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Abstract

Graphs are typical non-Euclidean data of complex structures.
In recent years, Riemannian graph representation learning has
emerged as an exciting alternative to Euclidean ones. How-
ever, Riemannian methods are still in an early stage: most of
them present a single curvature (radius) regardless of struc-
tural complexity, suffer from numerical instability due to the
exponential/logarithmic map, and lack the ability to capture
motif regularity. In light of the issues above, we propose
the problem of Motif-aware Riemannian Graph Representa-
tion Learning, seeking a numerically stable encoder to cap-
ture motif regularity in a diverse-curvature manifold with-
out labels. To this end, we present a novel Motif-aware Rie-
mannian model with Generative-Contrastive learning (Mo-
tifRGC), which conducts a minmax game in Riemannian
manifold in a self-supervised manner. First, we propose a new
type of Riemannian GCN (D-GCN), in which we construct
a diverse-curvature manifold by a product layer with the di-
versified factor, and replace the exponential/logarithmic map
by a stable kernel layer. Second, we introduce a motif-aware
Riemannian generative-contrastive learning to capture motif
regularity in the constructed manifold and learn motif-aware
node representation without external labels. Empirical results
show the superiority of MofitRGC.

Introduction
Graphs are the natural descriptions of real systems, rang-
ing from social networks and recommender systems to
chemistry and bioinformatics. Graph representation learn-
ing shows fundamental importance in a variety of learning
tasks, such as node classification and link prediction (Hamil-
ton, Ying, and Leskovec 2017; Velickovic et al. 2018). Eu-
clidean space has been the workhorse of graph represen-
tation learning for decades (Perozzi, Al-Rfou, and Skiena
2014; Kipf and Welling 2017). It is not until recently that
Riemannian spaces have emerged as an exciting alternative
(Shimizu, Mukuta, and Harada 2021; Li et al. 2022a; Top-
ping et al. 2022; Yang et al. 2023b), since they generally
better match the geometry of the graph than the Euclidean
counterpart (Petersen 2016; Krioukov et al. 2010). While
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Table 1: Comparison of proposed MotifRGC and previous
Riemannian methods. (κ denotes the curvature.)

Curvature
Diversity

Motif
Regularity

Numerical
Stability

HGCN (NeurIPS: 2019) one κ < 0
κ-GCN (ICML: 2020) one κ ∈ R
LGCN (WWW: 2021) one κ < 0
H-to-H (CVPR: 2021) one κ < 0 X

fullyH (ACL: 2022) one κ < 0 X
Q-GCN (NeurIPS: 2022b) one radius 1

|κ|
MotifRGC (Ours) diverse X X

achieving encouraging performance, Riemannian graph rep-
resentation learning is still in its early stages. There are sev-
eral important issues largely remaining open.

The first issue is on the curvature diversity. Most of prior
Riemannian methods (Zhang et al. 2021; Dai et al. 2021;
Liu, Nickel, and Kiela 2019) study graphs in the manifold of
a single curvature (radius), which is only suitable for a spe-
cial type of graphs. For example, a negative curvature mani-
fold (hyperbolic space) is well aligned with hierarchical and
tree-like graphs (Nickel and Kiela 2017; Chen et al. 2022).
A positive curvature manifold (hyperspherical space) is suit-
able for cyclical graphs (Bachmann, Bécigneul, and Ganea
2020). Note that, the product of single-curvature manifolds
(Gu et al. 2019) still presents a single curvature as a whole.
The recent quotient manifold (Xiong et al. 2022b) also re-
lies on a single curvature radius. There is a lack of curvature
diversity to model the complex structures of real graphs.

The second issue is on the numerical stability. Rieman-
nian methods (Chami et al. 2019; Liu, Nickel, and Kiela
2019; Xiong et al. 2022b) typically model graphs with the
couple of exponential and logarithmic maps. Unfortunately,
exponential/logarithmic map is not strictly numerical-stable,
and the issue of “Not a Number” (NaN) may occur in prac-
tice without numerical processing or careful hyperparame-
ter tuning (Chen et al. 2022; Yu and Sa 2023). Recently,
Dai et al. (2021) introduce the Lorentz-type operators to re-
place exponential/logarithmic map, but pose difficulty in op-
timization as side effect. Thus, the issue of numerical stabil-
ity largely remains open.

The third issue is on the motif regularity. The motifs
(small substructures such as triangles and cliques) are the
fundamental building blocks of a graph, and they play an
essential role in modeling and understanding social or bio-



chemical networks (Duval and Malliaros 2022; Yu and Gao
2022). Thus, encoding motif regularity is important in graph
representation learning, and benefits downstream tasks, e.g.,
node classification and link prediction. In the literature, mo-
tif regularity has been extensively studied in Euclidean space
(Liu and Sariyüce 2023; Subramonian 2021). Riemannian
manifold tends to be more suitable to model motifs than the
Euclidean counterpart, as will be shown in the experiment.
Surprisingly, it has been rarely explored in generic Rieman-
nian manifolds, to our best knowledge.

The aforementioned issues motivate us to rethink Rie-
mannian graph representation learning, and propose a new
problem of Motif-aware Riemannian Graph Representa-
tion Learning, which aims at finding a numerically stable
graph encoder to model motif regularity in a novel diverse-
curvature manifold. Besides, self-supervised learning with-
out external labels is more practical, as labeling graphs is ex-
pensive or even impossible. In Riemannian manifolds, Yang
et al. (2022); Sun et al. (2022b) leverage contrastive learning
recently, while generative learning is still under investigated.

Our approach. To this end, we propose a novel Motif-
aware Riemannian model with Generative-Contrastive
Learning (MotifRGC), which conducts a minmax game in
Riemannian manifold in a self-supervised manner. First, we
propose a new type of GCN, namely Diverse-curvature GCN
(D-GCN). In our design, we construct a diverse-curvature
manifold by a product layer, where a diversified factor is in-
troduced to ensure the curvature diversity (issue one). We
replace the exponential/logarithmic map suffering from nu-
merical stability (issue two) by a gyrovector kernel layer,
where a numerical stable map based on Bochner’s Theorem
is formulated. Second, we introduce the motif-aware Rie-
mannian generative-contrastive learning, exploring the du-
ality of the constructed manifold. In the product manifold,
we design a Riemannian motif generator to generate fake
motifs. The curvatures are learned to capture motif regular-
ity (issue three), when the generated motifs become indistin-
guishable to the discriminator. Among the factor manifolds,
node representations are learned by contrasting different ge-
ometric views of the factors, in which we introduce a motif-
aware hardness to highlight the hard samples. We compare
our model with prior methods in Table 1.

Notable contributions are summarized as follows:
• Problem. We make the first attempt to study motif-aware

Riemannian graph representation learning, encoding mo-
tif regularity in a diverse-curvature manifold.
• Methodology. In MotifRGC, we propose a novel D-

GCN coupled with several theoretical guarantees. Fur-
thermore, we introduce the motif-aware Riemannian
generative-contrastive learning to generate motif-aware
node representations in a self-supervised manner.
• Experiment. Empirical results show MotifRGC outper-

forms previous Riemannian models. Codes are given in
https://github.com/RiemannGraph/MotifRGC.

Preliminaries
We introduce necessary mathematics, specify the limitations
of prior methods and propose the studied problem.

Riemannian Geometry
Manifold A Riemannian manifold M is a smooth mani-
fold coupled with a Riemannian metric. For each point x,
the Riemannian metric gx is defined on its tangent space
TxM. The logarithmic map Logx : M → TxM transforms
the vector in the manifold to the tangent space, while the ex-
ponential map Expx does the inverse transform. Euclidean
space is a special case of Riemannian manifold.
Curvature Curvature measures the extent how a surface
derives from being flat, and determines the shape of mani-
fold. Each point x in the manifold is associated with a cur-
vature κx and a corresponding curvature radius 1

|κx| . A man-
ifold is said to be a single-curvature manifold when the cur-
vature (radius) of each point is equal. Specifically, the mani-
fold is hyperbolic H if the single curvature is negative, while
the manifold is hyperspherical S for a positive curvature. On
the contrary, diverse-curvature manifold refers to a manifold
where the curvatures of its points are not the same. Most
previous works study graph in a single-curvature manifold
(Yang et al. 2023a; Chami et al. 2019; Xiong et al. 2022b).
In fact, it calls for a diverse-curvature manifold, better
matching the complex structures of real graphs.

Euclidean & Riemannian GCNs
Graph Convolutional Networks (GCNs) are the dominant
method for graph representation learning. GCNs typically
conduct message passing over graphs (Velickovic et al.
2018; Hamilton, Ying, and Leskovec 2017). Concretely, in
the convolution layer, each node representation hi aggre-
gates the information of neighboring nodes Ni and com-
bines the aggregated information to itself. In Euclidean
space, it takes the form of

h̄i = Aggj∈Ni
(hj), hi = Comb(h̄i,hi), (1)

where Agg and Comb denote aggregation and combination,
respectively. Similarly, a Riemannian GCN layer is gener-
ally formulated as follows,

h̄i = Aggj∈Ni
(Log0(hj)),hi = Exp0(Comb(h̄i,hi)), (2)

where 0 denotes the reference point of exponential and log-
arithmic maps. However, as shown in Chen et al. (2022); Yu
and Sa (2023), the exponential/logarithmic map poses the
issue of numerical stability.

Problem Formulation
Notations. Lowercase x and italic uppercase X denote
vector and set, respective. ‖ · ‖ denotes the usual L2 norm.

A graph is described as a tuple of G(V , E ,M,X), where
V = {v1, · · · , vN} is the node set and E = {(vi, vj)} ⊂
V × V is the edge set. X ∈ RN×F is the feature matrix,
whose ith row is the Euclidean feature of node vi. Motifs
M = {M3, · · · ,MK} are small subgraphs frequently oc-
curred in the graph, such as triangles and cliques. A mo-
tif MK is the set of K−node connected subgraphs, where
motif node set is VK ⊂ V , |VK | = K, and motif edge
set is EK ⊂ E . We observe that the motifs have not yet
been explored in Riemannian manifold of diverse curva-
tures. Also, we notice that labeling graph is often infeasible
in practice. Thus, we propose a new problem as follows.
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Figure 1: Overall architecture of MotifRGC. The proposed D-GCN consists of product layer, kernel layer and convolution
layer. We learn the curvatures of the product manifold in the motif-aware Riemannian generative learning (blue box), and learn
the node representations in the motif-aware Riemannian contrastive learning (olive box).

Problem Definition. (Motif-aware Riemannian Graph Rep-
resentation Learning.) Given a graph G(V, E ,M,X) with-
out any external labels, the proposed problem aims to learn
a numerically stable encoding function Φ : V → M, so that
motif regularity is captured in a diverse-curvature manifold
M, matching the complex structures of G.

In short, we rethink Riemannian graph representation learn-
ing, and our work is distinguished from the prior works on
curvature diversity, motif regularity and numerical stability.

Our Approach
To address this problem, we propose a novel self-supervised
Motif-aware Riemannian model with Generative and Con-
trastive learning (MotifRGC). In a nutshell, we first pro-
pose a new type of Riemannian GCN to address the issues of
curvature diversity and numerical stability, namely D-GCN.
Then, we propose Motif-aware Riemannian Generative-
Contrastive Learning to capture motif regularity via a min-
max game in Riemannian manifold. The overall architecture
is illustrated in Figure 1, and we elaborate on our D-GCN
and learning approach in Sec 3.1 and Sec 3.2, respectively.

A New Formulation of D-GCN
Different from typical Riemannian GCNs in Eq. (2), we pro-
pose a novel Diverse-curvature GCN (termed as D-GCN),
where we construct a diverse-curvature manifold via a prod-
uct layer with a diversified factor, and replace the exponen-
tial/logarithmic map via a kernel layer. Another novelty lies
in that the curvature learning of the manifold is conducted in
a motif generation process, detailed in Sec. 3.2.

Product Layer The product layer conducts Cartesian
product of multiple learnable single-curvature factors and
one diversified factor. A single-curvature factor is a Rie-

mannian manifold of κ−stereographical model Gdκ (Pe-
tersen 2016), where κ and d denote curvature and dimen-
sion, respectively. Specifically, Gdκ is defined on a smooth
gyrovector ball

{
x ∈ Rd | −κ‖x‖2 < 1

}
with distance

metric of d(x,y) = 2√
|κ|

tan−1κ

(√
|κ|‖ − x⊕κ y‖

)
,

where gyrovector addition ⊕κ and curvature trigonometry
tan−1κ are detailed in the Appendix. The merit of κ−stereo-
graphical model is that it unifies hyperbolic and hyperspher-
ical spaces in gyrovector formalism. The diversified factor
is an upper hypersphere Sd0up, which is responsible to diver-
sify curvature of the product manifold. Sd0up is expressed in
the polar coordinates of (r,θ), where r and θ denote the
magnitude coordinate and angular vector, respectively. Only
r−coordinate contributes to curvature and distance, detailed
in Appendix, and we set the norm of Euclidean feature as r.

The resulting product manifold is derived as follows

M = Gd1κ1
⊗Gd2κ2

⊗ · · · ⊗GdMκM
⊗ Sd0up, (3)

where ⊗ denotes the Cartesian product. A point in the prod-
uct manifold takes the form x = [x1|| · · · ||xM ||x0] ∈ M,
where || is vector concatenation.xm ∈ Gdmκm

is themth com-
ponent of x, and x0 ∈ Sd0up. The distance metric is

d2M(x,y) =
∑M
m=1 d

2
κm

(xm,ym) +
(
‖x0‖ − ‖y0‖

)2
. (4)

With Eqs. (3)−(4), we have Proposition 1 hold.

Proposition 1 (Curvature Diversity). The manifold M
constructed by the product layer (Eq. 3) is a diverse-
curvature manifold in which each point has its own curva-
ture κx determined by its location in the manifold.

Proof. Please refer to the Appendix.



Kernel Layer Recall that, typical Riemannian GCN layer
with exponential/logarithmic map suffers from the issue of
numerical stability. Instead, we put forward a fresh perspec-
tive of kernel method: We transform Riemannian features
to Euclidean ones via a gyrovector kernel, and then utilize
well-established Euclidean GCN layers to update node rep-
resentations, as shown in Fig. 1.

The transformation between two types of spaces is chal-
lenging due to the difference in geometry and constraint on
gyrovector ball. In kernel layer, we formulate a generalized
Fourier Map φgF : Gnκ → Rm to address this challenge.
First, we start with Fourier (feature) map φF : Rn → Rm
in Euclidean space. The Bochner’s Theorem (Rahimi and
Recht 2007) utilizes eigenfunctions to construct the Fourier
map for any invariant kernel. A typical Euclidean eigenfunc-
tion family takes the form of

Fω,b(x) =
√

2 cos(〈ω,x〉+ b),x ∈ Rn, (5)

where phase vectorω and bias b are uniformly sampled from
a n−dimensional unit ball and [0, 2π], respectively.
Second, we generalize Euclidean Fω,b(·) to Riemannian
manifold. Analogous to Eq. (5), we derive the eigenfunction
in the gyrovector ball Gnκ of Riemannian manifold,

gFκω,b,λ(x) = Aω,x cos (λ〈ω,x〉κ + b) ,x ∈ Gnκ, (6)

where the amplitude function Aω,x is exp
(
n−1
2 〈ω,x〉κ

)
.

〈ω,x〉κ = log 1+κ‖x‖2
‖x−ω‖2 is the signed distance in the gy-

rovector ball. We drawm independent samples ofω, b and λ
uniformly from n−dimensional gyrovector ball, [0, 2π] and
Gaussian distribution, respectively. The generalized Fourier
map is then given as

φgF(x) = 1√
m

[
gFκω1,λ1,b1(x), · · · , gFκωm,λm,bm(x)

]
∈ Rm.

(7)
Theoretically, we show that induced kernel can be re-

garded as a generalization of Poisson kernel (Sonoda,
Ishikawa, and Ikeda 2022) to Riemannian manifold.

Proposition 2 (Poisson Kernel). Let the radius of gyrovec-
tor ball be 1 (curvature κ = −1), the kernel in Proposition
2 is equivalent to the famous Poisson kernel.

Proof. Please refer to the Appendix.

Network Architecture In our D-GCN, the product layer
assigns each node with multiple learnable Riemannian fea-
tures, and then constructs the diverse-curvature manifold.
The kernel layer conducts φgF to Riemannian features and
φF to Euclidean features. The convolution layer can be
given by any off-the-shelf Euclidean one.

Motif-aware Generative-Contrastive Learning on
Riemannian Manifold
We propose a novel Motif-aware Riemannian Generative-
Contrastive learning, in which we introduce a minmax game
to Riemannian manifolds. Thanks to the formulation in Eq.
(3), the constructed manifold presents a duality of the prod-
uct manifold as a whole and the collaboration of factor mani-
folds. Exploring the duality of the constructed manifold, we

conduct motif generation process in the product manifold
for the curvature learning (Generative Learning). Simulta-
neously, we contrast among factor manifolds for the rep-
resentation learning (Contrastive Learning), where a motif-
aware hardness is introduced.

In generative learning, the product manifold is trained to
capture motif regularity, so that fake motifs S generated from
the generatorG cannot be distinguished from real motifsM
by the discriminator D. Specially, generator G and discrim-
inator D play the minmax game as follows,
min
θG

max
θD

EM[logD(M; θD)] + ES∼G(S;θG)[log(1−D(S; θD))].

(8)

Riemannian Motif Generator We design a Riemannian
motif generatorG to generate indistinguishable motifs in the
minimization of Eq. (8). A motif Mk is a set of k nodes
S = {vs1 , · · · , vsk}. Let Ss1 denote the node set including
vs1 . Given vs1 , the selection of other (k−1) nodes is guided
by the proposed generator defined as follows,
G(Ss1 |vs1) =

Gc(vs2 |vs1)Gc(vs3 |vs1 , vs2) · · ·Gc(vsk |vs1 , · · · , vsk−1
)
(9)

The generation of vsk is based on previously selected nodes
S ′ = {vs1 , · · · , vsk−1

}, and the probability of vsk being se-
lected is defined by distance metric in the product M. Con-
cretely, we apply a softmax function over all other nodes,

Gc(vsk |vs1 , · · · , vsk−1
) =

exp(dM(vsk ,µs1,··· ,sk−1
))∑

vsj
/∈S′ exp(dM(vsj ,µs1,··· ,sk−1

)) ,

(10)
where dM given in Eq. (4) is a function regarding the cur-
vatures in the product. µs1,··· ,sk−1

is the geometric centroid
of the nodes S ′ in M. Thanks to combinational formulation
of dM, there is no need to consider the centroid as a whole,
and only the centroid in each factor µms1,··· ,sk−1

is required.
For each factor of gyrovector ball Gdmκm

, it is given by the
gyro-midpoint (Bachmann, Bécigneul, and Ganea 2020),

µms1,··· ,sk−1
=

k−1∑
i=1

λκm
vsi∑k−1

j=1 (λκvsj
− 1)

vmsi ∈ Gdmκm
, (11)

where λκv = 2/(1 + κ‖v‖2) is the conformal factor.
In the minimization of Eq. (8), curvatures of the product

are the parameters θG to be learned. The intuition is that the
product manifold is able to generate indistinguishable mo-
tifs, when its curvatures (and corresponding distance met-
ric) capture the motif regularity in graph. The sampling of
motifs S ∼ G(S; θG) is discrete, and thus we minimize Eq.
(8) via the policy gradient (Wang et al. 2018) to train θG.
Here, we focus on a fundamental motif of triangle.

Motif Discriminator In the maximization of Eq. (8), the
discriminator D aims to classify the generated motifs from
the real ones sampled from the graph. Given a node set
{vs1 , · · · , vsk}, we implement the discriminator as follows,
D(vs1 , · · · , vsk |θD) = MLP(Pooling(vs1 , · · · , vsk)), (12)

where MLP is a MultiLayer Perception whose output layer
is the sigmoid. We apply mean-pooling to the node repre-
sentations from the kernel layer of our Riemannian GCN, so



that the representations can be tackled by a normal MLP.
Thus, θD is the parameter of MLP.

Motif-aware Riemannian Contrast We formulate a min-
imization objective for motif-aware Riemannian contrastive
learning, in which we introduce a motif-aware hardness to
highlight hard samples for learning node representations.

First, we generate multiple geometric views, and each fac-
tor manifold provides a geometric view of corresponding ge-
ometry. For factor manifold Gdmκm , its geometric view is de-
rived as zm = gΘ(φgF(xm)), and z0 = gΘ(φF(x0)) for
Euclidean view. xm and x0 denote the Riemannian features
and Euclidean features, respectively. Each geometric view is
contrasted to Euclidean view and vice versa, so that positive
samples are close and negative samples are pushed away.

Second, we leverage the motif to distinguish positive/
negative samples. Intuitively, the nodes in a motif are similar
to each other, and are considered as positive samples. Take
the motif of triangleM3 for instance. For node vi, the set of
positive samples is denoted as V3(i), which is a collection
of the endpoints in triangles including node vi.

Furthermore, we formulate a motif-aware hardness to
highlight the hard samples, i.e., the positive samples with
low similarity and the negative samples with high similarity.

h(zi, zj |M3) = |I(j ∈ V3(i))−Normal(s(zi, zj))|α,
(13)

where the indicator function I(·) returns 1 iff (·) is true, s
is a similarity measure, and Normal normalizes the simi-
larity value to [0, 1]. The positive α controls the effect of
hardness. Eq. (13) up-weights the hard samples. For exam-
ple, given α = 2, a hard negative sample with similarity
s = 0.9 is reweighed by 0.81, while an easy negative with
s = 0.1 is reweighed by 0.01. The reweighing of motif-
aware hardness pays more attention to the hard samples than
the typical equal treatment, i.e., InfoNCE loss (Oord, Li, and
Vinyals 2018). Our insight is to inject motif-aware hardness,
and thus the minimization of Riemannian Contrast (RC) is

RC0
m = −

N∑
i=1

log
exp(s(zmi , z

0
i ))∑N

j=1 exp(h(zmi , z
0
j |M3)s(zmi , z

0
j ))

.

(14)
Note that, Eq. (14) recovers the InfoNEC with α = 0.

Overall Minmax Objective. The overall minimization is
given by incorporating the objective of Riemannian motif
generator and motif-aware Riemannian contrast,

min ES∼G(S;θG)[log(1−D(S; θD))]+
∑M

m=1
(RC0

m + RCm0 ).

(15)
while maximization is the objective of the discriminator,

max EM[logD(M; θD)]+ES∼G(S;θG)[log(1−D(S; θD))].
(16)

The overall process is summarized in Algorithm 1, where
the minimization is given in Lines 4-8 while maximization
in Lines 10-12. Line 1 is specified in Experiment. Alterna-
tively optimizing the minimization in Eq. 15 and maximiza-
tion in Eq. 16, we learn node representations in the diverse-
curvature manifold, where motif regularity is captured.

Algorithm 1: Optimizing MotifRGC
Input: Graph G(V , E ,M,X)

MinSteps, MaxSteps
Output: Riemannian graph encoder Φ

Motif generator G
The discriminator D

1 Initialize Φ, G, D and Riemannian feature xm;
2 while not converging do
3 B Riemannian Generative-Contrastive Learning
4 for MinSteps do
5 Generate multiple geometric views;
6 Calculate motif-aware hardness in Eq. 13;
7 Generate fake motifs from G with Eqs. 9-10;
8 Update Φ and G according to Eq. 15;
9 B Training the Discriminator

10 for MaxSteps do
11 Sample real motifs and fake motifs generated

from G;
12 Update D according to Eq. 16;

Experiment
Datasets & Baselines We choose 4 public datasets: Cora,
Citeseer and Pubmed (Yang, Cohen, and Salakhutdinov
2016), and Airport (Chami et al. 2019). We include 8 su-
pervised baselines: HGNN (Liu, Nickel, and Kiela 2019),
HGCN (Chami et al. 2019), LGCN (Zhang et al. 2021),
κ-GCN (Bachmann, Bécigneul, and Ganea 2020), H-to-H
(Dai et al. 2021), fullyH (Chen et al. 2022) and Q-GCN
(Xiong et al. 2022b), and a self-supervised SelfMG (Sun
et al. 2022b). We implement κ-GCN in the product mani-
fold, showing the result of the product without our diversi-
fied factor. Few study considers motif in Riemannian man-
ifold to our best knowledge, and we bridge this gap in this
paper. We implement our model with the backbone of GCN
(Kipf and Welling 2017), GAT (Velickovic et al. 2018) and
SAGE (Hamilton, Ying, and Leskovec 2017), and thus we
list the results of the 3 backbones. In addition, we include
the recent SME (Jiang et al. 2022) as a baseline, which con-
siders the motif in Euclidean space.
Evaluation Metrics We examine our model in both link
prediction and node classification. The evaluation metrics
for link prediction is AUC and Average Precision (AP)
(Chami et al. 2019), while for node classification, we em-
ploy Accuracy (ACC) (Kipf and Welling 2017).
Reproducibility In our model, the convolution layer is
stacked twice, and MLP has 2 hidden layers. The num-
ber of learnable factors is 3 with the curvatures κ1 = 1,
κ2 = −1 and κ3 = −1 as default. α = 2 for contrastive
learning. To initialize Riemannian features, we first initialize
X ∈ RN×dm , whereN and dm are number of nodes and fac-
tor dimension. Then, we have Xm = X

2
√
κm‖X‖max

∈ Gdmκm

in the factor manifold, where ‖X‖max is the maximum norm
of the rows. Riemannian features are optimized by Rieman-
nian Adam (Bécigneul and Ganea 2019), while others are
optimized by Adam (Kingma and Ba 2015).



Table 2: Link prediction results on Cora, Citeseer, Pubmed and Airport datasets in terms of AUC (%) and AP (%). Standard
derivations are given in the brackets. The best results are boldfaced and the runner up underlined.

Cora Citeseer Pubmed Airport
Method AUC AP AUC AP AUC AP AUC AP

GCN 90.11(0.51) 91.52(0.68) 90.16(0.49) 92.91(0.33) 91.16(0.36) 91.96(1.27) 89.29(0.38) 91.37(0.29)
GAT 92.55(0.49) 93.41(1.01) 89.32(0.36) 92.20(1.51) 91.21(0.24) 92.07(1.05) 91.42(1.20) 92.26(1.06)

SAGE 86.02(0.55) 90.20(0.76) 88.18(0.22) 89.07(0.18) 87.93(0.15) 91.42(0.12) 89.75(0.67) 92.12(0.74)
SME 92.13(0.28) 93.24(0.20) 93.20(0.66) 94.56(0.92) 93.11(0.09) 93.36(0.75) 92.68(0.33) 94.08(0.57)

HGCN 93.60(0.37) 94.13(0.27) 94.33(0.42) 94.90(0.24) 95.43(0.02) 95.44(0.02) 95.11(0.26) 95.09(0.31)
HGNN 91.59(1.67) 91.34(1.37) 96.05(0.42) 96.82(0.44) 94.37(0.63) 93.57(1.03) 92.46(0.39) 93.36(0.82)
LGCN 92.69(0.26) 93.37(0.26) 93.49(1.11) 94.32(0.77) 95.40(0.20) 95.52(0.22) 95.50(0.06) 95.61(0.11)
κ-GNN 94.25(1.23) 93.62(1.76) 97.06(0.67) 96.59(0.43) 94.90(0.30) 94.84(0.13) 95.08(0.81) 95.21(0.80)
H-to-H 89.71(0.85) 91.70(0.45) 91.23(3.13) 92.64(2.18) 97.10(0.03) 96.57(0.07) 96.91(0.03) 95.59(0.03)

SelfMG 94.28(0.64) 93.95(0.72) 96.52(0.36) 95.77(1.52) 97.32(0.24) 95.16(0.53) 96.85(0.53) 94.33(1.05)
Q-GCN 95.22(0.29) 97.09(2.03) 94.31(0.73) 94.85(0.49) 94.69(0.18) 95.87(0.62) 96.49(0.13) 97.01(1.12)

fullyH 91.81(1.92) 92.20(0.61) 91.42(0.28) 91.33(0.81) 97.51(3.89) 92.55(2.71) 94.77(0.41) 94.02(0.11)
OursGCN 97.37(2.06) 97.95(1.02) 98.54(0.67) 97.46(0.15) 98.96(0.36) 98.84(0.40) 97.22(0.42) 97.28(0.27)
OursGAT 98.86(1.02) 98.64(0.15) 98.85(0.82) 99.02(0.75) 99.09(0.13) 98.93(0.18) 97.40(0.52) 96.72(0.59)

OursSAGE 98.19(0.79) 99.02(0.88) 98.99(0.51) 99.12(0.52) 98.92(0.67) 98.69(0.78) 97.90(0.35) 97.62(0.40)

Empirical Results
Link prediction and Node classification We summarize
the results for link prediction and node classification in Ta-
ble 2 and Table 3, respectively. We run each method 10 times
independently, and report the mean value with standard de-
viation for fair comparisons. For our model, the represen-
tation dimension is 128 with 32 for each factor, except two
factors on Pubmed. All the methods leverage Fermi-Dirac
decoder (Nickel and Kiela 2017) for link prediction, where
the distance is given by the respective geometry. We achieve
the best results among 12 baselines, e.g., our model of GCN
backbone achieves at least 7.36% AUC gain to the backbone
iteself. The reason is that the constructed manifold better
matches graph structures, and our design for motifs benefits
representation and curvature learning.

On Numerical Stability Typical Riemannian GCNs with
the exponential/logarithmic map sometimes encounter “Not
a Number (NaN)” issue in PyTorch, as will be shown in
Ablation Study. To avoid this issue, κ-GNN carefully tunes
the curvatures for the maps. HGCN, LGCN, SelfMG and
Q-GCN employ the post-process with Normalize function,
forcing the representations to fit Riemannian manifolds. H-
to-H alternatively introduce Lorentz-type operators but the
sophisticated optimization in Stiefel manifold is nontrivial.
On the contrary, the proposed gF is numerical stable.

Ablation Study Here, we evaluate the effectiveness of
each proposed component of MotifRGC: 1) generalized
Fourier map gF, 2) Riemannian motif generator, 3) Rieman-
nian contrastive learning, 4) motif-aware hardness as well as
the number of learnable factors.

To this end, we introduce a variety of variant models. For
− gF variant, we replace gF with logarithmic map to eval-
uate the numerical stability of gF. For −motif variant, we
train our model with the contrastive loss only, to evaluate
the importance of motif generation. For −RCL variant, we
disable Riemannian contrastive learning in the minmax ob-
jective. For −Hard variant, we replace RCL with InfoNCE

Table 3: Node classification results in terms of ACC (%).

Method Cora Citeseer Pubmed Airport
GCN 81.1(0.3) 70.2(0.2) 77.7(1.0) 81.7(0.4)
GAT 81.9(1.1) 71.3(1.4) 78.6(1.3) 82.1(1.2)

SAGE 77.9(1.7) 69.3(1.9) 77.2(0.5) 82.1(0.9)
SME 81.5(0.6) 72.5(1.0) 78.4(0.7) 83.9(0.7)

HGCN 81.1(0.2) 72.5(1.0) 80.1(1.6) 89.2(0.6)
HGNN 80.8(0.6) 71.1(2.2) 79.7(1.2) 82.7(2.2)
LGCN 82.6(0.3) 72.4(0.3) 80.3(0.3) 89.2(1.3)
κ-GCN 81.2(0.4) 73.1(0.6) 81.2(0.5) 84.8(1.5)
H-to-H 80.0(0.2) 71.0(0.3) 79.5(0.3) 81.8(0.9)

SelfMG 82.2(1.0) 73.2(1.0) 80.0(1.2) 86.1(1.2)
Q-GCN 81.7(0.6) 73.5(0.4) 80.9(0.8) 83.2(0.8)

fullyH 79.9(0.4) 71.9(1.1) 79.9(0.5) 86.4(0.3)
OursGCN 83.7(1.2) 74.2(1.1) 82.2(1.1) 89.2(1.8)
OursGAT 82.5(0.7) 73.9(0.7) 81.5(0.9) 91.5(1.3)

OursSAGE 82.0(0.5) 73.3(1.1) 81.6(1.0) 90.9(1.8)

loss (Oord, Li, and Vinyals 2018) in the minmax objective
to evaluate the motif-aware hardness in contrastive learning.
The variants are instantiated on the product of three learn-
able factors by default, i.e., (G)3 × Sup. We record the re-
sults for both tasks on Cora and Citeseer datasets in Table
4, where the derivation is given in brackets. It shows that:
1) − gF variant has inferior performance to our model. The
reason lies in that the logarithmic map suffers from numeri-
cal instability (Chen et al. 2022; Yu and Sa 2023). The issue
of “NaN” may occur, as shown in the link prediction on Cite-
seer, motivating our formulation of gF. 2) RCL increases the
performance of our model, and motif-aware hardness is im-
portant for RCL. 3) Our model consistently outperforms the
−motif variant. It verifies our insight: motif regularity is ef-
fective to learn the curvatures, offering a new perspective to
curvature learning in Riemannian manifold. On the number
of learnable factors, we instantiate our model with different
numbers of factors, and record the results in Table 5. It sug-
gests: the product with more factor is more flexible to match
the graph structures in general, achieving better results.



Table 4: Ablation Study on Proposed Components. AUC (%)
for Link Prediction (LP). ACC(%) for Node Classification
(NC). Best result are boldfaced and runner-up underlined.

Cora Citeseer
Variant LP NC LP NC

G
C

N

MotifRGC 97.37 83.67 98.54 74.24
−Hard 97.05 83.12 98.36 73.99
−RCL 96.30 82.34 97.86 71.98
− gF 96.92 82.80 NaN 73.20
−Motif 95.02 81.29 96.80 72.16

G
A

T

MotifRGC 98.86 82.55 98.85 73.95
−Hard 98.45 82.20 98.27 73.39
−RCL 97.99 81.06 97.86 72.93
− gF 98.10 82.02 98.79 73.08
−Motif 95.18 82.13 97.11 72.67

SA
G

E

MotifRGC 98.19 82.02 98.99 73.35
−Hard 98.02 81.88 98.72 72.86
−RCL 96.81 79.02 97.15(0.09) 72.11
− gF 97.96 81.30 98.88 72.57
−Motif 94.50 81.49 96.67 72.32

Table 5: Ablation Study on Learnable Factors.

Cora Citeseer
Variant LP NC LP NC

G
C

N

G× Sup 95.27 81.30 96.33 71.92
(G)2 × Sup 95.80 82.06 97.46 73.14
(G)3 × Sup 97.37 83.67 98.54 74.24
(G)4 × Sup 97.99 83.83 99.03 74.18

G
A

T

G× Sup 95.87 82.09 97.68 72.60
(G)2 × Sup 97.58 82.24 98.50 73.31
(G)3 × Sup 98.86 82.55 98.85 73.95
(G)4 × Sup 99.16 82.40 98.96 74.02

Case Study on Triangle Generation We conduct the case
study to examine triangle generation from the proposed Mo-
tifRGC. Concretely, MotifRGC is instantiated on the back-
bone of GCN, and the generated triangles are evaluated
by AUC metric given real triangles. Previous Riemannain
methods lack the ability of motif generation, to our best
knowledge. Instead, we list the AUC of triangle prediction,
where a triangle is predicted if all the three edges are cor-
rectly predicted. Fig. 2 shows the result of triangle gen-
eration/prediction on Cora, Citeseer, Pubmed and Airport
datasets. Standard deviation is given in the error bar. In Fig.
2, Riemannain models outperform the Euclidean GCN. It
suggest that Riemannian manifold tends to be more suit-
able to model motifs than the Euclidean counterpart. Our
MotifRGC achieves the best result, with at least 4.8% AUC
gain to the runnerup and 35.05% AUC gain to its backbone.
It shows the learnt manifold captures the motif regularity of
real graphs, and thus is able to generate triangles effectively.

Related Work
We briefly summarize the related work in Riemannian graph
representation learning. Nickel and Kiela (2017); Suzuki,
Takahama, and Onoda (2019) introduce hyperbolic space
to model graphs. HGNN (Liu, Nickel, and Kiela 2019)
and HGCN (Chami et al. 2019) generalize GCN (Kipf and
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Figure 2: AUC (%) of Triangle Generation/Prediction.

Welling 2017) and GAT (Velickovic et al. 2018) to hy-
perbolic space, respectively. Zhang et al. (2021); Li et al.
(2022b); Fu et al. (2023) give other formulations of hyper-
bolic GNNs. Fu et al. (2021) propose to explore curvature
in hyperbolic space. H-to-H (Dai et al. 2021) and fullyH
(Chen et al. 2022) study the Lorentz type operations for hy-
perbolic GCNs. κ-GCN (Bachmann, Bécigneul, and Ganea
2020) further extends GCN to κ-sterographical model of
any curvature. Q-GCN (Xiong et al. 2022b) introduces a
quotient manifold of a single curvature radius. Yang et al.
(2022); Zhu et al. (2020) embed graphs in the dual spaces
of Euclidean and hyperbolic ones. Cruceru, Bécigneul, and
Ganea (2021); López et al. (2021) study Riemannian ma-
trix spaces for graphs. Yang et al. (2023a); Liu et al. (2023);
Nguyen et al. (2023) leverage Ricci curvature to model
graphs. Xiong et al. (2022a); Wang et al. (2021) focus
on knowledge graphs specially, different from our setting.
SelfMG (Sun et al. 2022b) and κ-GCN also study graphs
in the product space (Gu et al. 2019) but, as mentioned be-
fore, we specify the product itself cannot result in diverse-
curvature manifold. Giovanni, Luise, and Bronstein (2022)
study the curvature diversity of an upper hypersphere math-
ematically, but neither build GCN nor consider curvature
learning. Note that, Sonoda, Ishikawa, and Ikeda (2022);
Yu and Sa (2023) formulate invariant kernels for hyperbolic
space, while we formulate an invariant kernel for any Rie-
mannian manifold with theoretical guarantee. Recently, Sun
et al. (2023b, 2022a, 2021) propose Riemannian GNNs for
temporal graphs. Sun et al. (2023a,b) rethink structure learn-
ing and clustering in the manifold, respectively.

Conclusion
We rethink Riemannian graph representation learning, and
propose the first model considering motifs in diverse-
curvature manifold. We design a new type of Riemannian
GCN (D-GCN), where we ensure curvature diversity by the
product layer, and address numerical stability by the kernel
layer. Then, motif-aware Riemannian generative-contrastive
learning introduces a minmax game in the constructed mani-
fold, capturing motif-regularity in node representations. Ex-
tensive experiments show the superiority of our model.
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