
China Communications • May 2016141

very serious problem. The typical case in-
cludes stolen financial center data and runaway
high-speed vehicles, etc. Nowadays, com-
pression method has been extensively used
in many popular Web service and APP, such
as Google+, social networking services APP,
Amap navigation, Motor Vehicle Auto Driv-
ing System and Big data storage systems. For
example, the vehicles themselves form a tem-
porary network, and the participating vehicles
also serve as a wireless router [1]. No matter
the vehicle at a high speed or stop state, auto-
motive automation control systems are likely
to be attacked by hackers over the wireless
network and remote control. This makes Inter-
net of Vehicles (IOV) a prominent vertical for
the emerging Internet of Things (IOT) market
[2]. With the rise of the Internet+ economy,
it’s the identical threat for HTTP compression
services. However the core technology, for
preventing network traffic being attacked, is
a secure and reliable network communication
protocol and a security filtering system on
Network Intrusion Detection System (NIDS)
or Web Application Firewall (WAF). Gen-
erally, multi-pattern matching and regular
expression matching are key technologies of
deep packet inspection in networks analysis.
As far as we know, real compression data in-
cludes plaintext, compressed and encrypted
data. In this paper, we focus on a faster and
safer multi-pattern matching on compressed

Abstracts: Pattern matching is a fundamental
approach to detect malicious behaviors and
information over Internet, which has been
gradually used in high-speed network traffic
analysis. However, there is a performance
bottleneck for multi-pattern matching on on-
line compressed network traffic(CNT), this
is because malicious and intrusion codes are
often embedded into compressed network
traffic. In this paper, we propose an online fast
and multi-pattern matching algorithm on com-
pressed network traffic (FMMCN). FMMCN
employs two types of jumping, i.e. jumping
during sliding window and a string jump scan-
ning strategy to skip unnecessary compressed
bytes. Moreover, FMMCN has the ability
to efficiently process multiple large volume
of networks such as HTTP traffic, vehicles
traffic, and other Internet-based services. The
experimental results show that FMMCN can
ignore more than 89.5% of bytes, and its max-
imum speed reaches 176.470MB/s in a mid-
range switches device, which is faster than
the current fastest algorithm ACCH by almost
73.15 MB/s.
Keywords: compressed network traffic; net-
work security; multiple pattern matching; skip
scanning; depth of boundary.

I. INTRODUCTION

Security of compressed network traffic is a

Fast Multi-Pattern Matching Algorithm on
Compressed Network Traffic
Hao Peng, Jianxin Li, Bo Li, M. Hassan Arif

School of Computer Science and Engineering, Beihang University, Beijing, 100191, China

SECURITY SCHEMES AND SOLUTIONS

China Communications • May 2016 142

multi-pattern matching algorithm on com-
pressed networks (FMMCN). The algorithm
is based on the facts that parts of scanned
bytes don’t need to be scanned again, so we
designed a strategy to accelerate matching on
the LZ77 dataset. We reference the principle
of the Wu-Manber algorithm, and design FM-
MCN to adapt to LZ77 mixed datasets (literal,
distance and length) for security filtering in
vehicular network. Our key insight lies in only
scanning a limited depth of boundary bytes
replaced by LZ77 pointer.

In FMMCN, we design astack structure that
stores every hit pattern’s information for every
current session. We can reproduce location
of hits and corresponding patterns replaced
by LZ77 pointer, with only a lightweight
computation over the corresponding stack. In
online vehicular network traffic, up to 89.5%
of bytes can be ignored by skipping inner
data that is replaced by an LZ77 pointer. The
average speed of FMMCN algorithm reach-
es 176.470MB/S, with thousands of Snort
signatures and random malicious datasets, in
Mid-Range switches devices.It is remarkably
faster than Wu-Manber and Ad-AC matching
on decompression multi-byte data and even
faster than ACCH by about 70MB/S. The
FMMCN algorithm uses the backtracking of
LZ77 pointers and records stack structures for
multi-pattern matching on compressed vehicu-
lar networks.

II. BACKGROUND & RELATED WORK

The problem of multi-pattern matching
on compressed traffic has received many
researchers’ attention. According to Anat
Bremler-Barr [10] [11] [12], ACCH can gain
up 70% improvement in the performance of
multi-pattern matching on compressed HTTP
traffic. The papers [13] [14] [15] [16] show
that compressing a file once and then perform-
ing pattern matching on the compressed file,
accelerate the scanning process. Wu-Manber
and SBOM moving faster than Ad-AC on
multiple byte plain text. But, there is no one
put forward an accelerated multi-patterns

networks including HTTP traffic and vehicular
traffic.

Multi-pattern matching on compressed traf-
fic is a basic NIDS/WAF technique on HTTP
and vehicular networks to detect malicious be-
haviors in cyberspace. The performance of on-
line network security tools are dominated by
the speed of multi-pattern matching algorithms
on compressed traffic that detects malicious
activities. Nowadays traffic compression uses
gzip compression technology[3] and is exten-
sively used in many popular vehicular network
devices, Internet+applications and distributed
storage data system. In actual compressed traf-
fic packet, average compression rate of gzip
reaches 75% in the network transmission.

The ave rage compres s ion r a t e f o r
multi-coding network services will be slightly
lower and it also varies with different char-
acter sets. However, Multi-pattern matching
on CNT faces three time-consuming stages,
including network packets capturing, packet
decompression and multi-pattern matching.
In an actual online network environment, the
size of Ethernet packets range from 64 bytes
to 1518 bytes. Packet header stores some in-
formation about whether the current packet
uses gzip compression and the serial number
to reassemble, but it is useless for the content
matching. Gzip compression consists of LZ77
[4] and Huffman, which are unsupported by
compressed pattern matching. LZ77 decom-
pression consumes more time and space than
Huffman decoding. After Huffman and LZ77
decompression, the time consumption of ex-
cellent multi-pattern matching algorithms are
linear with the length of characters, such as
Multiple Shift-And [5], Ad-AC [6], Wu-Man-
ber [7] and, SBOM [8]. The Wu-Manber
and SBOM have more excellent matching
performance than AC in the field of multiple
byte matching. A faster online multi-pattern
matching method on compressed HTTP traffic
will improve performance and bandwidth for
vehicular network communication, such as
3G、4G、Wi-Fi telematics communications
as in reference [9].

In this paper, we present a novel fast

An onl ine fast and
multi-pattern match-
i n g a l g o r i t h m o n
compressed network
traffic is proposed in
this paper.

China Communications • May 2016143

the length of the repeated byte. For example,
the text: “apple fapplt”, will be compressed to:
“applef (6, 4) t” by LZ77.

Huffman mapping encodes literal, length
and distance bytes, working on a byte by byte
basis and transforms every byte to a corre-
sponding codeword. Huffman mapping uses
the coding of the most unbalanced tree which
ensures that no codeword is a prefi x for other
codeword. Huffman Dictionaries store a one-
to-one mapping relationship between input
byte and a corresponding codeword. Compres-
sion will generate two Huffman Dictionaries
and two types of coding bytes.

2.2 Multi-pattern matching

In the multi-pattern matching field, there are
four excellent performance automaton algo-
rithms, Multiple Shift-And [4], Advanced
Aho-Corasick, Wu-Manber and SBOM.
Multiple Shift-And algorithm uses the ar-
chitecture of the bit-parallelism method. It is
well suited in situations where patterns can be
stored in physical words. But actually, the to-
tal number of patterns is more than thousands
and includes multi-byte patterns. Advanced
Aho-Corasick is the best algorithm in pre-
fix search methods and suitable for parts of
character sets, in which the length of shortest
patterns is less than 8 bytes. But Advanced
Aho-Corasick has high memory consumption.
In multi-pattern matching, the suffix based
approach is faster than the prefix based one.
According to former research [17], every algo-
rithm works well in some suitable computing
conditions, as shown in fi gure 1.

III. THE CHALLENGES IN MULTI-
PATTERN MATCHING METHODS

In this section, we will give an overview of
the challenges in multi-pattern matching in
compressed n etwork traffic. Online pattern
matching will encounter more diffi culties than
offl ine matching. The online fi lter should not
affect the speed of network access for normal
service. The reliability of online multi-pattern
matching algorithm not only depends on pack-

matching algorithm on CNT.

2.1 Gzip

Gzip is a typical compression algorithm for
application layer communication, which is
composed of LZ77 and Huffman. Gzip com-
pression applies LZ77 once to reduce infor-
mation redundancy and three times Huffman
mapping to reduce coding length. The process
includes three kinds of compression tech-
niques. Firstly, the sequence of source sym-
bols is compressed by the LZ77. The output
consists of literal, distance and length pointer,
which will then be compressed by two types
of Huffman mapping. Then, the output of the
second compression stage is two Huffman dic-
tionaries and two types of Huffman coding bits
(LIT and DIST). Finally, Run Length encoding
and Huffman coding are used to compress two
Huffman dictionaries.

LZ77 has to search repetitive bytes in front
of historical characters, so it introduces sliding
window and minimum repeat length technol-
ogy. Sliding window stores the characters that
are just scanned, in order to take advantage
of reproducibility and locality in language
expression. Generally, the size of a sliding
window is 32 KB. When the length of repeat-
ed bytes is more than minimum i.e. 3 bytes,
then repeated bytes can be replaced by a short
pair (distance, length).The ‘distance’is the
distance of pointer from referred string, and
it is between 1 and 32768(32KB), and length
is a number between 3 and 258, which shows

Fig.1 Map of the most effi cient algorithms when searching for 1000 strings

China Communications • May 2016 144

value is affected by the actual situation of the
LZ77 compression ratio and the pointers dis-
tribution. The jumping affect will be increased
if the compression ratio is high. In compressed
traffic networks, the ACCH’s speed reaches
about 103.707MB/S in matching LZ77 mixed
datasets, based on 1000 malicious snort pat-
terns. But this speed is not enough for online
services networks.

3.3 Distribution of pointers

CNT services like Motor Vehicle Auto Driv-
ing System, Amap navigation, SNS App, and
Google App have more numbers than charac-
ters. On average, a complete network request
contains more than 60 segments (60+ packets)
and the total size of compressed traffi c is 76.2
KB. The average compression ratio of network
traffic is 70.4%, and in commonly used web

et capturing and matching, but also on time
and space consumption. Importantly, Huffman
Dictionaries are stored in the first packet. In
general, different network sessions have dif-
ferent Huffman Dictionaries.

Published excellent algorithms are based
on accelerating Aho-Corasick for multi-pat-
tern matching on compressed HTTP (ACCH)
.ACCH performs LZ77 decompressing and
pattern matching at the same time, and adds
status information for every byte to compute
the best pointers depth. It only scans a limited
depth of boundary characters in LZ77 point-
er‘s referred string. The main challenges in
multi-pattern matching are:

3.1 Space

For each t raffic session, the time and space
consumption in Huffman decoding is very
little, while it‘s inevitable that 32KB sliding
window are costly for LZ77 backtracking
straight in each session. In an actual network
environment, the size for most of the Ethernet
packets is 1.5KB, after removing the header.
Notably, the space complexity of AC algo-
rithm is . In 1000 malicious snort
patterns, space consumption of AC’s DFA [18]
[19] [20] [21] requires about 10.6MB to store
10174 states. There will be large memory con-
sumption for high concurrent sessions.

3.2 Time

The speed of existing pattern matching algo-
rithms is not up to mark in networks. In the
search phase, the time complexity of ACCH
algorithm is determined by the length of the
input string and the depth of the pointer’s
back tracking. The size of the backtracking
length should not exceed the total size of text
characters that are scanned. For mixed data-
sets (literal, length and distance), ACCH is a
good method of matching which uses skipping
internal data. When the reference characters
are scanned, it combines status of scanned
characters with the DFA depth information.
Then it needs to scan a fi nite depth boundary
characters. The ACCH algorithm can speed up
matching by skipping about 60%-70%, but the

Fig.2 Distribution of the pointer characteristics on CNT(a) distance of a pointer
(b) length of a pointer

(a)

(b)

China Communications • May 2016145

jumping sliding window, whose length is same
as the length of minimum pattern. In prepro-
cessing, we constructed a Shift table and Hash
table with malicious characters and block siz-
es. Hash table stores the block size of pattern’s
end characters and pattern’s index. Shift table
stores step information for sliding windows.
According to Wu-Manber’s research, if the
size of block is:

It will perform the best sliding effect. In
our scenario, one byte’s max capacity is 256
different characters, so , and

. The optimal block sizeB is therefore
2. Then the algorithm reads the last 2 bytes
in the sliding window and selects step infor-
mation from the Shift table. When the step is
0, the characters in the window may be a part
of malicious pattern, so we need an accurate
checking of the calculations. The space com-
plexity for Shift table is:

4.1 Designing of FMMCN

In this section, we will present a novel FM-
MCN algorithm on the LZ77 mixed datasets
[22]. In a 32KB sliding window, there are no
more than three duplication bytes. In FM-
MCN algorithm, decompressingLZ77 and
pattern matching are sequentially performed,
as shown in fi gure4. The optimization distance
between the LZ77 decompression window and
matching window is . The position of the
LZ77 decompression window changes with
the length of pointers.

4.1.1 Jump

Actually, referred string was matched, so
we believe that parts of bytes in mixed data-
sets can be skipped in patterns matching.
With the same input bytes, table must return
same Shift stepand hash value. We designed
a HitStack to store the location of hits and
corresponding pattern information for every
traffic session.The size of HitStack increases
with the increase in number of hits. We can’t
skip all bytes in referred string, such as the

pages is 78.4% as shown in fi gure 2.CNThas
smaller number of longer length pointers as
compared to web pages. Generally, the speed
of matching is directly proportional to the
length of pointers.

IV. FAST MULTI-PATTERN MATCHING
ALGORITHM ON COMPRESSED
NETWORK TRAFFIC

In this paper, we will focus on multi-service
compressed network traffic, especially on
performance matching on multiple navigation
and surfi ng services that were compressed by
gzip. Wu-Manber (fi gure3), a suffi x matching
algorithm, is an extended version of Horspool
in multi-pattern matching. There is a special

Fig.3 Illustration of Wu-Manber Algorithm

Data to match Windows
Moving

SHIFT Table

HASH Table

Is Zero ?

Hash

B

Check

Step

Patterns
Step =1

YY

NN

StepStep =Value

Fig.4 Illustration of decompressingLZ77 and pattern matching

Matching
Window

LZ77 LZ77 LZ Decompression window

Jumping stepJumping step

Referred String

China Communications • May 2016 146

from top to bottom, and the time consumption
of the traversal is negligible.

V. EXPERIMENTAL RESULTS

In our experiments, we need two types of
datasets, one of the online CNT and the oth-
er of malicious signatures, including open-
source snort [23] and random malicious text.
All of theCNTwas filtered from 10 devices. It
was continuously captured and matched for
more than 1000 hours. In these experiments
4different algorithms are implemented, name-
ly AC, WM, SBOM, and ACCH, and their
results are compared with FMMCN. These
are excellent multi-pattern matching methods
forum compressed data or LZ77 mixed data-
sets. The number of input patterns includes

boundary of bytes. In our design, the depth
of boundary is .Left side of boundary
takes up one byte in front of referred string,
and jumps to right side of boundary, so does
the right boundary side in the back of pointer
bytes. Obviously, only if the Length is more
than than Internal Area bytes can be
skipped. Short pointer also needs to perform
accurate pattern matching.

4.1.2 HitStack

It is an excellent strategy, to skip Internal Area,
in which the result of multi-pattern matching
is determined. When the Length is more than

, LZ77 decompression window will
calculate the jumpingstep for matching win-
dow and traverse the HitStack to deduce a new
probable location of a hit as shown infigure5.
Therefore, there are two ways to get a location
of hit, which includes accurate pattern match-
ing and deducing result (see detailed pseudo
code in Algorithm 1). Actually, in one session,
the size of HitStack is very small or sometimes
even empty. HitStack stored index of every
successful pattern matching and position for
every session. It not only stores the final result
set, but also has an important role in determin-
ing whether or not current pointer’s bytes are
replaced by referred string. In the search pro-
cess, the direction of the Hitstack’s traversal is

Referred
String

Length

Pointer
(Distance,Length)

Distance

Pointer
(Distance,Length)

Pointer

 Pointer

Internal Area

ScanDepth of Boundary

Invalid Data Area

Skip Scanning

Referred
String

Pointer
(Distance,Length)

Pointer
(Distance,Length)

Internal Area Internal Area

Scan Scan
jump jump

Hit

Hit
Stack

push
deduce

push

Hit Depth of BoundaryScan

Fig.5 Illustration of pointer and referred string in scanning. Internal area can be skipped

Algorithm 1: Deduce Hit Position with LZ77 Pointer

FunctionDeduce (position, distance, length)
	 For each i =0 to size of HitStack do
	 Leftposition = HitStack.search (i, left)
		 Rightposition = HitStack.search (i, right)
		 Pattern_id= HitStack.search (i)
		 If �((position- distance<= Leftposition) && (position-distance+ length=>

Rightposition))
			 HitStack.push (Leftposition + distance, Pattern_id)
		 EndIf
	 End for
�

China Communications • May 2016147

1000,2000,3000,5000 and 10000. The algo-
rithms are written in C++ and are evaluated on
10devices with Linux server, Windows server
and android-based car terminal open system.
For every environment, traffic contains more
than 1596854 CNT packets whose size is
122957MB in compressed form. In FMMCN
and ACCH when Huffman decoding is ap-
plied, it is changed in more than 314770MB in
the LZ77 mixed datasets approximately. The
average compression ratio of the vehicular
network is 70.4% and the average length of a
back-reference pointer is 48.8.

The Snort data-set have 3400 signatures,
but most of them are binary and unfit for
HTML searching. After removing no effect
signatures, a subset of about 1,200 textual
patterns is left. Snort datasets are not designed
to be performed on vehicular or HTTP net-
work. Thus, we mixed a proportion of random
meaningful malicious text as part of patterns,
including multi-byte and single-byte patterns.
However, many researches refer Snort dataset
as signatures, and since it makes us to intro-
duce parts of effective dataset to evaluate FM-
MCN and ACCH. In experiments, we random-
ly extracted meaningful malicious pattern text.
The length of all the patterns is 9 byte or more
for different experiments.

5.1 Matching speed

AC, WM and SBOM all need to decompress
packages into plaintext so their performance
is low for multi-pattern matching on com-
pressed data. ACCH and FMMCN can directly
perform multi-pattern matching on a LZ77
mixed datasets. On average, Huffman decodes
34.4KB compressed traffic to 90KB as does
LZ77 mixed datasets, which can be extract-
ed to 290KB plaintext approximately in the
end. Time consumption of Huffman decoding
is negligible, though the time complexity is

.The speed can be calculated as:

The best performance of FMMCN algo-
rithm is 176.47MB/S for 1000 patterns, even
faster than ACCH by about 70MB/S. FMMCN

Algorithm 2: Fast multi-pattern matching algorithm on CNT

FMMCN.Preprocessing is function of constructing the table of SHIFT and HASH.
For invariant patterns and network sessions, it’s only need to initialize once.
HitStack stores successful matching.
	 Function Preprocessing (, B, d)
		 ⊿ Computation of B
		 Initialize all elements of SHIFT to - B+1
	 For i=0; i<d; i=i+1 do
		 For q=m; ; q=q-1
			
			
			
			 IF Then
				
				
				
			 End IF
		 End for
	 End for
	 Procedure FMMCN(, Plain_Size)
	 Preprocessing(, B, d)
	 Construction of the tables of SHIFT and HASH.
	 Searching
		 =
	 While Do
		 IF flex< position- blockMaxIndex+ mBlock-1 Then
			 For p=0; p< ; p++
				 If thereexistsdistanceor length then
					� Memcpy (, ,length)

copy distance and length’s literal data
					 If length>
						 jump_step = length -
						 Deduce (position, distance, length)
					 Else
						 jump_step =0
					 End if
					 flex += length
				 Else
					 Memcpy (, -distance,1)
					 flex++
				 End if
			 Endfor
		 End If
		� blockHash = HashCode(+index- blockMaxIndex, mBlock)

⊿ compute Hash value
		 blockHash = blockHash % mTableSize
		 shift = mShiftTable[blockHash]
		 shift =
	 If position> 0
		 position += shift+jump_step
	 Else
		 Check allcorresponding pattern in HASH table with length of plain text
		 If Matching
			 HitStack.push (position,pattern.id)
		 End if
			 position++
	 End If
End of while
�

China Communications • May 2016 148

can ignore more than 89.5% of bytes during
scanning, because it uses two types of jumps,
i.e. jump during sliding window and jump
during scanning. Table 1 and table 2 shows
the comparison of time and speed for above
mentioned algorithms respectively. The per-
formance of FMMCN is better than all public-
ly available algorithms for CNT, as shown in
Figure6.

5.2 Memory usage

The proposed algorithm FMMCN consumes
the same memory as Wu-Manber. The mem-
ory usage of FMMCN depends on the size of
the SHIFT table and the HASH table. In exper-
iments we use 2 bytes as block size. FMMCN
also supports efficient hash search to select
SHIFT and HASH tables, after reading a block
of characters. To reduce the probability of a
hash collision, we choose to map the theoreti-
cal space onto a larger fi xed space in the same
order of magnitude. In most cases, FMMCN
can show distinct advantages of memory
space, as shown in fi gure7.

5.3 Preprocessing time

Preprocessing time is of great signifi cance in
real-time traffic filtering. The shorter prepro-
cessing time makes our application work more
effectively. In fact, the preprocessing time of
FMMCH is similar with Wu-Manber on the
support of matching. In 1,000 patterns and
10,000 patterns, preprocessing time of FM-
MCNis barely half of the time used by AC and
SBOM, as shown in fi gure8.

Table II time consumption(S) of decompressing and matching for 34.4KB CNT
AC WM SBOM ACCH FMMCN

Decompressing LZ77 Time 0.00043 0.00043 0.00043 0 0

Matching
time

1000patterns(500 Snort + 500 Random) 0.002723 0.001712 0.000415 0.000871 0.00051

2000patterns(1000 Snort + 1000 Random) 0.002977 0.001815 0.000462 0.000893 0.000607

3000patterns(1000 Snort + 2000 Random) 0.002876 0.001721 0.000507 0.000920 0.000530

5000patterns(1000 Snort + 4000 Random) 0.002724 0.001849 0.000517 0.000830 0.000550

10000patterns(1000 Snort + 9000 Random) 0.002702 0.002057 0.000527 0.000824 0.000580

Fig.6 Matching speed of AC, WM, SBOM, ACCH and FMMCN on real CNT

Fig.7 Memory consumption of AC, WU-Manber, SBOM, ACCH and FMMCN

China Communications • May 2016149

for the WU-Manber algorithm. Therefore all
the methods to improve Wu-Manber are also
applicable to FMMCN. The proposed FM-
MCN algorithm is also suitable for various
HTTP traffic. In future we are planning to
implement FMMCN for NetFPGA platform to
security matching of compressed traffi c.

ACKNOWLEDGEMENTS

This work was supported by China MOST
project (No.2012BAH46B04).

References
[1] Parul T, Deepak D, “Investigating the Security

Threads in Vehicular ad hoc Networks (VANETs):
Towards Security Engineering for Safer on-road
Transportation,”2014 International Conference
on Advances in Computing (ICACCI), pp 2084-
2090, Sep,2014.

[2] Abdelmajid K, David S,”On the Suitability of De-
vice-to-Device	Communications	for	Road	Traffi		c	
Safety,”201 4 IEEE World Forum on Internet of
Things(WF- IoT),pp 224-229, Mar,2014.

[3]		 	PDeutsch,	“Gzip	fi	le	format	specifi	cation,”	May,	
1996, http://www.ietf.org/rfc/rfc1952.txt.

[4]	 	JZiv	and	ALempel,	“A	universal	algorithm	for	se-
quential data compression,”1977 IEEE Transac-
tions on Information Theory, May, pp337– 343,
1977.

[5] R Prasad, SAgarwal, “Parameterized shift-and
string matching algorithm using superalpha-
bet,”2009 International Conference on Com-
puter and Communication Engineering (ICCCE
2008), Sep, pp. 8-13,2008.

[6]	 	AAho	and	MCorasick,	“Effi		cient	string	matching:	
an aid to bibliographic search,”Communications
of the ACM, pp 333–340, 1975.

[7] SWu and UManber, “A fast algorithm for
multi-pattern searching,” Department of Com-
puter Science, University of Arizona, 1994.

[8] CharalamposS, KonstantinosG,”Exact online
two-dimensional pattern matching using multi-
ple pattern matching algorithms,” ACM Journal
of Experimental Algorithmic,Vol. 18, No. 2,2013.

[8] PDeutsch, “Deflate compressed data format
specification,” 1996, http://www.ietf.org/rfc/
rfc1951.txt.

[9] Bassem M, Mohamed A, “Survey on Security
Issues in Vehicular Ad Hoc Networks,”Alexandria
Engineering Journal, pp 1115–1126, 2015.

[10] Anat B, Yaron K, “Accelerating Multi-pattern
Matching on Compressed HTTP Traffic,”INFO-
COM 2009, pp 397 – 405, 2009.

[11] Anat B, Yaron K, “Accelerating Multipattern
Matching on Compressed HTTP Traff ic ,”
IEEE/ACM TRANSACTIONS ON NETWORK-

VI. CONCLUSION

In modern network security tools, multi-pat-
tern matching algorithm is very important. The
Gzip compression has become a widely used
application standard in fast network transmis-
sion including veh icular network and HTTP
service, etc. In compressed multi-pattern
algorithms, FMMCN has achieved the best
performance on CNT. The algorithm proposed
in this paper can ignore more than 89.5% of
bytes due to jumps at two different stages.
The maximum speed reaches 176.470MB/S
in 1000 patterns, even faster than ACCH by
about 70MB/S. During performing pattern
matching on compressed data, FMMCN is
faster than AC, too. FMMCN is not intrusive

Table II Patterns matching speed (MB/S) of AC, WM, SBOM, ACCH and FMMCN
on real life CNT of multi-byte web page.FMMCN is our contribution

AC WM SBOM ACCH FMMCN

1000patterns 10.91 16.059 40.71 103.329 176.47

2000patterns 10.1 15.08 38.57 100.772 148.27

3000patterns 10.41 15.99 36.71 97.792 170.778

5000patterns 10.91 15.09 36.33 108.327 164.534

10000patterns 10.856 13.671 35.528 109.209 155.979

Fig.8 Preprocessing time of AC, WU-Manber, SBOM, ACCH and FMMCN

China Communications • May 2016 150

COM2011, pp 810–819, April, 2011.
[22]	� A. Amir, G. Benson, and M. Farach, “Let sleep-

ing files lie: Pattern matching in z-compressed
files,” Journal of Computer and System Sciences,
Vol.52, pp 299–307, 1996.

[23]	� Cisco, “Snort Dataset”,https://www.snort.org.

Biographies
Hao Peng, is currently a Ph.D. candidate at the
School of Computer Science and Engineering in Bei-
hang University (BUAA), China. His research interests
include network security, big datamining, cloud com-
puting. Email: penghao@act.buaa.edu.cn.

Jianxin Li, associate professor at the School of Com-
puter Science and Engineering, Beihang University.
He received his PhD degree from Beihang University
in 2008. He was a visiting scholar in machine learning
department of CMU in 2015, and a visiting research-
er of MSRA in 2011. His current research interests
include data analysis and processing, distributed
systems, and system virtualization.The corresponding
author.Email: lijx@act.buaa.edu.cn.

Bo Li, assistant professor at the School of Computer
Science and Engineering, Beihang University. His cur-
rent research interests include information security,
cloud computing, big data mining and analyticsand
trusted computing. Email: libo@act.buaa.edu.cn.

M. Hassan Arif, is currently a Ph.D. candidate at the
School of Computer Science and Engineering in Bei-
hang University (BUAA), China. His research interests
include datamining and cloud computing. Email:
mhassanarif@act.buaa.edu.cn

ING,Vol.20,pp 970-983, 2012.
[12]	 �YAfek, AB, Y. Koral, “Space efficient deep packet

inspection of compressed web traffic,”Comput-
er Communications, Vol. 18, No. 2, pp 810-819,
2012.

[13]	� UManber, “A text compression scheme that al-
lows fast searching directly in the compressed
file,” ACM Transactions on Information Systems
(TOIS),Vol.807, pp 124 – 136, 1997.

[14]	� MTakeda, YShibata,”Speeding up string pattern
matching by text compression: the dawn of a
new era,”Transactions of Information Processing
Society of Japan,Vol.43, pp 370–384, 2001.

[15]	 �NZiviani, E. de Moura, “Compression: A key for
next-generation text retrieval systems,” Com-
puter,Vol33, pp 37-44, 2000.

[16]	� Dana S, Ajay D, “Adapting the Knuth–Morris–
Pratt algorithm for pattern matching in Huff-
man encoded texts,”Data Compression Confer-
ence(DCC 2004), March, 2004.

[17]	 �Navarro G, Raffinot M, “Flexible Pattern Match-
ing in Strings: Practical On-Line Search Algo-
rithms for Texts and Biological Sequences,”
Cambridge University Press, pp41-74, 2002.

[18]	� N. Tuck, T. Sherwood, “Deterministic memory
efficient string matching algorithms for intru-
sion detection,”INFOCOM 2004,March 7-11,
Vol.4, pp 2628-2639, 2004.

[19]	 �T. Song, W. Zhang, “A memory efficient multiple
pattern matching architecture for network se-
curity,” INFOCOM2008, April,pp 166 – 170,2008.

[20]	� J. van Lunteren, “High-performance pat-
tern-matching for intrusion detection,”INFO-
COM2006, pp 1–13, 2006.

[21]	� Y. Liu, Q. Liu,”Speeding up pattern matching
by optimal partial string extraction,”INFO-

