
Motif-matching based Subgraph-level Attentional Convolutional Network for
Graph Classification

Hao Peng,1,2,3 Jianxin Li,1,2 Qiran Gong,4 Yuanxing Ning,1,2 Senzhang Wang,5 Lifang He 6

1Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China
2State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China

3Key Laboratory of Aerospace Network Security, Ministry of industry and information technology,
School of Cyberspace Science and Technology, Beihang Universty, Beijing 100191, China

4Department of Computer Science, Brown University, Providence, RI, USA
5College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

6Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA
{penghao,lijx,ningyx}@act.buaa.edu.cn, qiran gong@brown.edu , szwang@nuaa.edu.cn , lih319@lehigh.edu

Abstract

Graph classification is critically important to many real-world
applications that are associated with graph data such as chem-
ical drug analysis and social network mining. Traditional
methods usually require feature engineering to extract the
graph features that can help discriminate the graphs of dif-
ferent classes. Although recently deep learning based graph
embedding approaches are proposed to automatically learn
graph features, they mostly use a few vertex arrangements
extracted from the graph for feature learning, which may lose
some structural information. In this work, we present a novel
motif-based attentional graph convolution neural network for
graph classification, which can learn more discriminative and
richer graph features. Specifically, a motif-matching guided
subgraph normalization method is developed to better pre-
serve the spatial information. A novel subgraph-level self-
attention network is also proposed to capture the different im-
pacts or weights of different subgraphs. Experimental results
on both bioinformatics and social network datasets show that
the proposed models significantly improve graph classifica-
tion performance over both traditional graph kernel methods
and recent deep learning approaches.

Introduction
Graph classification, which aims to identify the class labels
of graphs in a dataset, is critically important to many real-
world applications in diverse domains. Data from molec-
ular chemistry (Benkö, Flamm, and Stadler 2003), bioin-
formatics drug discovery (Gonzalez-Diaz et al. 2007), so-
cial network (Backstrom and Leskovec 2011), text classifi-
cation (Peng et al. 2018), malware detection (Anderson et al.
2011), etc., can all be represented as labeled graphs with re-
lationships and interdependencies between objects. In chem-
istry and bioinformatics drug analysis, for instance, each
chemical compound can be represented as a graph where
nodes correspond to atoms, and edges signify the presence
of chemical bonds between atoms. The task then is to predict
the class label of each graph, for instance, the anti-cancer ac-
tivity, mutagenic or toxicity of a chemical compound.

To solve the graph classification problem, one usually
extracts some graph features that help discriminate the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

graphs of different classes. Traditional technologies include
random-walks, subgraphs or sub-tree patterns based graph
kernel methods (Vishwanathan et al. 2010; Shervashidze
et al. 2011). In general, graphs that share many common
graphlets are considered similar. The graph kernel based
methods measure the similarity between two graphs with
kernel functions corresponding to the inner products of the
extracted features (Vishwanathan et al. 2010; Yanardag and
Vishwanathan 2015). With the recent success of deep learn-
ing techniques, the focus of graph classification techniques
has shifted from the graph kernel functions to the spatial-
based graph convolutional neural network (GCNN) (Wu
et al. 2019). One pioneering spatial-based GCNN model
is PSCN (Niepert, Ahmed, and Kutzkov 2016). It utilizes
standard convolutional neural network by converting graph-
structured data into grid-structured data with multiple sort-
ing functions. However, PSCN only samples a few of ver-
tex arrangements as the grid-structured data to represent a
graph, which loses some structural information such as the
subgraph structures. In addition, the design of the sorting
functions requires strong prior knowledge, which is very dif-
ficult in practice.

It is non-trivial to use deep learning techniques for
graph classification due to the following two major chal-
lenges. First, it is very challenging for deep learning mod-
els such as CNNs to handle the complex graph data. Graph
data are in the non-Euclidean domain, and each graph
has a variable size of unordered nodes and each node
in a graph has a different number of neighbors. There-
fore, some important operations (e.g., convolutions, recur-
rences) that are easy to compute for image data, are very
hard to conduct for the graph data. Although some re-
cent works including PSCN (Niepert, Ahmed, and Kutzkov
2016), DGCNN (Zhang et al. 2018), NEST (Carl et al. 2018)
and DIFFPOOL (Ying et al. 2018) proposed new graph pre-
processing paradigms or graph convolutional networks, they
cannot fully capture the aggregated features from neigh-
bors and nodes by using a variety of pooling operators. Sec-
ond, existing deep learning based graph classification mod-
els (Zhou et al. 2018; Wu et al. 2019) lack of sufficient study
on the diverse impacts of different nodes, graphlets or sub-
graphs. They consider the impacts between two objects or

I'm

feature maps generated by convolution kernels are equally
important. The existing graph attention models (Veličković
et al. 2018; Lee et al. 2018) can only generate node-level
embedding. Thus they are difficult to be applied to arbitrary
graph classifications due to the required strong prior knowl-
edge to design the attention model. Although GAM (Lee,
Rossi, and Kong 2018) is a node-level attentional RNN
model which considers local connectivity among nodes, we
argue that higher level such as subgraph-level attention is
more interpretable in graph classification. Hence existing
deep learning based graph classification models generally
lack of sufficient interpretability.

To address the above challenges, we propose a Motif-
based Attentional Graph Convolutional Neural Network
model, named as MA-GCNN, for graph classification. We
first propose a motif-matching based subgraph normaliza-
tion method to better preserve spatial information by con-
verting graph-structured data into a grid-structured data rep-
resentation. Second, we design subgraph-independent con-
volutional neural networks to learn different-levels of fea-
tures for each subgraph without pooling operators. Next,
a novel subgraph-level self-attention network is also intro-
duced in the propagation step to learn different impacts or
weights of different subgraphs in a graph for classifica-
tion. Here, we concatenate the feature maps of each chan-
nel of each subgraph, learned by different convolution ker-
nels, into a corresponding vector, and then measure different
impacts or weights among the vectors by the self-attention
mechanism. By leveraging the motif-matching guided graph
processing, two layers of subgraph-independent convolu-
tion kernels and subgraph level self-attentional network
layer, we finally design a novel end-to-end graph classi-
fication framework, which is more interpretable via the
weighted subgraphs. We conduct extensive experiments on
both bioinformatics and social network datasets for graph
classification. Compared with both traditional graph ker-
nel based algorithms and recent deep learning approaches,
our proposed models achieve significant performance im-
provement in classification accuracy on ten benchmark
datasets. The code of this work is publicly available at
https://github.com/RingBDStack/MA-GCNNs.

Related Work
Existing works for graph classification can be broadly cat-
egorized into traditional graph kernel based methods and
graph convolutional neural networks based models.

A great deal of research works have focused on designing
the suitable graph kernel functions for each graph dataset in
terms of the task of classification. Popular methods include
graphlets (Shervashidze et al. 2009), random walk and short-
est path kernel (Borgwardt and Kriegel 2005), sub-tree ker-
nel (Shervashidze et al. 2011), deep graph kernel (Yanardag
and Vishwanathan 2015), graph invariant kernel (Orsini,
Frasconi, and De Raedt 2015), multiscale laplacian graph
kernel (Kondor and Pan 2016), and graph feature selec-
tion (Kong et al. 2013). In general, the graphlet kernel de-
composes a graph into graphlets, Weisfeiler-Lehman kernel
decomposes a graph into sub-trees, and shortest-path kernel
decomposes a graph into shortest-paths. The decomposed

sub-structures are then represented as a vector of frequencies
where each vector element represents the occurrence time of
a given sub-structure in the graph. Thus, the Euclidean space
or some other domain-specific reproducing kernel Hilbert
space is used to define the dot product between the vectors
of frequencies. Kernel based models have demonstrated the
ability to capture different levels of features in graph clas-
sification. However, although kernel based models can cap-
ture explicit and sub-structural similarities at different lev-
els, they are not able to capture implicit similarities.

Recently, graph convolutional neural networks (GCNNs)
are proposed and presented promising performance in graph
classification. The original idea of defining graph convolu-
tion has been recognized as the problem of learning filter
parameters that appear in the graph fourier transform in the
form of a graph Laplacian (Bruna et al. 2014). (Kipf and
Welling 2017) proposed a self-loop graph adjacency matrix
and a propagation rule to compute and update the weights
in each neural network layer. An optimized GCNNs model
is proposed in (Defferrard, Bresson, and Vandergheynst
2016) by utilizing fast localized spectral filters and efficient
pooling operations. Considering the weakness of traditional
CNNs in spatial hierarchies and rotational invariance, Graph
Capsule networks are proposed in (Verma and Zhang 2018;
Xinyi and Chen 2019). (Lee, Rossi, and Kong 2018) pro-
posed a RNN based node-level graph attention model GAM
to process informative parts of a graph by adaptively vis-
iting a sequence of important nodes. Due to the disadvan-
tage of partial observability of the input graphs, GAM is not
suitable for arbitrary graphs, and cannot achieve state-of-art
performance. In chemical and bimolecular structures, nodes
can represent basic chemical elements, groups or amino
acids, while toxic or pharmacological components are of-
ten a combination of basic elements at high-level. How-
ever, existing attentional deep learning based graph classi-
fication models ignored the division of a large graph into
subgraphs to improve the model interpretability for down-
stream applications. RNN autoencoder based graph repre-
sentation methods adopt random walks, breadth-first search
and shortest paths to generate node sequences to learn struc-
tural features (Aynaz and Tanya 2018). (Simonovsky and
Komodakis 2017) introduced a edge-conditioned convolu-
tion operation on graph signal performed in the spatial do-
main where filter weights are conditioned on edge labels and
are dynamically generated for each input sample. (Ying et
al. 2018) proposed a differentiable graph pooling to gener-
ate hierarchical representations of graphs. (Ivanov and Bur-
naev 2018) proposed to use the distribution of anonymous
walks as a network embedding, sampling walks in a graph
to approximate actual distribution with a given confidence.
DGCNN (Zhang et al. 2018) used a SortPooling layer which
sorted graph vertices in a consistent order to make traditional
neural networks trainable on the graphs. Different from the
above methods capturing spatial structures through various
pooling and convolution operations, our proposal preserves
spatial structures by a grid-structured representation which
preserves rich semantic information.

Motifs are high-order structures that are crucial in many
domains such as bioinformatics, neuroscience and social

…

…

…

…

…

…

…

…

…
 … …

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

… …

…

Step 1 : node sequence generation and selection

… …

Step 2 : subgraph construction

…

Step 3 : motif-matching based subgraph normalization

First-block
 rows

Labeling Motif

Single bond Double bonds

Second-block
 rows

Third-block
 rows

… …

Concatenate

Motif-matching

…

Graph flow

Figure 1: An illustration of motif-matching guided graph
processing.

network analysis. Recent works have explored motifs in
clustering (Benson, Gleich, and Leskovec 2016) and graph
classification (Carl et al. 2018) tasks. However, existing
methods only focus on applying motifs to filter structures
of graphs for neural networks optimization, but do not
fully exploit motifs to capture local stationary and spatial
structures of a graph. The most relevant work to ours is
PSCN (Niepert, Ahmed, and Kutzkov 2016) model. As a
standardized process from graph to convolutional neural net-
works, PSCN contains node sequence selection, graph nor-
malization and shallow convolution. Compared to our meth-
ods, PSCN ingores some structural information when con-
verting the graph-structured data into grid-structured repre-
sentation.

Motif-matching based Graph Processing
We first introduce how to transform the graph-structured
data to a grid-structured representation. As shown in Fig-
ure 1, the Motif-matching based graph processing includes
node sequence generation and selection, subgraph construc-
tion, and motif-matching based subgraph normalization.

We denote a graph as G = (V,E), where V denotes the
node set and |V | = n, E denotes the edge set and |E| = m.
d(v, u) denotes the length of the shortest path between two
nodes v and u in G. Here, we treat the double, triple and

higher bonds of the edges in bioinformatics as two, three
and more single bonds in the graph. So, we can compute
a closeness centrality Cv = (n− 1)/

∑
u∈V,u 6=v d(v, u) for

each node v on G in parallel. Specifically, we use the two-
hop paths as the motif structure, because two-hop paths
have symmetry and are suitable for various matches. As
the distributions of edges in graphs are usually unbalanced,
some more complex motifs, such as triangles, may be rarely
matched. In fact, dense subgraphs can be partitioned into
multiple two-hop paths, and thus can be approximately re-
constructed. The two-hop paths motif can be represented by
an array which is suitable for convolution operations.

For the first step of node sequence generation and selec-
tion, we sort all nodes in a graph by their closeness central-
ity in descending order, and then select the top-N nodes as
central nodes of the graph. The selected top-N nodes are
considered as representative objects. As shown in Step 1 of
Figure 1, the red nodes from c1 to cN represent the selected
central nodes. If the number of nodes in the graph is less than
N , the remaining central nodes will be padded with zeros.
Only top-N nodes are selected to reduce the computational
complexity of feature learning.

Next, we extract a subgraph G(ci) for each central node
ci, i ∈ [1, N], as shown in Step 2 of Figure 1. Each sub-
graph is extracted in the order of first, second and third or-
der neighbors based on breadth first search (BFS) and the
closeness centrality. Here, we limit the number of nodes in
the subgraph not larger thanK. The idea of selectingN sub-
graphs on G and limiting the total number of nodes of each
subgraph is to maximize the coverage of the original graph
structure with N subgraphs. The design of the subgraph is
similar to the receptive field of the sliding window in CNN
models. For instance, we extract the subgraph G(c1) for the
central node c1.

Finally, we convert each subgraph G(ci) into a corre-
sponding central matrix M(ci) by motif-matching. We first
initialize the central matrix with zeros. For each node ū in
subgraph G(ci), we calculate the length of shortest path be-
tween node ū to the central node ci of the subgraph. There-
fore, we can sort the nodes in the subgraph G(ci) based on
their shortest distances and closeness centrality. Based on
the sorted node index, we serialize all nodes in the subgraph
to {a1, a2, a3, · · · , ak}. For instance, we serialize the nodes
in G(c1) to {a1, a2, · · · , a8}, as shown in Step 3 of Fig-
ure 1. Next, we fill the central matrix by the matched two-
hop paths motif in parallel. Each row of the central matrix
M(ci) is filled with matched nodes in the two-hop paths.
As the number of nodes in each subgraph is small, we can
also perform a fast motif matching algorithm (Sun et al.
2012) when there are a large number of subgraphs. Here,
we keep the closest node to the central node in the first col-
umn (the red nodes in the first column of the central ma-
trix M(c1) in Step 3 of Figure 1). Meanwhile, the central
matrix M(ci) can be divided into three blocks according to
the shortest distance from the matched nodes to the center
node ci. The first block contains the central node, such as
the a1 in the first block of M(c1) shown in the Step 3. Sim-
ilarly, the second and third blocks contain the two-hop and
three-hop neighbor nodes of the center node, respectively.

Channel-

Channel-1

Channel-2

Vectorized representation
of subgraph-1

…

…

Convolution
operation

Horizontal stride: 1
Vertical stride:3

Convolution size:

Channel
Concatenate

Softmax on each
subgraph

Attention
Layer

Subgraph-N
Classification

Sum on
each label

……………………

……………………

Number of filters:

…

…

Horizontal stride: 3
Vertical stride:1

Convolution size: 1X3
Number of filters:

Subgraph-1
Classification

T

Vectorized representation
of subgraph-N

Step 1

Step 3

Step 4

Step 5

Step 2

Step 3

Figure 2: An illustration of the subgraph-level self-attention deep convolutional neural network.

In general, different hops can have different block sizes,
such as {a1, a2, a3}, {a1, a2, a4} and {a1, a3, a5} in the first
block, {a2, a4, a6}, {a2, a4, a7}, {a3, a5, a6}, {a3, a5, a8}
in the second block and {a4, a6, a7}, {a5, a7, a8} in the third
block of M(c1). Considering the different scales of graphs,
we fix the row numbers of the first, second and third blocks
as w1, w2 and w3, respectively. Note that we preserve all the
nodes and their relationships in a subgraph to a correspond-
ing center matrix according to the above rules without repet-
itive matching. Next, we concatenate the N central matrices
M(ci), i ∈ [1, N] into a large combined matrix M(G) fol-
lowing the sequence in Step 1, such as the the combination
of M(c1), M(c2), · · · ,M(cN) shown in Step 3 of Figure 1.
Therefore, for a graph G, it can be finally represented as a
combined matrix M(G). We note that each element in the
matrix M(G) refers to a vertex in the graphG. We name the
above procedure as subgraph normalization.

To sum up, given a set of graphs, the following steps are
applied on each graph: (1) select a fixed-length sequence of
central nodes from the graph; (2) assemble a fixed-size sub-
graph for each central node in the selected sequence; (3) nor-
malize each extracted subgraph into a central matrix; and (4)
concatenate the central matrices into a combined matrix.

Subgraph-level Attentional Convolutional
Neural Networks

After transforming a graphG to a matrixM(G), we next use
deep convolution neural networks and attention networks to
learn the features of the graph from different-levels.

The size of the input combined matrix M(G) is 3N ×
(w1 + w2 + w3), where N is the number of selected cen-
tral nodes, 3 is the length of the motif, and (w1 + w2 + w3)
is the sum of the rows of the three matrix blocks. As each
central matrix represents a subgraph, in order to enhance the
interpretability of the model, we can design a model that en-
sures the independence of the feature representations among
subgraphs. In the first convolution layer, the size of the con-
volution kernel is 1 × 3, and the convolution slides in both
horizontal and vertical directions. The horizontal direction
stride is 3, which equals to the length of the motif. The ver-

tical direction stride is 1. We use k1 convolution kernels to
generate a k1×N×(w1+w2+w3) feature map, where each
vertical feature map also characterizes the learned represen-
tation of the corresponding subgraph. In the second convolu-
tion layer, the size of convolution kernel is set to 3× 1× k1.
To guarantee the independence of the subgraph feature rep-
resentations, the horizontal stride is 1 and the vertical stride
is 3 as shown in the step (1) of Figure 2. To preserve the spa-
tial information of the graph, we do not employ any pooling
operations. We denote T = (w1 + w2 + w3)/3, and the
size of output feature map of the second convolution layer
is N × k2 × T with k2 convolution kernels, as shown in the
step (2) of Figure 2. Therefore, we can directly use the above
two layer convolutional neural networks to learn different-
levels and subgraph-independent feature representations for
each graph, and add two layers of full-connected network
for graph classification. We name the combination of Motif-
matching guided Graph processing, two layers of subgraph-
independent Convolutional Neural Networks and two layers
of fully-connected networks as the M-GCNN. Since we have
the independent representations of subgraph level features,
we design a subgraph level self-attention module to measure
the different impacts of the subgraphs in graph classification.

Different from traditional softmax networks, we imple-
ment self-attentional layers to capture the influences of dif-
ferent subgraphs on classification task. As shown in step
(2) of Figure 2, we take the feature map with the size of
1× k2×T as one channel of output feature map. In order to
characterize the interactions among subgraphs, we first con-
catenate all channels of feature map into a N × (k2 · T) ma-
trix, where each dimension in N is the vectorized represen-
tation of a subgraph, as shown in the step (3) of Figure 2. For
two subgraphs G(ci) and G(cj), the corresponding vector-
ized features are ~hci and ~hcj , where the size of the vector is
denoted as F = k2 · T . Then, we add a W ∈ RF ′×F weight
matrix and a ~aT ∈ R2F ′

weight vector to learn the mutual
influence among subgraphs from the vectorized features.
More specifically, the attentional layer contains F ′ hidden
neurons, and the attention mechanism is implemented by a

feed forward neural network. Considering the negative val-
ues of dot product, similar to GAT model (Veličković et al.
2018), we also apply the LeakyReLU (with negative input
slope α = 0.2) function. Therefore, the coefficient of sub-
graphG(cj) onG(ci) computed by the attention mechanism
can be computed by:

αij =
exp(LeakyReLU(~aT [W~hci ‖W~hcj]))∑

k∈N,k 6=i exp(LeakyReLU(~aT [W~hci ‖W~hck]))
, (1)

where ‖ denotes the concatenate operation. Following tra-
ditional attention mechanism, we perform S independent
attention computations, and employ averaging strategy to
evaluate influences. As shown in step (4) of Figure 2, the
output nonlinearity uses a softmax for final classification:

~h′ci = σ(
1

S

S∑
s=1

∑
t∈N,t 6=i

αs
itW

s~hct), (2)

where σ is the sigmoid function, and ~h′ci is the output
probability distribution of G(ci). Finally, we sum all output
probabilities according to the class label, as shown in step
(5) of Figure 2. Finally, the class label with the maximum
probability is selected as the class graph G belongs to. We
name the above Motif-matching guided Graph processing,
two layers of subgraph-independent Convolutional Neural
Networks and self-attentional layers as the MA-GCNN.

The subgraph-level self-attention module is designed be-
cause different subgraphs contain different partial struc-
tural information of the entire graph. Intuitively, different
subgraphs may contribute differently on the classification.
Through the attentional layers, we obtain the probability dis-
tribution on the class labels for each subgraph. Moreover,
the probability distribution on class labels of different sub-
graphs can help study the importance of the subgraphs on the
classification of the entire graph. Finally, we ensemble the
classification results of all the subgraphs by applying sum
operation as the final probability distribution of the graph.

Experiments
We conduct experiments on multiple public benchmark
datasets in the areas of bioinformatics and social network.
We compare the propsoed M-GCNN and MA-GCNN mod-
els against both state-of-the-art graph kernel based methods
and recent deep learning based approaches.

Datasets and Settings
We use the following five bioinformatics datasets MUTAG,
PTC, PROTEINS, D&D and NCI1. MUTAG is a dataset
of 188 mutagenic aromatic and heteroaromatic nitro com-
pounds (Debnath et al. 1991) with 7 discrete node labels,
namely C,N,O, F, I, Cl, Br, and 4 discrete edge labels,
including aromatic, single, double, and triple bonds. The
classes indicate whether the compound has a mutagenic ef-
fect on a bacterium. PTC (Toivonen, Srinivasan, and Helma
2003) is a dataset of 344 organic molecules marked ac-
cording to their carcinogenicity on male and female mice
and rats. It has 19 discrete labels in nodes. PROTEINS is
a graph collection obtained from (Borgwardt, Cheng, and

Vishwanathan 2005) where nodes are secondary structure el-
ements and edges indicate neighborhood in the amino-acid
sequence or in 3D space with 61 discrete labels. The graphs
are classified as enzyme or non-enzyme. D&D is a dataset
of 1178 protein structures (Dobson and Doig 2003) with 82
discrete labels, and is also classified into enzymes and non-
enzymes. NCI1 dataset is chemical compounds screened for
activity against non-small cell lung cancer and ovarian can-
cer cell lines (Wale, Watson, and Karypis 2008), and con-
tains 4110 samples. In order to test the effectiveness of our
models on unlabeled graphs, we also select five social net-
work datasets (Yanardag and Vishwanathan 2015), including
IMDB-BINARY (IMDB-B), IMDB-MULTI (IMDB-M),
REDDIT-BINARY (RE-B), REDDIT-MULTI-5K (RE-
M-5K) and REDDIT-MULTI-12K (RE-M-12K). Note that
we use node degree as the attribute in these datasets,
and it can easily incorporate continuous features. Both
IMDB-BINARY and IMDB-MULTI are movie collabora-
tion datasets with 1000 and 1500 graphs, respectively. The
task is to identify which genre an ego-network graph belongs
to. Each graph in REDDIT-BINARY, REDDIT-MULTI-5K
and REDDIT-MULTI-12K datasets corresponds to an online
discussion thread and the nodes denote users. There is an
edge between two users if at least one of them responds to
the others comment. The task in these datasets is to predict
which subreddit a given discussion thread graph belongs to.

The common parameters of training the models are set as
MOMENTUM = 0.9, Dropout = 0.5, learning rate = 0.001,
and L2 norm regularization weight decay = 0.01. We set
F1 = 128, F2 = 64 in M-GCNN model and F ′ = 16, S =
8 in MA-GCNN model. For each dataset, the parameters
N,K,w1, w2, w3 and training epochs are set based on the
following principles: (1) N is set to the average number of
nodes for all the graphs in a given graph dataset. (2) The
numbers of nodes K in the subgraph are set to 10 and 20 in
bioinformatics and social network datasets, respectively. (3)
The numbers of w1, w2, w3 are set based on the subgraph
connectivity information. Considering the number of train-
ing sample and downward trend of the objective function,
we adjust the batch size from 45 to 450 to get the best ac-
curacy. We employ the cross-entropy loss function which is
widely used in classification tasks. All of our experiments
are evaluated using the 10-fold cross-validation method. In
order to speedup the computation of the closeness centrality,
we open up to 500 multi-threaded parallel processing.

Baseline Methods
We compare our models with both traditional graph
kernel based methods and recent deep learning based
graph classification approaches. Graph kernel based base-
lines include Graphlet Kernel (GK) (Shervashidze et al.
2009), Shortest-Path Kernel (SP) (Borgwardt, Cheng, and
Vishwanathan 2005), Weisfeiler-Lehman Sub-tree kernel
(WL) (Shervashidze et al. 2011) and Deep Graph Kernels
(DGK) (Yanardag and Vishwanathan 2015). For deep learn-
ing based approaches, the following eight state-of-the-art
GCNNs are compared: PATCHY-SAN (PSCN) (Niepert,
Ahmed, and Kutzkov 2016), Dynamic Edge CNN
(ECC) (Simonovsky and Komodakis 2017), Deep Graph

Table 1: Comparison of average classification accuracy and standard deviation on 5 bioinformatics datasets (%).
Methods MUTAG PTC PROTEINS D&D NCI1

SP 87.28±0.55(9) 58.24±2.44 (9) 75.07±0.54 (10) 78.86± 0.26 (5) 73.47±0.11 (12)
WL 83.78±1.46 (12) 57.97±0.49 (10) 74.68 ±0.49 (11) 79.78±0.36 (3) 84.55±0.36 (1)∗

GK 81.66±2.11 (13) 57.26±1.41 (11) 71.67±0.55 (12) 78.45±0.26 (7) 62.28±0.29 (13)
DGK 87.44±2.72 (8) 60.08±2.55 (7) 75.68±0.54 (8) 78.50±0.22 (6) 80.31±0.46 (8)
PSCN 92.63±4.21 (3) 62.29±5.68 (6) 75.89± 2.76 (7) 77.12±2.41 (10) 78.59±1.89 (9)
ECC 89.44±3,2 (6) – – 74.10±3.11 (12) 83.80±2.56 (2)

DGCNN 85.83±1.66 (11) 58.59±2.47 (8) 75.54±0.94 (9) 79.37±0.94 (4) 74.44±0.47 (11)
GCAPS-CNN – 66.01±5.91 (4) 76.40±4.17 (5) 77.62±4.99 (9) 82.72±2.38 (4)

CapsGNN 86.67±6.88 (10) – 76.28±3.63 (6) 75.38±4.17 (11) 78.35±1.55 (10)
AWE 87.87±9.76 (7) – – 71.51±4.02 (13) –

S2S-N2N-PP 89.86±1.1 (5) 64.54±1.1 (5) 76.61±0.5 (3) – 83.72±0.4 (3)
NEST 91.85±1.57 (4) 67.42±1.83 (3) 76.54±0.26 (4) 78.11±0.36 (8) 81.59±0.46 (6)

M-GCNN 92.78±3.56 (2) 70.30±3.59 (2) 78.19±1.93 (2) 81.37±1.11 (2) 80.91±2.17 (7)
MA-GCNN 93.89±5.24 (1)∗ 71.76±6.33 (1)∗ 79.35±1.74 (1)∗ 81.48±1.03 (1)∗ 81.77±2.36 (5)

Gain 1.26 4.34 2.74 1.70 -

Convolution Neural Network (DGCNN) (Zhang et al.
2018), Graph Capsule CNN (GCAPS-CNN) (Verma and
Zhang 2018), CapsGNN (Xinyi and Chen 2019), Anony-
mous Walk Embeddings (AWE) (Ivanov and Burnaev
2018), Sequence-to-sequence Neighbors-to-node Previ-
ous predicted (S2S-N2N-PP) (Aynaz and Tanya 2018) and
Network Structural ConvoluTion (NEST) (Carl et al.
2018). DGCNN enhances the pooling network by solving
the underlying graph structured tasks. GCAPS-CNN com-
bines the advantages of spectral domain GCNN and capsule
networks, which further explores the permutation invariant
for graph data. For other baselines, we follow the same ex-
periment and model settings as mentioned in their papers.

Results and Analysis
In this section, we discuss the experimental results in terms
of classification accuracy, standard deviation and model run-
ning time. All the reported results of comparison methods
come from the original papers (“–” means not available).

Bioinformatics Graph Classification. Table 1 shows the
accuracy and standard deviations of different algorithms on
the five bioinformatics datasets. One can see that M-GCNN
achieves higher accuracy and lower standard deviation over
MUTAG, PTC, PROTEINS and D&D datasets. Even though
only the motif-matching guided graph processing and two
layers of subgraph-independent convolutional neural net-
works are utilized, M-GCNN surpasses all the baseline
methods in terms of accuracy with only one exception on
NCI1. Although WL performs best on NCI1, it does not
perform well on other datasets, especially on PTC and MU-
TAG. The performance improvement verifies that the pro-
posed motif-matching based subgraph normalization meth-
ods better capture the spatial information through converting
the graph-structured data into the grid-structured data. This
table also shows that subgraph-level self-attention optimized
model MA-GCNN achieves the highest accuracy on the four
datasets. Compared with M-GCN, MA-GCNN further im-
proves the classification performance for all the datasets.
On MUTAG, four out of ten cross-validations achieve the
100% accuracy, and the average accuracy is 93.89%. The

illustration of the accuracy in 10-fold validation for the MA-
GCNN model over the MUTAG is shown in Figure 3(a),
and the 1-st, 3-rd, 4-th and 10-th folds achieve the ac-
curacy of 100%. For PTC, MA-GCNN also achieves the
highest accuracy 71.77%, and outperforms the best base-
line NEST by 4.35%. The illustration of the 10-fold accu-
racy for the MA-GCNN model in testing in PTC is shown
in Figure 3(b). For MUTAG and PTC, the proposed models
are trained with 20 and 100 epochs, respectively. From Fig-
ure 3, one can see that with a few epochs of training, MA-
GCNN can achieve the highest testing accuracy. MA-GCNN
achieves up to 2.74% and 1.70% performance improvement
over S2S-N2N-PP (Aynaz and Tanya 2018) and WL (Sher-
vashidze et al. 2011) methods on PROTEINS and D&D,
respectively. For NCI1, MA-GCNN achieves better perfor-
mance than seven baselines. Compared with PSCN model
that is most relevant to our proposal, M-GCNN and MA-
GCNN achieve 2.32% and 3.18% performance improve-
ment in terms of average accuracy on NCI1, respectively.

Social Network Graph Classification. Table 2 shows the
classification results of different algorithms on the five so-
cial network datasets. We employ the normalized node de-
gree as the node attribute for social network datasets. Com-
pared with the nodes in the bioinformatics graphs, the nodes
in a social network have richer node attributes. One can
see that both M-GCNN and MA-GCNN models achieve
higher accuracy compared with all the baselines. Overall,
MA-GCNN model achieves the highest accuracy over all
the five datasets, and it outperforms M-GCNN. For IMDB-B
and IMDB-M, MA-GCNN achieves the highest accuracy up
to 77.20% and 53.77%, respectively. For REDDIT-BINARY
(RE-B), REDDIT-MULTU-5K (RE-M-5K) and REDDIT-
MULTU-12K (RE-M-12K), MA-GCNN achieves the high-
est accuracy up to 89.44%, 56.18% and 48.14%, respec-
tively. MA-GCNN achieves 2.75%, 0.69%, 0.92%, 1.44%
and 1.52% performance improvements in terms of average
accuracy compared with the best baselines, with smaller
standard deviations on the five datasets, respectively.

Both M-GCNN and MA-GCNN models show much more
promising results against both the recently developed state-

Table 2: Comparison of average classification accuracy and standard deviation on social network datasets (%).
Methods IMDB-B IMDB-M RE-B RE-M-5K RE-M-12K

WL 73.40±4.63 (5) 49.33±4.75 (7) 81.10±1.90 (8) 49.44±2.36 (7) 38.18±1.30 (8)
GK 65.87±0.98 (12) 43.89±0.38 (12) 77.34±0.18 (10) 41.01±0.17 (12) 31.82±0.08 (10)

DGK 66.96±0.56 (11) 44.55±0.52 (11) 78.04±0.39 (9) 41.27±0.18 (11) 32.22±0.10 (9)
PSCN 71.00±2.29 (9) 45.23±2.84 (10) 86.30±1.58 (7) 49.10±0.70 (8) 41.32±0.32 (7)

DGCNN 70.03±0.86 (10) 47.83±0.85 (9) 76.02±1.73 (11) 48.70±4.54 (9) –
GCAPS-CNN 71.69±3.40 (8) 48.50±4.10 (8) 87.61±2.51 (5) 50.10±1.72 (6) –

CapsGNN 73.10±4.83 (7) 50.27±2.65 (6) – 52.88±1.48 (4) 46.62±1.90 (3)
AWE 74.45±5.83 (3) 51.58±4.66 (4) 87.89±2.53 (4) 54.74±2.93 (3) 41.51±1.98 (6)

S2S-N2N-PP 73.8±0.7 (4) 51.19±0.5 (5) 86.50±0.8 (6) 52.28±0.5 (5) 42.47±0.1 (5)
NEST 73.26±0.72 (6) 53.08±0.31 (2) 88.52±0.64 (2) 48.61±0.46 (10) 42.80±0.28 (4)

M-GCNN 75.10±3.14 (2) 52.19±2.66 (3) 88.06±1.29 (3) 55.62±2.19 (2) 47.35±1.31 (2)
MA-GCNN 77.20±2.96 (1)∗ 53.77±3.11 (1)∗ 89.44±1.18 (1)∗ 56.18±1.48 (1)∗ 48.14±1.93 (1)∗

Gain 2.75 0.69 0.92 1.44 1.52

Epoch
2 4 6 8 10 12 14 16 18 20

A
cc

ur
cy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9 fold 10 fold

(a) MUTAG

Epoch
10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9 fold 10 fold

(b) PTC

Figure 3: Illustration of the 10-fold accuracies for the MA-
GCNN model in testing.

of-art deep learning approaches and graph kernels meth-
ods. The improvements in both bioinformatics datasets and
social network datasets demonstrate the effectiveness of
the motif-matching based subgraph normalization method,
subgraph-independent convolutional neural networks and
the subgraph-level self-attention layers.

Time Consumption Analysis. Compared with other deep
learning based models, the proposed M-GCNN and MA-
GCNN models consume more time as they need to first con-
vert graphs to grid-structured representations. Table 3 shows
the time consumption of M-GCNN and MA-GCNN mod-
els on the ten graph datasets. The second column refers
to the preprocessing time of converting graphs to grid-
structured representations. For MUTAG, PTC and PRO-
TEINS datasets, our two proposals need less than hour train-

Table 3: Time consumption of the proposed methods (mins).
Datasets Preprocess M-GCNN MA-GCNN
MUTAG 1.4 3.3 4.6

PTC 0.8 4.1 6.9
PROTEINS 7.2 15.5 32.0

D&D 31.8 56.4 108.9
NCI1 4.7 48.6 72.1

IMDB-B 8.3 49.8 84.2
IMDB-M 5.6 48.1 66.8

RE-B 126.3 186.8 282.9
RE-M-5K 1284.7 462.1 588.8

RE-M-12K 354.4 954.6 1410.7

ing time to reach the highest accuracy. For social structure
datasets, except for REDDIT-BINARY-5K (RE-M-5K) and
REDDIT-BINARY-12K (RE-M-12K), the training time of
the proposed models is around 3 hours. For the large scale
graph RE-M-12K, the training time of our models is about 1
day. As the computation of closeness centrality is time con-
suming, the preprocessing step in our models is parallelized
with different multi-threads. Compared with the significant
performance improvement in terms of classification accu-
racy, the proposed models do not significantly increase the
training time consumption.

Conclusion
In this paper, we propose a novel motif-matching based
subgraph normalization method to preserve spatial informa-
tion of graph. By integrating motif-matching based graph
processing, subgraph-independent convolutional networks
and subgraph-level self-attention layers, the proposed MA-
GCNN model is able to learn more discriminative fea-
tures for real-world graphs to facilitate the task of graph
classification. Extensive evaluations show that MA-GCNN
achieves new state-of-the-art performance in both bioinfor-
matics datasets and social network datasets. In the future,
we plan to integrate more complex motif structures, such as
three-hop paths or other graphlet into our models, and apply
the subgraph-level self-attention graph convolution network
to other downstream tasks such as the discovery of drug tar-
gets and molecular geometry optimization.

Acknowledgments
The corresponding author is Jianxin Li. This work
is supported by the NSFC program (No. 61872022,
61421003, 61602237), NSF of Guangdong Province
(2017A030313339), and SKLSDE-2018ZX16.

References
Anderson, B.; Quist, D.; Neil, J.; Storlie, C.; and Lane, T.
2011. Graph-based malware detection using dynamic anal-
ysis. Journal in computer Virology.
Aynaz, T., and Tanya, B.-W. 2018. Learning graph repre-
sentations with recurrent neural network autoencoders. In
DLDay.
Backstrom, L., and Leskovec, J. 2011. Supervised ran-
dom walks: predicting and recommending links in social
networks. In Proceedings of WSDM.
Benkö, G.; Flamm, C.; and Stadler, P. F. 2003. A graph-
based toy model of chemistry. J. Chem. Inf. Comput. Sci.
Benson, A. R.; Gleich, D. F.; and Leskovec, J. 2016. Higher-
order organization of complex networks. Science.
Borgwardt, K. M., and Kriegel, H.-P. 2005. Shortest-path
kernels on graphs. In Proceedings of ICDM. IEEE.
Borgwardt, K. M.; Cheng, S.; and Vishwanathan. 2005. Pro-
tein function prediction via graph kernels. Bioinformatics.
Bruna, J.; Zaremba, W.; Szlam, A.; and Lecun, Y. 2014.
Spectral networks and locally connected networks on
graphs. In Proceedings of ICLR.
Carl, Y.; Mengxiong, L.; Vincent W., Z.; and Jiawei, H.
2018. Node, motif and subgraph: Leveraging network func-
tional blocks through structural convolution. In ASONAM.
Debnath, A. K.; Lopez de Compadre, R. L.; Debnath, G.;
Shusterman, A. J.; and Hansch, C. 1991. Structure-activity
relationship of mutagenic aromatic and heteroaromatic nitro
compounds. correlation with molecular orbital energies and
hydrophobicity. Journal of medicinal chemistry.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Proceedings of NIPS.
Dobson, P. D., and Doig, A. J. 2003. Distinguishing enzyme
structures from non-enzymes without alignments. Journal of
molecular biology.
Gonzalez-Diaz, H.; Vilar, S.; Santana, L.; and Uriarte,
E. 2007. Medicinal chemistry and bioinformatics-current
trends in drugs discovery with networks topological indices.
Current topics in medicinal chemistry.
Ivanov, S., and Burnaev, E. 2018. Anonymous walk embed-
dings. In Proceedings of ICML.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In Proceedings
of ICML.
Kondor, R., and Pan, H. 2016. The multiscale laplacian
graph kernel. In Proceedings of NIPS.
Kong, X.; Yu, P. S.; Wang, X.; and Ragin, A. B. 2013. Dis-
criminative feature selection for uncertain graph classifica-
tion. In Proceedings of SDM.

Lee, J. B.; Rossi, R. A.; Kim, S.; Ahmed, N. K.; and Koh, E.
2018. Attention models in graphs: A survey. arXiv preprint
arXiv:1807.07984.
Lee, J. B.; Rossi, R.; and Kong, X. 2018. Graph classifica-
tion using structural attention. In Proceedings of KDD.
Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In Proceedings of
ICML.
Orsini, F.; Frasconi, P.; and De Raedt, L. 2015. Graph in-
variant kernels. In Proceedings of IJCAI.
Peng, H.; Li, J.; He, Y.; Song, Y.; and Yang, Q. 2018. Large-
scale hierarchical text classification with recursively regular-
ized deep graph-cnn. In Proceedings of WWW, 1063–1072.
Shervashidze, N.; Vishwanathan, S. V. N.; Petri, T. H.;
Mehlhorn, K.; and Borgwardt, K. M. 2009. Efficient
graphlet kernels for large graph comparison. AISTATS.
Shervashidze, N.; Schweitzer, P.; van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
lehman graph kernels. JMLR.
Simonovsky, M., and Komodakis, N. 2017. Dynamic
edge-conditioned filters in convolutional neural networks on
graphs. In Proceedings of CVPR.
Sun, Z.; Wang, H.; Wang, H.; Shao, B.; and Li, J. 2012.
Efficient subgraph matching on billion node graphs. The
VLDB Endowment.
Toivonen, H.; Srinivasan, A.; and Helma, C. 2003. Statisti-
cal evaluation of the predictive toxicology challenge. Bioin-
formatics.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph attention networks. In Pro-
ceedings of ICML.
Verma, S., and Zhang, Z. L. 2018. Graph capsule convolu-
tional neural networks. arXiv.
Vishwanathan, S. V. N.; Schraudolph, N. N.; Kondor, R.; and
Borgwardt, K. M. 2010. Graph kernels. JMLR.
Wale, N.; Watson, I. A.; and Karypis, G. 2008. Comparison
of descriptor spaces for chemical compound retrieval and
classification. Knowledge and Information Systems.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2019. A comprehensive survey on graph neural networks.
arXiv.
Xinyi, Z., and Chen, L. 2019. Capsule graph neural network.
In Proceedings of ICLR.
Yanardag, P., and Vishwanathan, S. 2015. Deep graph ker-
nels. In Proceedings of KDD.
Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W. L.; and
Leskovec, J. 2018. Hierarchical graph representation learn-
ing with differentiable pooling. In Proceedings of NIPS.
Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
end-to-end deep learning architecture for graph classifica-
tion. In Proceedings of AAAI.
Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; and Sun,
M. 2018. Graph neural networks: A review of methods and
applications. arXiv.

