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Abstract

Graph-structured data underpins complex systems
across domains, yet contemporary Al models lack
native mechanisms to interpret such data. Tradi-
tional metrics that overlook hierarchical or modular
structures hinder this. Structural entropy, rooted
in Shannon’s information theory and the minimum
description length principle, addresses this by quan-
tifying the uncertainty in a graph’s structure after
optimal compression. Initially applied to commu-
nity detection, structural entropy now spans diverse
applications, yet a systematic synthesis of its theory,
methods, and applications remains absent. This sur-
vey bridges this gap by providing a comprehensive
overview of structural entropy’s theoretical founda-
tions, computational frameworks, and cross-domain
impact. Through a detailed examination of com-
putational methods, learning paradigms, and cross-
domain applications from Bioinformatics to pattern
recognition, this survey underscores the potential of
structural entropy in advancing graph analysis and
understanding. Finally, we identify key challenges
and suggest future research directions, advocating
integration with large language models and embod-
ied Al to advance reasoning in real-world.

1 Introduction

Graph-structured data underpins modern computational mod-
eling, capturing relational patterns in biological networks,
social interactions, traffic systems, and knowledge bases. Its
significance extends to Al, where neural architectures mirror
biological neural topologies, swarm intelligence emerges from
networked agents, and reasoning systems demand structured
representations of entities and relationships. Despite their
universality, graphs remain a persistent challenge for contem-
porary Al: even state-of-the-art large language models, such
as GPT 03-mini [OpenAl, 2025] and DeepSeek-R1 [Guo et
al., 2025], lack native mechanisms to interpret or generate
graph data, limiting their ability to reason over interconnected
systems where semantics arise from topology [Li et al., 2024].

This limitation stems from a deeper issue: conventional
metrics (e.g., centrality, clustering coefficients) often fail to

capture the intrinsic structural semantics—hierarchies, multi-
scale modules, or latent functional dependencies—that define
a graph’s organizational principles. To address this, structural
information theory quantifies the informational essence of net-
works through structural entropy (SE), a concept tracing its
origins to Shannon’s 1953 challenge to measure “structural
information” in communication systems. Building on the min-
imum description length principle [Rissanen, 1978], which
posits that the best model for data is the one that compresses
it most succinctly, SE formalizes the uncertainty inherent in
a graph’s structure after optimal compression [Li, 2024]. A
graph with clear regularities (e.g., clusters, and hierarchies)
exhibits lower entropy, while disordered graphs resist com-
pression and yield higher entropy.

Early applications of SE focused on community detec-
tion. Minimizing SE, by searching for a nested partition
of a graph into hierarchical layers, provides a theoretically
grounded method to identify a network’s “true” or ’true’
community structure [Li and Pan, 2016al. Conversely, in-
creasing entropy can obscure community structures, leading
to random graph behavior and enabling privacy-preserving
graph anonymization or synthetic network generation [Liu
et al., 2019]. Beyond communities, the framework has
driven advances across domains: detecting chromatin topo-
logically associated domains in genomics [Li et al., 2016;
Li et al., 2018; Li et al., 2023; Li et al., 2021], quanti-
fying knowledge in geoscience citation networks [Wang et
al., 2023al, improving graph neural networks (GNNs) via
structure-aware learning [Wu et al., 2022; Zou et al., 2023;
Duan et al., 2024], segmenting images [Zeng et al., 2023a;
Xie et al., 20251, quantifying graph similarity [Yang et al.,
2024a], designing robust infrastructure networks [Li and Pan,
2016b; Li et al., 2015], identifying social bots and adver-
sarial structures [Zeng et al., 2024b; Yang er al., 2024c;
Peng et al., 2024], detecting social event [Cao et al., 2024b;
Yang et al., 2024d; Yu et al., 2025], and enhancing reinforce-
ment learning through structured state-space exploration [Zeng
et al., 2023b; Zeng et al., 2024c]. These successes underscore
SE’s versatility in extracting actionable insights from any sys-
tem modeled as a graph with latent organization.

Despite these significant advancements, a systematic review
of SE’s diverse applications across domains is still lacking.
This paper aims to fill this gap by providing a comprehensive
overview of the theoretical foundations, computational meth-



ods, and learning paradigms leveraging SE in graph analysis.
We discuss its applications in various fields, including bioin-
formatics, social networks, and pattern recognition, as shown
in Figure 1. The paper is structured as follows. Section 2
outlines the basic concepts and theoretical foundations of SE.
Section 3 delves into learning methods. Section 4 explores
cross-domain applications. Section 5 concludes with future
directions and open challenges.

2 Basic Concepts
All definitions in this section are taken from [Li, 2024].

2.1 Information Systems and One-Dimensional SE

An information system models a collection of interacting en-
tities and their dynamic relationships. Formally, such sys-
tems can be represented through two equivalent mathematical
frameworks: a graph-theoretic structure and an algebraic ma-
trix model.

Definition 2.1 (Graph Model of an Information System). An
information system is formulated as a directed, weighted graph
G = (V,E,W), where:

* V. ={1,2,...,n} is a set of vertices representing enti-
ties,

e E CV x Visa set of directed edges encoding interac-
tions between entities,

o W : E — R is aweight function such that W (i,5) > 0
quantifies the interaction strength from entity i to j. If
(1,5) ¢ B, W(i,j) = 0.

Weights may represent influence, transition probabilities, or
connection strength, ensuring W (i, j) > 0 for all i, j.

Definition 2.2 (Algebraic Model of an Information System).
Equivalently, an information system is represented by a non-
negative matrix A € RLg", where a; j = W (i, j). Each entry
a; j denotes the interaction from entity i to j, preserving the
structure of G.

The algebraic model facilitates the analysis of system dy-
namics through linear algebra and spectral methods. A critical
tool for understanding such systems is the one-dimensional
structural entropy (1D-SE), which quantifies the inherent un-
certainty in predicting entity interactions in a random walk
framework.

Definition 2.3 (Random Walk and Stationary Distribution).
For an irreducible matrix A, let 7 = (7y,...,7,) denote
the unique stationary distribution satisfying #* A = w”. The
transition probability from x to y is:

_ g,y
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z=1 g,z
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where by, ,, is the normalized interaction strength. The volume
ofasubset X CVisVx =)y T

Definition 2.4 (1D-Structural Entropy). The 1D-structural
entropy of an information system is the Shannon entropy of its
stationary distribution:

HY(G) = — Z 7 log s )

zeV

This measures the uncertainty in the random walker’s long-
term presence across entities.

The 1D-SE measures the uncertainty of the walker’s po-
sition without any assumption of structural grouping, which
can be viewed as a good approximation of the von Neumann
graph entropy [Liu et al., 2022]. Lower entropy indicates a
more centralized structure, while higher entropy suggests a
decentralized topology. This entropy is a foundational metric
for analyzing information flow and stability in systems rang-
ing from social networks to biological interactions [Pons and
Latapy, 2005; Page, 1999].

2.2 Encoding Tree and Structural Entropy

The hierarchical organization of complex systems moti-
vates the concept of encoding tree, which provides a multi-
resolution framework for analyzing structural entropy. En-
coding tree formalizes the notion of hierarchical abstraction,
enabling the systematic decomposition of information systems
into nested clusters.

Definition 2.5 (Encoding Tree). Let A be a finite set. A coding
tree T for A is a rooted tree satisfying the following condi-
tions:

e The root node ) is associated with the entire set A, i.e.,
T\ = A

* Each node o € T represents a non-empty subset of A,

ie, T # 0.

e Each node o has a set of immediate successors
Bo, B1s ..., 01, where l > 1, and each successor node
Bj =a-j(forj=0,1,...,1) represents a finer parti-
tioning of the set T,.

* The collection of subsets {Tg,, T3, , ..
partition of T,.

., Tg,} forms a

* Each leaf node ~y corresponds to a singleton subset, i.e.,
T, = {a}, where a € A is a specific element of the set.

In the context of a graph G = (V, E), an encoding tree T
serves as a rooted tree that abstracts the relationships between
nodes V' by partitioning them into clusters at multiple levels
of granularity. More formally, each node « of the encoding
tree represents a subset 7,, C V' of the original graph’s nodes.
The root node, denoted by A, represents the entire set V', while
the leaf nodes correspond to all individual nodes in the graph.
Intermediate internal nodes represent finer partitions of the
graph, where each child node of a given internal node corre-
sponds to a more specific subset of nodes.

The encoding tree can be particularly useful in analyzing
graphs that exhibit community structure or hierarchical organi-
zation. In such cases, encoding a node’s identity can be made
more efficient by first identifying the community to which the
node belongs and then pinpointing the specific node within
that community. The concept of structural entropy formalizes
this idea by quantifying the uncertainty in the system using an
encoding tree, where the entropy measures the complexity of
the hierarchical structure.

Definition 2.6 (Structural Entropy of the Encoding Tree T).
Let A be a finite set, and T be an encoding tree for A. Suppose
that A is represented by an irreducible non-negative matrix
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Figure 1: A taxonomy of Structural Entropy works.

A = A,xn = (aij), where the matrix encodes the relation-
ships or interactions between elements in A. The structural
entropy of the information system A under the spectral ab-
straction represented by the encoding tree T' is defined as:

Va
HT(A) = - Z Pa 10g2 V7a
a€T ,a#A\ o

where p,, is the probability distribution associated with node «,
V., represents the size (or volume) of the subset corresponding
to o, and V- denotes the size of the subset corresponding to
the parent node o~ of a.

As defined in 2.3, p,, reflects the likelihood of the system
being in the subset T,,, while V,, is the volume of T, in terms
of the total interaction or influence within the system. The
entropy term — logy VVQ_ captures the relative uncertainty of

T, compared to its par(ént subset V-, providing a measure of
the partitioning complexity within each node on the tree. The
overall SE HT(A) thus quantifies the total uncertainty in the
system, accounting for the distribution of uncertainty across
all hierarchical levels in the encoding tree.

The SE provides insight into the degree of uncertainty in
the system under the hierarchical abstraction, which is crucial
for understanding the overall complexity of the system’s orga-
nization. It highlights how information is distributed across
different subsets of nodes and how the granularity of the hierar-
chical structure impacts the uncertainty of node identification.
Moreover, SE is particularly useful in systems where the nodes
exhibit community structures or other forms of organization.

It quantifies the potential for efficient encoding based on the
hierarchical relationships captured in the encoding tree.

3 Theoretical Foundations

3.1 Foundational Theoretical Works

The theoretical framework of SE was established through
pioneering works that formalized its mathematical foundations
and core principles.

Foundation Theory. Foundational research on SE has es-
tablished it as a principled framework for analyzing graph
complexity through information-theoretic lens. The seminal
work by [Li and Pan, 2016a] introduced structural entropy as
a quantitative measure of graph structural complexity, formal-
izing its interpretation as the minimum code length required
to describe a network’s hierarchy under random walks. Fur-
thermore, they demonstrated that SE minimization enables
the identification of intrinsic multiscale structures in complex
networks, bridging graph theory with Shannon’s information
principles. Broadening the theoretical framework, [Li, 2024]
introduced the pioneering concept of the information world
and established a hierarchical abstracting paradigm to char-
acterize behaviors of complex information system. The work
formulated fundamental laws of information, derived math-
ematical principles of information dynamics, and redefined
artificial intelligence within an information-theoretic frame-
work. This unified SE concepts across network science, infor-
mation theory, and Al, establishing the Information Science
Principles of AI (ISPAI) and laying axiomatic foundations for
structural information theory, offering a cohesive framework



for understanding complex systems in both theory and modern
Al applications.

Theoretic Analysis. Theoretical advances have rigorously
characterized foundational properties of SE and expanded
its computational frameworks. [Zhang et al., 2021a] re-
examined SE’s role in social network dynamics, devising a
togetherness improvement metric that quantifies integration
efficacy through entropy reduction. By iteratively adding inter-
community edges to minimize SE, their algorithm effectively
dissolved modular structures, advancing SE’s applicability in
network unification tasks. Moreover, [Liu et al., 2022] estab-
lished a critical theoretical link between SE and spectral graph
analysis, proving that the entropy gap between SE and the
von Neumann graph entropy lies within [0, ] for any undi-
rected graph. Alongside these spectral insights, [Yang e al.,
2024b] introduced incremental computation paradigms for dy-
namic graphs, proposing two adjustment strategies to update
encoding trees and optimize SE iteratively.

Extension Work. Recent extensions have generalized SE prin-
ciples to analyze more complex network topologies through
specialized formulations and applications. [Yao ef al., 2019]
pioneered a localized two-dimensional SE for directed graphs,
proposing a flow-based clustering algorithm that identifies
transaction communities in financial networks by maximizing
intra-cluster fund retention. Complementing this direction,
[Zhang et al., 2024] devised a random walk-based entropy
(RWE) for directed graphs, establishing its equivalence to von
Neumann entropy via a bounded entropy gap while enabling
efficient community detection through two-dimensional RWE
minimization. Further extending SE to heterogeneous rela-
tional data, [Cao et al., 2024a] introduced multi-relational
structural entropy through a random surfing framework that
jointly optimizes node and relation selection, demonstrating
superior interpretability in tasks like social event detection.
Moreover, [Zhang et al., 2023] established an information-
theoretic link between SE and source localization, proposing
infected tree entropy to minimize structural deviations in cas-
cade traces. Alongside this, [Huang et al., 2024] developed
SE-guided probabilistic coding as a variant of SE, introducing
a SE regularization loss to enhance probabilistic embeddings.
Discussion. Theoretical advances in SE have significantly
expanded its applicability across diverse network types and
analytical tasks, yet key challenges and open questions per-
sist. While foundational works established SE’s information-
theoretic roots, recent extensions reveal trade-offs in adapting
SE to specific contexts. For directed graphs, the flow-based
[Yao et al., 2019] and the random walk-based [Zhang et al.,
2024] formulations prioritize distinct aspects of directional-
ity, raising questions about their comparative effectiveness
in capturing asymmetric interactions. Similarly, incremental
SE [Yang et al., 2024b] efficiently handles dynamic graphs
but only considers simple operations, which may limit its
ability to adapt to non-trivial structural shifts. In contrast,
multi-relational SE introduces interpretability at the cost of
increased computational complexity. A critical gap lies in
unifying these specialized variants into a cohesive framework,
particularly for heterogeneous networks where relational and
temporal dimensions coexist. Theoretically, while connections
to spectral entropy [Liu er al., 2022] enrich SE’s foundations,

the interplay between SE and traditional graph-theoretic objec-
tive functions (e.g., modularity [Newman and Girvan, 2004],
the map equation[Rosvall and Bergstrom, 2008], Dasgupta’s
cost function[Dasgupta, 2016] etc.) remains underexplored.
Future work could benefit from comparative studies of SE vari-
ants and hybrid approaches that bridge information-theoretic
principles with machine learning paradigms.

3.2 Computational Approaches

As shown in Table 1 and Figure 1, practical SE minimization
algorithms can be classified by their optimization strategies
and the types of constraints they apply.

Heuristic Methods. Early heuristic approaches leveraging
SE minimization focused on flat clustering. [Li ef al., 2018]
introduced deDoc, the first SE-based chromatin domain detec-
tor, which employs a greedy merging strategy to minimize SE.
Complementing genomic applications, [Chen and Li, 2022] de-
veloped SEAT for single-cell omics by SE minimization over
cell-cell graphs, enabling multi-layer functional diversity anal-
ysis through nested subpopulation detection. In parallel, [Pan
et al., 2021] developed HCSE, the most widely used SE-based
hierarchical clustering framework. HCSE recursively isolates
the sparsest hierarchy levels through SE-guided optimization,
automatically determining hierarchy depth without hyperpa-
rameters. It demonstrates competitive performance against
LOUVAIN on real-world networks, establishing a practical
and effective approach to hierarchical graph clustering.
Constrained Optimization. Recent advances in SE minimiza-
tion have introduced domain-aware constraints to address di-
verse biological and computational challenges. These methods
can be systematically categorized based on their constraint-
handling mechanisms, as outlined below. Methods enforc-
ing spatial or index continuity constraints excel in genomic
domain detection, where chromatin regions exhibit inherent
linear organization. [Zhang er al., 2021b] established this
paradigm by integrating interval dynamic programming with
SE minimization, ensuring that detected topologically asso-
ciating domains (TADs) preserve genomic contiguity while
optimizing hierarchical chromatin organization. Subsequent
work by [Ling et al., 2024] introduced matrix discretization
and approximation strategies to reduce time complexity, main-
taining spatial continuity while achieving a 10x speedup. Ex-
tending continuity principles to single-cell analysis, [Li et al.,
2023] developed deDoc2 with dynamic programming to re-
solve contiguous topologically associating domains (TLDs)
at single-cell resolution, demonstrating that spatial continu-
ity constraints are critical for capturing cell cycle-dependent
chromatin dynamics. For broader graph-structured data, semi-
supervised constraints (label and pairwise constraints) have
been integrated to guide SE minimization. [Zeng et al.,
2024a] unified these constraints under a single optimization
framework, reformulating SE to penalize violations of must-
link/cannot-link pairs and label assignments during encoding
tree construction. To scale this approach, [Zeng et al., 2025]
introduced graph sampling and incremental cluster insertion,
reducing time complexity from quadratic to linear while pre-
serving 92% accuracy on million-node graphs through theo-
retically guaranteed approximations.

Discussion. Recent advances in SE minimization highlight



Algorithm (Ref) Levels | Constrain Time Complexity Github | Lang
HCSE [Pan e al., 2021] h Unconstrained | O(n?) Link Python
deDoc [Li et al., 2018] 2/3 Unconstrained | O(n log n) or O(n?) | Link Java
deDoc2 [Li et al., 2023] h Unconstrained | O(n?) Link Java
SSE [Zeng et al., 2024al h Label, Pairwise | O(h(m log n+n)) Link Python
SSSE [Zeng et al., 2025] h Label, Pairwise | O(n log n + nkt) Link Python
SuperTAD [Zhang et al., 2021b] h Contiguity O(n*k?h) Link C++
SuperTAD-Fast [Ling et al., 2024] | h Contiguity O(n*k?h) Link C++
PYSEAT [Chen and Li, 2022] h Contiguity O(nlogn) Link Python
LSENet [Sun ef al., 2024] 2 Unconstrained O(n ) Link Python
CoDeSEG [Xian et al., 2025] 2 Overlapping O(nt) Link C++

Table 1: Summary of Algorithms. Here, n denotes the number of nodes, m is the number of edges, h represents the number of hierarchies,
t is the number of iterations, k is the number of flat clusters (i.e., the number of parent nodes directly above the leaf nodes in the encoding
tree). Pairwise: Specifies relationships between data points, including Must-Link (same cluster) and Cannot-Link (different clusters).
Label: Pre-assigns specific data points to clusters as known labels. Contiguity: Ensures nodes in the same cluster have continuous indices.
Unconstrained: No constraints are applied, allowing fully flexible clustering. Overlapping: Nodes can belong to multiple clusters.

a trade-off between heuristic efficiency and constrained op-
timization’s domain specificity. Heuristic methods such as
HCSE and deDoc prioritize scalability and hierarchy induction,
but may lack flexibility for complex biological constraints. In
contrast, constrained approaches (e.g., SuperTAD, SSE) inte-
grate spatial continuity or pairwise labels, enhancing biologi-
cal relevance at the cost of increased computational complexity.
Although these methods excel in niche applications, open chal-
lenges persist in balancing scalability with performance, par-
ticularly for dynamic or heterogeneous networks. Emerging
paradigms such as LSEnet [Sun et al., 2024] and CoDeSEG
[Xian et al., 2025] signal a shift toward integrating SE with
learning frameworks. LSEnet bridges SE with deep learning
through differentiable optimization in hyperbolic space, en-
abling cluster-free hierarchical partitioning. The CoDeSEG
leverages game theory for near-linear-time community detec-
tion in large-scale networks. These innovations underscore the
potential of hybridizing SE with learning-based optimization
to address scalability and generalization.

4 Learning Methods via Structural Entropy
4.1 Graph Learning Paradigms

Structural entropy has emerged as a powerful tool for learn-
ing graph representation, enabling novel architectures and
optimization frameworks.

Graph Pooling. Structural entropy principles have revolu-
tionized graph pooling by addressing critical limitations in
traditional coarsening methods, particularly structural infor-
mation loss, and expressiveness bottlenecks. [Wu et al., 2022]
pioneered Structural Entropy Pooling (SEP), which replaces
layer-wise compression with a global optimization algorithm
to generate cluster assignments in one pass, eliminating step-
wise structural damage while outperforming state-of-the-art
methods on graph/node classification through community-
preserving downsampling. Expanding upon this idea, [Ren ef
al., 2024] introduced Hi-PART, a framework that constructs
Hierarchical Partition Trees (HPT) via multi-scale SE mini-
mization, provably surpassing Weisfeiler-Lehman test expres-

siveness by encoding nested structural features. Hi-PART
achieved hyperparameter robustness and training stability by
decoupling HPT optimization from representation learning,
delivering SOTA results on graph classification benchmarks
through entropy-guided hierarchical feature aggregation.
Structure Augmentation. Graph structure augmentation
methods generally involve modifying the input graph to en-
hance its informativeness or robustness for downstream tasks
by generating different “views” of the graph, which are al-
tered representations that retain essential structural properties.
SEGA [Wu et al., 2023] introduced an anchor view for graph
contrastive learning by minimizing structural uncertainty, pre-
serving essential graph semantics while avoiding informa-
tion loss from random corruption. Based on graph structure
learning, SE-GSL [Zou et al., 2023] proposed a generalized
framework that optimizes SE via encoding trees to hierarchi-
cally abstract graphs, employing a sample-based mechanism
to restore connectivity among uncertain nodes, which strength-
ens robustness against noisy or heterophily structures while
maintaining compatibility with diverse GNN architectures.
Moreover, [Duan e al., 2024] re-examined graph semantics
by constructing hierarchical encoding trees with minimal SE,
which captures community structures and eliminates noise,
thereby enhancing basic structural views through a fusion of
community influence and prediction confidence for robust
node classification. These methods collectively demonstrate
that SE-guided augmentation retains critical graph information
and strengthens model generalizability across diverse learning
scenarios.

Graph Kernel & Embedding Dimension. Apart from the
primary research directions in SE for graph learning, several
works have explored diverse perspectives that leverage SE to
enhance graph-based methodologies. The Hierarchical Ab-
stracting Graph Kernel (HAGK) [Yang et al., 2024a] proposes
a graph kernel family that leverages hierarchical SE mini-
mization to construct nested node hierarchies, departing from
traditional R-convolution frameworks. By integrating Local
Optimal Matching (LOM) and Priority Ordering Matching
(POM) for substructure alignment, HAGK achieves superior
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performance on benchmark graph classification tasks. Mini-
mum Entropy Principle-Guided GNNs (MGEDE) [Yang et al.,
2023] addresses interpretability challenges through an entropy
minimization framework to derive node- and graph-level em-
bedding dimensions, enhancing representation quality for clas-
sification tasks. The Unsupervised Structural Entropy-Based
Robust GNN (USER) [Wang et al., 2023b] addresses robust-
ness challenges by defining an intrinsic connectivity graph via
SE, which preserves critical structural information while miti-
gating noise effects. Additionally, USER employs adjacency
matrix rank analysis to develop perturbation-resilient embed-
dings, demonstrating significant improvements in adversarial
clustering and link prediction scenarios. These works collec-
tively advance graph learning through principled integration
of structural information theory.

Discussion. Integrating into graph learning has advanced
pooling, augmentation, and representation paradigms by prior-
itizing hierarchical community preservation and uncertainty
minimization. In pooling, methods like SEP and Hi-PART
diverge in approach—global optimization versus multi-scale
hierarchical trees—yet both demonstrate that SE-guided com-
pression outperforms iterative coarsening by mitigating struc-
tural loss. Similarly, SE-driven augmentation frameworks
(SEGA, SE-GSL) balance semantic preservation and noise ro-
bustness. However, they differ in mechanism: SEGA anchors
contrastive views via uncertainty reduction, while SE-GSL
employs encoding trees for hierarchical abstraction. These
comparisons highlight a trade-off between computational effi-
ciency (single-pass vs. multi-scale optimization) and granular-
ity of structural retention. Despite progress, open challenges
persist. First, theoretical guarantees for SE’s expressiveness
beyond Weisfeiler-Lehman hierarchies remain underexplored,
particularly for heterophily or dynamic graphs. Second, scala-
bility concerns arise, as SE minimization often involves com-
binatorial optimization, limiting applicability to large-scale
graphs. Third, while methods decouple structure learning from
downstream tasks (e.g., Hi-PART) to enhance stability, this
risks suboptimal end-to-end adaptation. Finally, the interac-
tion between SE’s community-centric bias and tasks requiring
non-hierarchical features (e.g., molecular graphs) warrants
scrutiny. Addressing these gaps could unify SE’s theoreti-
cal strengths with practical scalability and task adaptability,
further solidifying its role in graph learning.

4.2 Reinforcement Learning Integration

SE-Guided RL Frameworks. Structural entropy principles
have redefined reinforcement learning paradigms through
hierarchical abstraction and information-guided exploration.
[Zeng et al., 2023b] pioneered Structural Information Rein-
forcement Decomposition (SIRD) for multi-agent collabora-
tion, formulating role discovery as hierarchical action space
clustering via encoding tree optimization—achieving 6.08%
higher win rates on StarCraft II through entropy-minimized
role assignments. Complementing this, [Zeng er al., 2023¢] in-
troduced State-Informed Structural Abstraction (SISA), which
compensates for sampling-induced information loss through
adaptive hierarchical state clustering and condition SE, boost-
ing continuous control benchmarks’ sample efficiency by
44.44% via optimal encoding tree generation. Extending to

exploration challenges, [Zeng er al., 2024c] developed Struc-
tural Information Interactive Estimation (SI2E) by maximizing
value-conditional SE through embedding principles, improv-
ing DeepMind Control Suite performance by 37.63% through
intrinsic rewards that minimize redundant transitions.
Discussion. Integrating SE principles into reinforcement learn-
ing has significantly advanced hierarchical abstraction and
exploration strategies. SIRD, SISA, and SI2E apply SE to
different components of the learning process—action, observa-
tion, and reward, respectively. SIRD uses SE for hierarchical
action abstraction to improve multi-agent collaboration, SISA
applies SE to state abstraction for enhanced sample efficiency,
and SI2E optimizes reward exploration to reduce redundant
transitions and improve value estimation. Together, these
frameworks enhance decision-making and performance across
various RL tasks. Despite these advances, challenges remain
in balancing abstraction depth with computational efficiency,
especially in multi-agent settings. An alternative perspective is
offered by COLLAB-MARLI(Su er al., 2025], which focuses
on emergent cooperation through coalition labeling and SE
analysis. Using cooperative game theory, COLLAB-MARL
enables implicit coalition formation and task allocation, of-
fering a more interpretable and easily implementable solu-
tion than traditional MARL methods. Future directions may
focus on scaling SE-RL integration to partially observable
or multi-modal environments, where hierarchical abstraction
could mitigate perceptual ambiguity. Additionally, combining
SE principles with meta-learning or lifelong RL could enable
dynamic adaptation of encoding trees to evolving task struc-
tures. The theoretical connection between SE minimization
and Bellman optimality remains underexplored. This connec-
tion offers fertile ground for unifying the information-theoretic
and value-based RL paradigms.

5 Cross-Domain Applications

5.1 Bioinformatics

SE has demonstrated effectiveness in biological system anal-
ysis through several key frameworks. SE minimization has
revolutionized genomic architecture analysis by enabling pre-
cise detection of hierarchical chromatin structures and cancer
subtyping. The foundational work of [Li et al., 2016] estab-
lished SE-driven cancer subtyping through three-dimensional
gene maps, correlating entropy-minimized expression patterns
with survival outcomes and IPI scores across multiple types
of cancer. Extending this, [Li et al., 2018] introduced deDoc
as the first SE-based chromatin domain detector, identify-
ing megabase-scale TAD-like structures in Hi-C data through
graph partitioning without normalization, enabling single-cell
analysis through pooled datasets. Extending to single-cell
resolution, [Li et al., 2021] developed deTOKI using non-
negative matrix factorization to decode TAD-like domains in
individual cells, revealing their prevalence and tight regulatory
dynamics through insulation score optimization. Advancing
hierarchical domain detection, [Zhang et al., 2021b] proposed
SuperTAD with dynamic programming-based SE minimiza-
tion, achieving 102% boundary protein enrichment over seven
competitors while maintaining resolution consistency in Hi-C
matrices. Complementing this, [Ling et al., 2024] accelerated



SuperTAD through matrix discretization, reducing runtime by
10x while preserving 95% domain consistency through the-
oretically guaranteed approximations. For single-cell omics,
[Chen and Li, 2022] created SEAT by minimizing global un-
certainty in cell-cell graphs, boosting pseudo-time inference
accuracy to 89% through hierarchical subpopulation detection
across sSCRNA/DNA/ATAC datasets. Finally, [Li et al., 2023]
unified these advances in deDoc2, employing dynamic pro-
gramming to resolve single-cell chromatin hierarchies with
cell cycle-dependent dynamics, outperforming 10 tools as one
of only two methods capable of single-cell TLD analysis.

5.2 Transport and Geoscience Studies

Recent advances in SE also demonstrated significant potential
in addressing traffic spatial-temporal modeling and knowl-
edge quantification challenges in Earth studies. [Zou et al.,
2024] proposed a transformer-based framework named Multi-
SPANS for traffic forecasting that integrates SE minimization
to optimize spatial attention mechanisms. Generating hier-
archical road network encoding trees improves the model’s
ability to capture multi-range dependencies while masking
entropy-driven attention, improving interpretability. [Li et
al., 2022] introduced Scientific X-ray, a SE-inspired method
to visualize and quantify the evolution of scientific ideas in
the Earth science literature. Their approach constructs “idea
trees” from citation networks, revealing a universal six-hop
depth limit for idea inheritance and identifying high-potential
research directions through entropy-based development in-
dices. Further extending the structural perspective, [Wang et
al., 2023a] redefined knowledge quantification by measuring
hierarchical disorder differences in citation networks, propos-
ing a Knowledge Quantification Index that unifies traditional
metrics and exhibits robustness against manipulation. This
framework successfully identifies overlooked influential works
and Nobel Prize-winning topics, emphasizing the role of infor-
mation structurization in evaluating scientific impact beyond
semantic ambiguity.

5.3 Social Networks

SE minimization principles have transformed network foren-
sic analysis and knowledge discovery through interpretable,
hierarchy-aware detection frameworks. [Peng et al., 2024]
developed UnDBot, an unsupervised framework leveraging
heterogeneous SE to decode bot networks via weighted multi-
relational graphs and stationary distribution-based community
labeling. Complementing this, [Yang er al., 2024c] pioneered
SEBot, a multi-view contrastive learning detector optimizing
social graph uncertainty via SE minimization, enhancing bot
detection robustness by 16.29% against adversarial behaviors
through hierarchical community encoding. Extending to ad-
versarial modeling, [Zeng er al., 2024b] formulated SIASM
through conditional SE minimization, maximizing socialbot
influence by 16.32% while evading detectors through optimal
encoding tree-guided follower selection.

For social event detection, [Cao er al., 2024b] proposed
HISEvent, which incrementally supplements message graphs
through 1D entropy minimization and hierarchically detects
events through 2D entropy optimization, achieving SOTA per-
formance under open-set settings without predefined event

counts. Meanwhile, [Yang et al., 2024d] introduced ADP-
SEMEvent, integrating adaptive differential privacy with 2D
SE minimization to achieve 89% detection accuracy on social
message graphs while preserving user privacy through noise-
immune optimal subgraph clustering. Advancing expressive-
ness, [Yu et al., 2025] introduced HyperSED, an unsupervised
framework that models social messages into hyperbolic space-
anchored representations, achieving structure-aware event de-
tection with 25% ARI improvement and 12-37x speedup over
SOTA through differentiable hierarchical partitioning.

5.4 Pattern Recognition

SE has significantly advanced visual computing by enhancing
feature preservation and segmentation. [Zeng er al., 2023a]
introduced SLED, an unsupervised skin lesion detector that
minimizes multiscale superpixel graph entropy and incor-
porates isolation forest for outlier detection. [Xie et al.,
2025] proposed SIT-HSS, a hierarchical superpixel segmen-
tation method using 1D SE-guided graph construction and
2D entropy-driven iterative merging, outperforming unsuper-
vised methods on three vision datasets by optimizing pixel
cluster hierarchies. In the text classification task, SE has en-
abled the modeling of hierarchical and syntactic structures.
[Zhu et al., 2023] developed HiTIN, a hierarchy-aware tree
isomorphism network for hierarchical text classification that
leverages SE to inject syntactic hierarchy into text representa-
tions via graph isomorphism. In addition, [Huang er al., 2025]
introduced MASGCN for aspect-based sentiment analysis, us-
ing SE loss to integrate syntactic features and outperforming
existing GNN-based methods on aspect-based sentiment anal-
ysis benchmarks. In speech processing, SE has also driven
innovations in compression and voice conversion. [Wang et
al., 2025a] proposed SECodec, a compressive speech repre-
sentation that applies hierarchical SE to cluster feature nodes
for efficient compression and reduced distortion. [Wang et al.,
2025b] introduced SEVC, a voice conversion framework that
clusters reference speech with 2D SE and assigns frames to
the closest semantic clusters, ensuring high-fidelity speaker
transformation.

6 Conclusion

SE has emerged as a universal framework for quantifying,
interpreting, and optimizing the structural complexity of inter-
connected systems. Bridging information theory with graph
analysis provides a principled metric for disorder and a com-
putational paradigm for hierarchical abstraction. Future work
will focus on advancing algorithms that integrate structural
information principles, aiming to boost the computational
efficiency and interpretability of large language models, as
exemplified by architectures like DeepSeek. This is espe-
cially crucial for embodied agents, which must continuously
learn through interaction with their environment to develop
autonomous reasoning capabilities within complex topologi-
cal systems. As Al engages with increasingly sophisticated
structures, ranging from biological systems such as chromatin
folds to decentralized organizations, SE can offer a powerful
unifying framework for graph-aware intelligence, balancing
interpretability with computational rigor in the age of inter-
connected data.
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