(gi)

S im(g j, gi) (9)

where WS 0(gi) is the initial weight of gi, b is a weight con-
stant, we set b as 2 for node with keyword on and 1 for the

others. Thus, Eq 8 is improved to:

WS (gi) = θ
∑

g j∈I(gi)

(
S im(g j, gi)∑

gk∈O(g j)
S im(g j, gk)

+
e ji

| O(g j) |
)WS (g j)

+ (1 − 2θ)
(10)

O(gi) is same as I(gi) because we generate an undirected
graph. We continue iteration until each node weight no longer
changes. The phrase weights are used to determine the sen-
tence importance. We set θ as 0.425 in this paper. We split the
posts into news set, WeChat article set and the other posts set
depends on their type and traverse each subset in authoritative
order. The details is displayed in Algorithm 1.

Algorithm 1 Event Summarization.
Input: posts
Output: desc

1: maxImp = 0, desc = NULL;
2: Split posts into subsets by media type;
3: Sort subsets in authoritative order;
4: for each subset ∈ subsets do
5: Construct graph Gsub(V, E) for subset;
6: Calculate weight list WS G by optimized TextRank;
7: for each p ∈ subset do
8: Split p into sentences set S by punctuation;
9: for each s ∈ S do

10: importance = 0;
11: for each phrase g ∈ s do
12: importance+ = WS [g];
13: if importance > maxImp then
14: desc = s;
15: maxImp = importance;
16: return desc;

Then we adopt NLPIR tool to discover locs and pars from
the key phrases. NLPIR tool use an automatic identifica-
tion of entity names based on role tagging to choose partic-
ipants. According to the role of name recognition, Viterbi
algorithm is used to tag the segmentation results, and pat-
tern matching is performed based on character sequence. By
closing and opening 16M byte real corpus, the method recall
achieves up to 98%. The most frequently mentioned loca-
tions are put into set locs, people and organizations are put
into set pars. Specifically, if the frequency difference be-
tween top mentioned locations and most mentioned location
is less than 20%, we put all of them into locs. We extract
locs and pars from key phrases, if fails, we will go through
related posts, count the locations and participants and fill locs
and pars again. Finally, we employ SVM model based on
cell thesaurus for domain classification and Bayesian model
improved by emoticons to classify sentiments [43].
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We describe events from eight aspects, which is concise
and easy to understand. An example is showed in Table 1,
which is about Child abuse in Ctrip daycare in Nov.08.2017.

Table 1 Event Description Case

Tuple Tuple description

t 2017/11/08 14:20
desc Child abuse in Ctrip daycare.
locs Shanghai
pars Jie Sun
key Child, abuse, Ctrip, daycare
emo negative
dom social security
posts Maltreatment of toddlers in Ctrip daycare in

Changning District, Shanghai # Child abuse
scandal · · ·

3.4 Event Correlation Building Method

Determine the relationship between two events is a major
challenge in building an evolution map of an event. Given
two events Ei and E j represented by the 8-tuple. We define
event similarity score function as:

S im(Ei, E j) = α · S imsubgraphs(Ei, E j) + β · S imlocs(Ei, E j)

+ γ · S impars(Ei, E j) + δ · S imdesc(Ei, E j),
(11)

where S imsubgraphs, S imlocs, S impars and S imdesc denote sim-
ilarity measures of phrase subgraphs, locations, participants
and summaries respectively. α, β, γ, δ are weight coefficients
of them subjected to α + β + γ + δ = 1.

The event is multifaceted but limited sides have clues.
Therefore, we use S imsubgraphs as a significant feature rather
than global text similarity. Firstly we form a phrase graph
for the event. We get top 6 frequent key phrases from key.
We set detail phrases as top 8 frequent phrases apart from
the key phrases in posts co-occur with key phrases in a text
sliding window. Then we merge multiple synonyms through
the method in 2. We connect each phrase pair in a text slid-
ing window and make key phrases fully connected after that.
Figure 1(b) shows the final graph for each event.

Moreover, we consider each three connected nodes with at
least one key node as a subgraph, and calculate each sub-
graph pair S imT ’s similarity. We set three nodes as sub-
graph is because intuitively, event can be represented by three
phrases like somebody did something or something happened
somewhere. We represent each phrase by a vector using
word2vec, and calculate S imT by cosine similarity of in-
centers for subgraph pair. The incenter of a triangle is the

crossover point of three interior angle bisector. We use a
triple vector Ti =< −→vi,1,

−→vi,2,
−→vi,3 > to represent each subgraph,

where −→vi, j denotes the unit vector of phrase j in Ti, and the
incenter vi,incenter is defined as follows:

vi,incenter =
z · −→vi,1 + x · −→vi,3 + y · −→vi,1

x + y + z
,where


x = |−→vi,1 −

−→vi,2|,

y = |−→vi,1 −
−→vi,3|,

z = |−→vi,2 −
−→vi,3|,
(12)

Based on Eq (12), the incenter vector is an unit vector, so
we define S imsubgraphs as the maximum similarity among all
subgraph pairs between two events:

S imsubgraphs(Ei, E j) = max
i∈[1,n], j∈[1,m]

vi,incenter � v j,incenter, (13)

where n and m are the count of subgraphs in each event. Re-
ports from different aspects focus on different places and dif-
ferent people, which is needed to be distinguished in the evo-
lution graph. The simple location similarity cannot meet the
demand. Motived by this, we adopt the weighted Jaccard
similarity which is applied in combination with the signal
based similarity. The weighted Jaccard similarity was first
proposed by Ioffe et al [44]. For our problem, the weight
of our locations is the frequency in each posts. Thus, for a
given event pair, it measures the similarity of the places each
event focus on and their importances. We define S imlocs and
S impars as:

S imlocs(Ei, E j) =

∑
c min(FLi

c, FL j
c)∑

c max(FLi
c, FL j

c)

S impars(Ei, E j) =

∑
p min(FPi

p, FP j
p)∑

p max(FPi
p, FP j

p)
,

(14)

where FLi
c donates the frequency of location c in postsi,

FPi
p donates the frequency of participant p in postsi. We

represent each desc as a weighted phrase vector di =<

wi,1,wi,2, · · · ,wi,N >. wi, j denotes the weight of phrase j in
di and N is the vocabulary size. S imdesc is defined as follows:

S imdesc(Ei, E j) =

∑N
k=1 wi,k · w j,k√∑N

k=1(wi,k)2 ·

√∑N
k=1(w j,k)2

, (15)

where key phrases and entities’ weight is 2, non-exist
phrases’ weight is 0 and other phrases’ weight is 1. The rea-
son we take empirical value rather than frequency as weight is
that summary of article is unlikely to obtain duplicate words.

When we analyze the KEM model, we find that some
events which should have evolution relationship failed evo-
lution because their similarity is lower than ε but phrase sub-
graphs similarity is high enough. Then we find that events
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evolute in the useful subgraph part, it already contains clue
of the event. Thus, after we obtain S imsubgraphs(Ei, E j) or
S im(Ei, E j), we define that E j is evolved from Ei when
S imsubgraphs(Ei, E j) > ε and ti < t j or S im(Ei, E j) > ε, i.e.,

Ei → E j i f

 S imsubgraphs(Ei, E j) > ε or S im(Ei, E j) > ε

ti < t j.
(16)

We tune ε to 0.25 and ε to 0.45 in this work.

3.5 Event Evolution Graph Generation

After relationships are discovered, we focus on generating the
evolution graphs incrementally. In this work, we adopt line
clustering rather than point clustering because events may
evolute into a very different event. It extends the evolution
graph incrementally using less time and space. Specifically,
we get an event evolution set and merge it into the graph of
the most-related event generated before, which is clustered
from point to point rather than clustering from one point.

Firstly, we employ two-layer filtering method introduced
in [27] to save computational time in the following steps. We
get a candidate events set CS with maximum size 20 for input
event E0 after filtering. We adopt semantic distance filtering
to further reduce the computing time. Each event Ei in set CS
and E0 owns a vector set VS i =< vi,1, vi,2, · · · , vi,m >, where
vi, j is word vector of the jth key phrase in Ei, m is the size
of key phrases. We define a weighted average vector Vi,E to
discover irrelevant events and is computed as follows (i.e. the
AverageVector method at line 2 and 7 in Algorithm 2):

Vi,E =

∑m
k=1 fi,k · vi,k∑m

k=1 fi,k
, (17)

where fi, j denotes the frequency of key phrase j in related
posts of Ei. When cosine distance between Vi,E and V0,E be-
low threshold ϕ, we drop the event Ei in set CS . We tune ϕ
to 0.1 in this paper to enhance best performance.

Then we head to find all events E′ for input event E0 meet-
ing the condition: E′ → E0, making a set of available events:
S E . We get evolution graph G of event with the maximum
similarity in S E by querying the event index, reorder S E by
time ascending order and insert E0 at the end of S E . Algo-
rithm 2 (i.e. the EESG method at line 1 in Algorithm 3) il-
lustrates the method to generate event evolution set for given
event E0. Set S E is the available event set for input event,
Graph G is the evolution graph.

Finally, we put events from S E to the graph G, draw edges
between adjacent events in S E if no path exists between them,
and discover relationships between events in G. We define

Algorithm 2 Event Evolution Set Generation.
Input: Event E0
Output: Set S E , Graph G

1: simmax
e = simmax

sub = 0, posmax = 1;
2: V0,E = AverageVector(E0);
3: Get events set CS by searching event index;
4: Drop events in set CS by two-layer filtering;
5: for i = 1; i ≤size(CS ); i + + do
6: Ei = CS [i];
7: Vi,E = AverageVector(Ei);
8: if cos(V0,E ,Vi,E) < ϕ then
9: continue; . semantic distance filtering

10: sime = S im(E, Ei);
11: simsub = S imsubgraphs(E, Ei);
12: if sime > ε or simsub > ε then
13: if simmax

e ≤ sime and simmax
sub ≤ simsub then

14: simmax
e = sime, simmax

sub = simsub;
15: posmax =size(S E) + 1;
16: S E .add(Ei);
17: Get G of S E[posmax] by querying event index;
18: Sort S E in time ascending order;
19: S E .add(E0);
20: return S E ,G;

split relationship as different events within a day directly
evolved from same event, merge relationship as same events
detected in continuous time span and converge relationship
as different events directly evolved to same event. We tune ε′

and ε′ as 0.8 in the experiment to merge same events. Since
breaking news or buzz topic can keep high heat through a
long period of time, we merge events back to the earliest one
and represent its t as a time span striding across multiple time
slice.

Algorithm 3 illustrates the method to generate event evo-
lution graph for given event E0. HashMap EG is the set of
events in graph G, 2D Array RG is the set of event relation-
ships in graph G, Ei  E j means there is a path between Ei

and E j, t′ and t j are the timestamps of E′ and S E[ j].
Figure 4 shows an example of evolution graph, it

could be completed by putting following S E in a graph:
{E1, E2},{E1, E3},{E1, E2, E4},{E2, E5},{E3, E6},{E5, E7},
{E4, E8},{E5, E7, E9}. The solid line represents evolutionary
relationship, the dotted line represents split relationship (red)
and converge relationship (purple), the bidirectional arrow
means latter is merged by former. The darkness of each block
represents event heat. Since events are not observed within a
day, there is no relationship between E2 and E3, E4 and E5.
There exists multiple split or converge relationships, for ex-
ample, Jiuzhaigou earthquake is split into Counter-Rumour,
Traffic Control, Victims Statistics and Disaster Relief and fi-
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Algorithm 3 Event Evolution Graph Generation.
Input: E0
Output: Graph G(EG,RG)

1: S E ,G(EG,RG) = EES G(E0), j = 1;
2: repeat
3: sime = S im(S E[ j − 1], S E[ j]);
4: simsub = S imsubgraphs(S E[ j − 1], S E[ j]);
5: if sime > ε

′ or simsub > ε
′ then

6: Merge S E[ j] to S E[ j − 1];
7: S E .remove(S E[ j]);
8: else
9: if S E[ j] < EG then

10: EG.add(S E[ j]);
11: if never S E[ j − 1] S E[ j] then
12: RG[EG[S E[ j − 1]]][EG[S E[ j]]] = evolute;
13: if ∃E′ : EG[S E[ j − 1]]⇒ E′ and | t′ − t j |< 1

day then
14: RG[EG[S E[ j]]][E′] = split;
15: if ∃E′ : E′ ⇒ EG[S E[ j]] then
16: RG[EG[S E[ j − 1]]][E′] = converge;
17: j + +;
18: until j > size(S E)
19: return G(EG,RG);

nally they converge into Public Memorial Ceremony.

E2

E1

E6

E5

E4 E8 t

E3 E7 E9

Evolute

Split

Merge

En Event

Converge

Fig. 4 Illustration of the subgraph extraction.

4 Experiments

In this section, we present rich experiments to verify the ef-
fectiveness and efficiency of our MLEM model. We first de-
scribe the dataset we adopt for our experiments and the pa-
rameters setting, then we evaluate the speed, quality and time
delay of event detection model. Finally, we measure the ef-
ficiency and effectiveness of our event evolution method and
give a case study.

Dataset: We have been collecting multi-lingual text data
and detecting events since Feb.12.2016. Raw data including
Twitter, Weibo, WeChat, worldwide Publishing House and
Forum is stored in HBase and indexed by Elasticsearch. Rep-

resentative media is shown in Figure 1(a). Until now there has
been about 6.4 billion tweets and weibos, 7.8 million news,
15.6 million forum messages collected by crawlers through
API or web page, from which about 2.1 million events have
been detected.

Parameters: The parameters W(0), λ, l, α, β ,γ ,δ , ε, ε,
ε′, ε′, Φ, φ, ϕ, n_hashes, n_tables, n_neighbours used in this
paper are listed in Table 2.

Table 2 Parameters Setting

Parameter Default Description

n̄ 5 size of each kind of posts
W 1,2 coefficient of edge weight
T 600s time window size
λ 2 decay factor over time
Λ 0.05 decay factor over post
l 10 width of the text sliding window
θ 0.425 damping factor
α 0.55 coefficient of subgraphs similarity
β 0.1 coefficient of location similarity
γ 0.15 coefficient of participant similarity
δ 0.2 coefficient of summary similarity
ε 0.45 threshold of evolution relationship
ε 0.25 threshold of evolution relationship

ε′, ε′ 0.8 threshold for merging events
Φ 0.82 threshold of merging synonyms
φ 0.78 threshold of merging phrases
ϕ 0.1 threshold of semantic distance filter

n_hashes 5 number of hashes in LSH
n_tables 5 number of hash tables in LSH

n_neighbours 20 number of neighbors to find in LSH

4.1 Event Detection

In this section we evaluate the efficiency and effectiveness
of our event detection model. 1 million multi-channel multi-
lingual posts in one day are randomly picked out from our
post database and treated as the input of Event Detection
Model.

Baseline. Works like [27] firstly detect trending keywords
using [40] and then adopt overlapping community detection
method [45] to discover events from these trending keywords
in a time slice. We refer to the baseline method as EECM in
this article. Works like [28] detect events by detecting volume
peaks of hashtag over time in social streams. We refer to this
baseline method as HashtagPeaks. Works like [32] combines
content-based features and the propagation of news to detect
events. We refer to this baseline method as RTED. We imple-
ment it with treating forwarding network as friendship net-
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work. However, the above baseline methods are not designed
for event evolution because the internal structure of detected
events is missing. Works like [29] modeled the social streams
as a dynamic network and detect events by extracting (k,d)-
core subgraphs. We refer to this baseline method as eTrack.

4.1.1 Efficiency

In this part we evaluate the efficiency of our model MLEM
against our preliminary Knowledge-based Event Mining
model(KEM) and baseline method EECM [27]. We log the
graph size when detecting events, we see that the graph is
very large with up to 1 million nodes and 453,173 on aver-
age. The standard text processing time is also counted as de-
tection time. Figure 5 shows the comparison of event count
in each time slice by the three methods. Figure 6 shows the
comparison of average detection time for each detected event
by each method.
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Fig. 5 Comparison of detected event quantity

Time

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 23:50

D
e
te

c
ti

o
n

 T
im

e
/s

2.5

3

3.5

4

4.5
EECM KEM MLEM

Fig. 6 Comparison of detection time

We observe that the events stream peak occurs roughly be-
tween eleven and half past thirteen, corresponding to people’s
active period within a day. The average whole detection time
for each time slice is 35s with EECM, 49.5s with KEM and
50.7 with MLEM. Meanwhile, the average count of events
is 8.8, 14.8 and 17.4 on each method, the average detec-
tion time for each event is 3.93s, 3.35s and 2.90s on each

method. In other words, the detection model increases the
event count by 44.8% and improves the computing speed by
35.27% comparing to EECM. The main reason is EECM con-
nects all words in a single long report, which makes the word
graph much complicated and redundant. Moreover, the clique
EECM detected contains too many words, so lots of com-
putation time is wasted when fail retrieving the posts with
too many interference. The improvement compared to KEM
model is because of the introduction of multi-lingual sources
make the foreign events be sniffed earlier and dereferencing
of knowledge base save the time.

4.1.2 Effectiveness

In this part we compare each method mentioned before in
terms of detection effectiveness.

Ground Truth. We extract events from international au-
thoritative news articles in September, 2017. These news all
have enough related posts obviously and news title is set as
summary for each event.

Evaluation. We use the standard metrics Precision(P), Re-
call(R), F1-Measure(F1) and average time delay ∆T to quan-
tize the effectiveness of our model. They are calculated as
follows: 

P =
|G ∩C|
|C|

R =
|G ∩C|
|G|

F1 =
|2 · PR|
|P + R|

∆T =

∑
Ei∈G∩C(Ti,detect − Ti,emerge)

|G ∩C|
,

(18)

where G is the set of events in the ground truth dataset, C
is the set of events detected, Ti,emerge is when event Ei takes
place and Ti,detect is when event Ei is detected.

Table 3 illustrates the P,R,F1,∆T of each method over the
dataset. The difference of recalls is much larger than preci-
sions, it is mainly because the merging of same entities in 2
and edge connection in 3 lift heat of each node on the graph
to an anomalous level so the recall is improved also. The
difference between time delay is because the other methods
is unable to process multi-lingual sources and , it takes time
to report foreign news in major language. Furthermore, the
weakness for processing long text lead to the gap of effective-
ness. It is explicit that our method achieve superior effective-
ness over other methods.
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Table 3 Detection effectiveness results

Method P R F1 ∆T/min

HashtagPeaks 0.4810 0.3367 0.3961 37.01
RTED 0.5761 0.3533 0.4380 39.27
eTrack 0.5684 0.3600 0.4408 40.09
EECM 0.5833 0.3733 0.4553 36.46
KEM 0.6133 0.6767 0.6434 14.23

MLEM 0.6891 0.7833 0.7332 10.14

4.2 Event Evolution

In this section we evaluate the efficiency and effectiveness of
our event evolution model and present a case study.

4.2.1 Efficiency

In this part we evaluate the efficiency of our algorithm. 1000
events are randomly picked out from our event database and
treated as the input of the evolution model.

Figure 7 shows the distribution of event evolution graph
size produced by our algorithm. We can see that 53% events
doesn’t maintain a graph, which means they have no previ-
ous related events. It is because events detected in the social
media develop with quick perception and extinction. More-
over, 67% of the rest have evolution graphs with size between
2 and 10, which means that evolving graph have no more
than 10 parts commonly. In particular, we check graphs with
size larger than 20 and find they are correspond to events of
great influence like DPRK Nuclear Crisis, Terrorist Attacks
in Paris, Hurricane Harvey et al.
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Fig. 7 Distribution of evolution graph size

Figure 8 indicates the comparison of average time spent on
event evolution set generation step between our algorithm and
algorithm in KEM and EECM, which do not have semantic
distance filtering step. We can see that the average time of all
1000 events is 2.18s with filtering and 4.32s without filtering.
When only consider events whose S E size are greater than 2,
the time rises to 10.73s and 18.12s. We can see that with the

increase of S E size, the time ratio decrease since candidate
set size increase faster than the size of irrelevant events set.
On average, the semantic distance filtering step improves the
calculation speed by 98.17%.
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Fig. 8 Comparison of average time on evolution graph generation

4.2.2 Effectiveness

In this part we compare our algorithm with EECM and
ground truth generated from news to evaluate the effective-
ness.

Ground Truth. We manually choose 300 input events
from the 1000 events mentioned before. These events all have
obvious evolution processes in real world and corresponding
reports of each evolution part of them are easy to find. We
treat news title as summary for each evolution part and man-
ually put them on an evolution graph for each event. We la-
beled 48681 posts for event ground truth. Events are labeled
by 10 specialists, each event is reviewed by at least 2 special-
ists, when there is a divergence of views, another specialist is
asked to label the event and the most voted one is set for each
event finally.

Baseline. Works like [46] combines content similarity
and temporal proximity to measure the relationships be-
tween events. We refer to this baseline method as CSTP.
eTrack [29] track the development of events in adjacent win-
dows. EECM [27] use the combination of multiple features
to measure the relationships between two events. Therefore
we adopt CSTP, eTrack, EECM and KEM as baselines. In
CSTP, the similarity between events is computed as follows:

S im(Ei, E j) = T p(Ei, E j) · S imposts(postsi, posts j), (19)

where T p(Ei, E j) is the temporal proximity between Ei and
E j and it’s given by:

T p(Ei, E j) = e−
χ|ti−t j |

T , (20)

where T is the time distance between the earliest and the latest
event in our system. χ is the time decay factor and is set as 1
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in this experiment. S imposts(postsi, posts j) is related posts’
similarity between Ei and E j and it is given by:

S imposts(postsi, posts j) =

∑
pk∈postsi

∑
pl∈posts j

cos_sim(pk, pl)

|postsi| · |posts j|
,

(21)
where cos_sim(pi, p j) is calculated as same as Eq (15) except
the wi, j donates the frequency of term j in pi.

In EECM, the similarity between events is computed as
follows:

S im(Ei, E j) = α · S imposts(postsi, posts j)

+ β · S imlocs(locsi, locs j) + γ · S impars(parsi, pars j).
(22)

In KEM, the similarity between events is computed as fol-
lows:

S im(Ei, E j) = α · S imsubgraphs(keyi, postsi, key j, posts j)

+ β · S imloc(loci, loc j) + γ · S impar(pari, par j),
(23)

where S imsubgraphs is the phrase subgraphs’ similarity be-
tween Ei and E j and it is given by:

S imsubgraphs = max
i∈1,n, j∈1,m

S imT (Ti,T j), (24)

where S imT (Ti,T j) is the similarity of each phrase subgraph
pair and is calculated by cosine distance of average vector of
each subgraph.

Both of them calculated S imloc and S impar as follows:

S imloc(loci, loc j) =

 1 i f loci equals loc j;

0 otherwise.
(25)

and
S impar(pari, par j) =

pari ∩ par j

pari ∪ par j
. (26)

Meanwhile, EECM and KEM define evolution relationship
as S im(Ei, E j) > ε and ti < t j. Specially, they adopt point
clustering which means the whole evolution chain is gener-
ated by a single event, so all the events on the chain show
high similarity with each other.

Evaluation. We use P, R, F1 mentioned before to evaluate
the effectiveness of our algorithm. In this evaluation, G is the
set of events in the ground truth dataset, C is the set of events
in output result for Eq (18).

Table 4 shows the P, R, F1 of MLEM with different set-
tings of parameters α, β, γ, δ, KEM, EECM with best com-
bination of parameters, eTrack and and CSTP comparing to
the ground truth, the parameters have been optimized for im-
proving the results for each baseline method. To select the
best combination of parameters, first we initialize all param-
eters with random value except first parameter, and find the

Table 4 Evolution effectiveness results

Method α β γ δ P R F1

MLEM

1 0.0 0.0 0.0 0.5228 0.3228 0.3992
0.8 0.05 0.05 0.0 0.4470 0.3041 0.3619
0.7 0.1 0.1 0.0 0.5889 0.5298 0.5578
0.6 0.1 0.1 0.2 0.5758 0.5361 0.5552

0.55 0.15 0.15 0.15 0.6177 0.6332 0.6254
0.55 0.1 0.15 0.2 0.6294 0.7241 0.6735
0.5 0.1 0.15 0.25 0.5970 0.7429 0.6620
0.4 0.15 0.2 0.25 0.5194 0.6301 0.5694
0.4 0.15 0.25 0.2 0.5090 0.6238 0.5606

KEM 0.7 0.1 0.2 - 0.5896 0.5489 0.5685
EECM 0.7 0.1 0.2 - 0.5441 0.4451 0.4897
eTrack - - - - 0.5665 0.4138 0.4783
CSTP - - - - 0.5283 0.3511 0.4218

parameter1 with best performance, then we set first parame-
ter as parameter1, then we fix all parameters except second
parameter... when all parameters set, we continue finding best
parameter1, parameter2... until all parameters’ difference
from their previous value is less than 0.1.

For our method MLEM, we find that the setting α =

0.5, β = 0.1, γ = 0.15, δ = 0.25 has the highest recall and
the setting α = 0.55, β = 0.1, γ = 0.15, δ = 0.2, which is set
as default setting, has the highest precision and F1 score, and
outperforms other methods on every metrics.

Remarkably, we find the recall for other methods in our ex-
periment are much lower than MLEM, we check the ground
truth data and find out that the earliest and the latest events in
the evolution graph are not necessarily similar to each other.
For example, a disastrous event may evolute to a political
event since government officials may be accountable for the
accident. But the other methods consider them as irrelevant
events because it doesn’t reach the evolution threshold. In our
method, we get the old evolution graph already constructed
before by the most similar event and put our candidate events
into it, so events do not need to be similar enough to be in one
graph, which leads to the increase of recall.

Moreover, the other methods only take single location into
account, which lose evolution part in evolution graphs asso-
ciated with multiple locations. In addition, we find that the
recall of CSTP is much lower than other methods, we check
the ground truth and find out that some events in the evolu-
tion graph have long time distance, which is not accepted as
relationship by CSTP.

It is worth mentioning that we applied the MLEM to prac-
tical application RING and found that the promptness and
effect is satisfactory. This is another proof that our MLEM
model has good accuracy and strong robustness on event de-
tection and evolution task.
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Table 5 Case Study

Ground Truth MLEM EECM

2016/03/03 Korean media said North
Korea launched several short-range
missiles.

2016/03/03 Korean media said North
Korea launched several short-range
missiles.

2016/03/03 Korean media said North
Korea launched several short-range
missiles.

2016/03/12 The US and South Korea
held Ssangyong training, North Korea
intended to pre emptive retaliation.

2016/03/12 The US and South Korea
held Ssangyong training, North Korea
intended to pre emptive retaliation.

· · · · · ·

2016/07/19 07:00 North Korea
launches 3 ballistic missiles to the
east of the peninsula in Huangzhou.
2016/07/19 10:40 DPRK launched 3
missiles this morning, possibly protest-
ing South Korea’s decision to deploy
Sade.

2016/07/19 07:00∼10:40 DPRK
launched 3 missiles this morning, pos-
sibly protesting South Korea’s decision
to deploy Sade.

2017/02/12 North Korea launches a fly-
ing object, South Korean military anal-
ysis suspected to be Musudan missile.

2017/02/12 North Korea launches a fly-
ing object, South Korean military anal-
ysis suspected to be Musudan missile.

2017/02/12 North Korea launches a fly-
ing object, South Korean military anal-
ysis suspected to be Musudan missile.

2017/08/29 North Korea launched a
missile this morning, flying across
Japan.

2017/08/29 North Korea launched a
missile this morning, flying across
Japan.

2017/09/15 Japan has strongly con-
demned the North Korean missile
launch.(translated from Japanese)

2017/09/15 Japan has strongly con-
demned the North Korean missile
launch.

2017/09/05 South Korean Navy holds
live ammunition shooting exercises to
strengthen maritime combat capability.

2017/09/15 South Korean army
launched a ballistic missile against
North Korea.

2017/09/15 South Korean army
launched a ballistic missile against
North Korea.

2017/09/15 South Korean army
launched a ballistic missile against
North Korea.

2017/09/15 South Korea’s basaltic mis-
sile launch abnormal, fall into the sea.

2017/09/15 South Korea’s basaltic mis-
sile launch abnormal, fall into the sea.

2017/09/15 South Korea’s basaltic mis-
sile launch abnormal, fall into the sea.

Case study. Table 5 shows the comparison between our
method and EECM model based on an example about North
Korea missile problem. The ground truth describes it with
several evolution parts and we represent some unimportant
part as ellipsis. For EECM, it fails discovering some evo-
lution parts for reasons like only accept single location, un-
able to merge same entities and point clustering. Four loca-
tions occur in this scene: North Korea, South Korea, Japan
and U.S., the first two is main location but EECM only pick
one, so the similarity between the second event and the last
is calculated inaccurately and EECM miss the second event.
EECM model treats DPRK and North Korea as different en-
tities and fail evolution for the third event. Furthermore,
EECM gets evolution chain most related to South Korea but
the whole evolution graph is mainly on military interaction
between North Korea and South Korea, which leads to evo-
lution loss and mistake like the italic event. For our method,
it covers all the evolution parts of this long-term event and

discover splitting relationship between the bold events, the
former of which is detected from Japan media. In addi-
tion, the merged event’s t is underlined, representing by time
span. This case explains our method’s advantage on discov-
ering evolution patterns and high accuracy over the baseline
method EECM.

5 Conclusion

In this paper, we propose a novel model called MLEM for
multi-lingual event detection and evolution graph generation.
We introduce incremental word2vec to merge synonyms in
detection process. We combine the similarity measures of
phrase subgraphs, locations, participants, and summary to
evaluate the relationships among events. We adopt two-layer
filtering and semantic distance filtering to get the related
events for each given event to save calculation time. Ex-
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periments show the high performance of our MLEM model
in efficiency and effectiveness. For efficiency, our detection
model improves computing speed by 35.27% for each event,
and our evolution algorithm can generate an event evolution
graph for a given event in less than 2.5s on average, which is
98% speedup against the method without semantic distance
filtering. For effectiveness, our MLEM model outperforms
baseline method EECM and preliminary model KEM on both
precision, recall and time delay. The case study shows that
the evolution graph produced by our MLEM model covers
ground truth and discovers evolution patterns well.

When tracking events in post stream which is very large,
noisy, domain independent and multi-lingual, through a very
long time such that lots of semantic drift occurs, different
region events need to be detected timely and valuable event
evolution graph is needed, MLEM will works well. But there
are some limitations of MLEM. Firstly, the event detection
process is lack of domain knowledge, so MLEM will not
work well in specific domain event detection task. Secondly,
when calculating similarity between events, the graph struc-
tural characteristics are not fully utilized.

The future work is to integrate domain knowledge and ad-
vanced language representation model [47] into our model
to obtain richer information about events and explore more
event evolution patterns. Predicting the event trend based on
evolution graph is also considered as a future work.
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