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Abstract

Neural network language models (NNLMs) have attracted a
lot of attention recently. In this paper, we present a training
method that can incrementally train the hierarchical softmax
function for NNMLs. We split the cost function to model
old and update corpora separately, and factorize the objec-
tive function for the hierarchical softmax. Then we provide a
new stochastic gradient based method to update all the word
vectors and parameters, by comparing the old tree generated
based on the old corpus and the new tree generated based
on the combined (old and update) corpus. Theoretical analy-
sis shows that the mean square error of the parameter vectors
can be bounded by a function of the number of changed words
related to the parameter node. Experimental results show that
incremental training can save a lot of time. The smaller the
update corpus is, the faster the update training process is,
where an up to 30 times speedup has been achieved. We also
use both word similarity/relatedness tasks and dependency
parsing task as our benchmarks to evaluate the correctness
of the updated word vectors.

Neural network language models (NNLMs) (Bengio et
al. 2003; Morin and Bengio 2005; Mnih and Hinton 2008;
Turian, Ratinov, and Bengio 2010; Collobert et al. 2011;
Mikolov et al. 2013a; 2013b; Levy and Goldberg 2014;
Levy, Goldberg, and Dagan 2015) have attracted a lot of
attention recently given their compact representation form
and generalization property compared to the traditional lex-
ical representations. It has been applied to many natural lan-
guage processing tasks such as word similarity/relatedness
and word analogy (Mikolov et al. 2013a; 2013b), work-
ing as features for part-of-speech tagging, chunking, named
entity recognition, etc. (Turian, Ratinov, and Bengio 2010;
Collobert et al. 2011). However, the above NNLMs only
consider the static training corpus. There are a lot of appli-
cations, such as news and tweets text processing, requiring
incremental update of the word vectors given the fact that
the working domains are fast evolving. When the new cor-
pus is relatively smaller than the old corpus, it will be much
less efficient to retrain the word vectors with the combined
corpus.

In this paper, we consider the problem of training the
NNLMs given new corpora incrementally. In particular,
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we adopt the popular word2vec tool due to its simplicity
and time efficiency, and comparable performance to other
NNLMs (Mikolov et al. 2013a; 2013b; Levy, Goldberg, and
Dagan 2015). To speedup the process of indexing and query-
ing, word2vec employed two techniques called hierarchi-
cal softmax and negative sampling (Mikolov et al. 2013a;
2013b). Hierarchical softmax was first proposed by Mnih
and Hinton (Mnih and Hinton 2008) where a hierarchical
tree is constructed to index all the words in a corpus as
leaves, while negative sampling is developed based on noise
contrastive estimation (Gutmann and Hyvärinen 2012), and
randomly samples the words not in the context to distin-
guish the observed data from the artificially generated ran-
dom noise. It is empirically shown that hierarchical soft-
max performs better for infrequent words while negative
sampling performs better for frequent words (Mikolov et
al. 2013b). The reason is that hierarchical softmax builds a
tree over the whole vocabulary, and the leaf nodes represent-
ing rare words will inevitably inherit their ancestors’ vector
representations in the tree, which can be affected by other
frequent words in the corpus. Thus, we choose hierarchical
softmax due to its good performance on rare words, which
can benefit the further incremental training for new corpus.

When applying hierarchical softmax to NNLMs, there is
a preprocessing step to build a hierarchical tree of words.
When we incrementally incorporate more data, the hierar-
chical tree should be changed to reflect the change of data.
For example, in word2vec, it uses the Huffman coding to
construct the tree over the vocabulary because Huffman tree
uses shorter codes for more frequent words with less vis-
its to the leaves (Gutmann and Hyvärinen 2012), and re-
sults in faster training process. When frequencies of words
change, Huffman tree will be changed. To handle this prob-
lem, we retain the paths from root to leaves of the old tree,
and perform prefix matching between the old tree and the
new tree. When updating the vectors for the matched ances-
tors of a leaf, we follow the original CBOW (Continuous
Bag-of-Words) or Skip-gram algorithms in word2vec based
on stochastic gradient ascent of log-likelihood. When up-
dating the vectors for the different ancestors, we modify the
old tree with stochastic gradient descent, while update the
new tree with stochastic gradient ascent. In this way, we only
modify all the nodes that need to be updated while retaining
all the other nodes as the same as the ones trained based on
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the old corpus. Since the update process is independent for
all the internal nodes, we also develop a parallel algorithm
similar to word2vec, which makes our algorithm efficient
when having more CPUs.

In the experiments, we show that using this updating pro-
cedure, we can get almost the same CBOW and Skip-gram
models as fully re-trained ones. We check both individual
vector’s mean square error (MSE) and down-stream applica-
tions, word similarity/relatedness and dependency parsing,
to prove the correctness of our model. In addition, we also
provide a bound that can characterize our algorithm’s differ-
ence from fully re-trained models.

Background

In this section, we introduce the background of CBOW and
Skip-gram models based on the hierarchical softmax func-
tion. Suppose the tree has been built given a training corpus
W , where all the unique words in W will be the leaves.

The CBOW Model

In CBOW model, given a sequence of training words
w1, w2, . . . , wT in W , the training objective is to maximize
the average log-likelihood function

∑
w∈W logP (w|C(w)),

where w is a word and also refers a leaf node determined
by a path from root in Huffman tree. Moreover, we denote
Xw =

∑
−c≤j≤c,j �=0 wj as the sum of the context vectors,

and 2c is the size of training context centered at w. Let Lw

be the length of the path, and pwi be the i-th node on the
path from the root to w, and dwi be Huffman code of i-th
node in path, where dwi ∈ {0, 1} and i ∈ {2, . . . , Lw}. In
addition, we denote θwi as the vector representation of the
internal node pwi and θwLw is the vector representation of w.
Then the log-likelihood can be re-written as:

JCBOW =
∑
w∈W

logP (w|C(w)) =
∑
w∈W

Lw∑
i=2

�(w, i),

(1)
where we denote �(w, i) = (1−dwi ) · log[σ(XT

wθ
w
i−1)]+dwi ·

log[1 − σ(XT
wθ

w
i−1)], and σ(x) = 1/(1 + exp(−x)). This

function can be understood as using the current context to
classify a word following the path from the root to the leaf
of the word.

Using stochastic gradient ascent, the parameter vectors
θwi−1 and word vectors in the context can be updated as fol-
lows:

θwi−1 := θwi−1 + η[1− dwi − σ(XT
wθ

w
i−1)]Xw

and v(w̃) := v(w̃) + η

Lw∑
i=2

∂�(w, i)

∂Xw
,

(2)

where w̃ ∈ C(w), v(w̃) is the vector representation of the
context word, and η is a degenerative learning rate.

The Skip-gram Model

Skip-gram model uses the current word to predict the
context. The training objective of the Skip-gram model

is to maximize the average log-likelihood function∑
w∈W logP (C(w)|w) =

∑
w∈W
∑

u∈C(w) logP (u|w).
Here we have P (u|w) =

∏Lu

j=2 P (duj |v(w), θuj−1), where
Lu is the length of the path from root to the leaf node
representing word u, and θui is the vector representation
of the i-th node in the path. The log-likelihood is fur-
ther formulated as: JSG =

∑
w∈W logP (C(w)|w) =∑

w∈W
∑

u∈C(w)

∑Lu

j=2 �(w, u, j), where we have
�(w, u, j) = (1 − duj ) · log[σ(v(w)T θuj−1)] + duj ·
log[1 − σ(v(u)T θuj−1)], and again v(w) and v(u) are the
vector representations of word w and word u respectively.
This shows that w’s context word u is predicted following
the path on the tree from root to leaf given the vector
representation of w: v(w).

Applying stochastic gradient ascent, parameter vector
θuj−1 and word vector are iteratively updated as: θuj−1 :=

θuj−1+η[1−duj −σ(v(w)T θuj−1)]v(w) and v(w̃) := v(w̃)+

η
∑

u∈C(w)

∑Lu

j=2
∂�(w,u,j)
∂v(w) , where w̃ ∈ C(w), and η is the

degenerative learning rate.

Learning Rate

The learning rate η is an important parameter for stochas-
tic gradient iteration (Hegde, Indyk, and Schmidt 2015). In
CBOW and Skip-gram models, an adaptive and segmented
rate is set to be: η = η0(1− κ

φ+1 )where η0 is an initial value,
φ is the number of tokens in corpus, and κ is the number of
already trained words. The learning rate is governed by an-
other parameter ρ, which controls the rate to decrease η after
certain number of iterations, e.g., updating η after seeing ev-
ery 10,000 words. In word2vec, a minimum value ηmin is
also set to enforce the update vectors based on the gradients.

Incremental Training

We see from the above section that learning the word vec-
tors involves not only the word vectors themselves, but also
the internal nodes’ vectors, which we have called parame-
ters θwi . When we see a new corpus in addition to the old
corpus, we should re-build the hierarchical tree, e.g., the
Huffman tree in our work, based on the combined corpus.
Huffman tree is sensitive to the word frequency’s distribu-
tion due to its nature of variable length representation based
on the probability of occurrence of words (Huffman 1952).1
Thus, when the tree changes, the vector representation of
both internal and leaf nodes may be affected. If part of the
tree remains the same, we can retain the structure as well
as the vectors associated to the nodes, and distinguish the
update between the parts from the old tree and the new tree.

Node Initialization and Inheritance

Suppose we have the old corpus W and the new corpus
W ′ = W ∪ ΔW . We can build the Huffman trees T and
T ′ from both corpora respectively.

1More semantics related trees can be built (Mnih and Hinton
2008; Le et al. 2013), and the same problem of tree change should
be handled.
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(a) Original Huffman Tree (b) Updated Huffman Tree

Figure 1: The Figure 1(a) is T and the Figure 1(b) is T ′ provided the new corpus. The black leaf nodes represent inherited words
vector. The blue internal nodes represent inherited parameters vector. The gray leaf node represents the new words shown in
the new corpus. The white node represents the new internal nodes. The initialization of new internal nodes in T ′ are θ′4 = 0,
θ′6 = 0, θ′7 = 0, θ′8 = 0. The initialization of new leaf nodes in T ′ are v′(w7) = random, v′(w8) = random. All the other
nodes in T ′ are inherited from T .

For the leaf nodes, if the word has been observed in the
old corpus, we simply initialize the vector as the vector that
has been trained. If the word is a new word, we randomly
initialize it as a random vector:

v′(w) =
{
v(w), w ∈ W
random, w /∈ W , (3)

where v(w) and v′(w) are the vectors of word w for old and
new trees respectively.

For the internal nodes, the Huffman code change of a
word may affect only partial change of the path for that
word. Along the path, each internal node owns one param-
eter vector. We distinguish the parameter vector θw1

i ’s for
word w1 at i’s position and θw2

i ’s for word w2 at i’s po-
sition. When they are at the same i’s position in the tree,
then θw1

i = θw2
i . For example, in the left figure of Figure 1,

θw2
3 = θw6

3 = θ4. Moreover, a word w2 encoded as “0010”
in the old tree T may be changed as “00010” in the new tree
T ′. In this case, the matched prefix “00” remains the same,
and corresponding matched internal nodes share the same
structure in the new tree T ′ as the old tree T . To make the
prefix explicit, we denote Lw and L′w as lengths of the code
of word w in old and new trees respectively, e.g., Lw2 = 4
in T and L′w2 = 5 in T ′ in Figure 1. We gather all internal
vectors of leaf node w as set Ω(w) = {θwi |i = 1, · · · , Lw}
in tree T . For the matched prefix, we use the existing param-
eter vector θwi as the initialization for the new tree, while for
the mismatched codes, we initialize them as zero vectors, as
following:

θ′i =
{
θi, d′wi = dwi
0, otherwise

, (4)

where d′wi and dwi are the Huffman codes of internal nodes in
the new and old trees respectively. Thus, the inherited inter-
nal nodes of leaf node w can be divided into common prefix
matched substring Θ(w) = {θwi−1|i = 2, · · · , Lw

C + 1} and
other nodes Φ(w) = {θwi−1|i = Lw

C + 2, · · · , Lw} in T and
Φ′(w) = {θwi−1|i = Lw

C + 2, · · · , L′w} in T ′, where Lw
C

is length of common prefix matched between old and new

trees. Figure 1 also shows examples of inherited nodes and
new nodes.

Model Updates

Given the inherited nodes and the new nodes by comparing
the old and new trees, we also decompose the log-likelihood
functions for CBOW and Skip-gram models based on the
prefix matching results.

For CBOW model, we consider to factorize the log-
likelihood function by aggregating the cost term �(w, i) in
Eq. (1).

J ′
CBOW =

∑

w∈W
{
Lw

C+1∑

i=2

+

L′w∑

i=Lw
C
+2

}�(w, i) +
∑

w∈ΔW

L′w∑

i=2

�(w, i)

(5)
Here we first split the training data to be W ′ = W ∪ΔW .

For the words in W , we factorize it based on the common
Huffman codes and distinct codes.

∑Lw
C+1

i=2 sums the codes
that share the prefix with the old tree by word w.

∑L′w

i=Lw
C+2

sums inherited internal vector codes by other words and the
zero initialization internal vector codes in the new tree. For
the words in ΔW , we follow the original objective function
of CBOW model.

Similarly, for Skip-gram model, the objective J ′
SG

is:
∑

w∈W
∑

u∈C(w){
∑Lu

C+1
j=2 +

∑L′u

Lu
C+2}�(w, u, j) +∑

w∈ΔW
∑

u∈C(w)

∑L′u

j=2 �(w, u, j).

To train a new set of word vectors, originally we need to
re-scan and re-train the whole corpus W ′ = W∪ΔW based
on stochastic gradient ascent method. Given the above fac-
torization analysis of the objective function, we found that
for the old corpus W , we can apply the following trick to
save a lot of training time.

Our goal is to find a new set of (local) optimal internal
node vectors θ′wi and word vectors v′(w) to approximate
re-training. We first make an assumption that all the word
vectors v(w) are already (local) optimal and then further
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calibrate them. Then we perform stochastic gradient based
optimization based on W and W ′ respectively.

When scanning the old corpus W , we can update all the
parameters while fixing the word vectors.2 Denote all the
parameters related to w as Θ(w) ∪ Φ′(w). We can see that
for the Θ(w), the training process is the same as the orig-
inal CBOW and Skip-gram models. For Φ′(w), since the
tree structure has changed, for a certain internal node, some
of the leaves (words) are still under it while the others has
moved out. For example, in Figure 1, the word w6 is now un-
der θ′6 and θ′7 but moved out of θ2, θ4, and θ5. To recover the
parameters in the new tree so that the incremental training
is as similar as the fully re-trained model when seeing w6,
we need to subtract the inherited gradients of θ′2 related to
w6, and add the gradients to θ6 and θ7 (here θ′4 is initialized
as zero and θ′5 is not inherited). Formally, for a word w, the
CBOW update rule for the parameters in the new path from
root to this word is as follows.

If w ∈ T ′, θ′wi−1 ∈ Θ(w), i ∈ {2, . . . , Lw
C + 1}, we have:

θ′wi−1 := θ′wi−1. (6)

If w ∈ T ′, θ′wi−1 ∈ Φ′(w), i ∈ {Lw
C + 2, . . . , L′w}, we have:

θ′wi−1 := θ′wi−1 + η′[1− dwi − σ(XT
wθ

′w
i−1)]Xw. (7)

If w ∈ T , θwi−1 ∈ Φ(w), i ∈ {Lv
C + 2, . . . , Lv}, we have:

θ′wi−1 := θ′wi−1 − η′[1− dwi − σ(XT
wθ

′w
i−1)]Xw. (8)

Here retain the common prefix nodes, perform stochastic
gradient ascent to the new nodes, and perform stochastic gra-
dient descent to the old sub-tree path related to the word w.
η′ is the new learning rate.

For the update corpus ΔW , we simply perform the
stochastic gradient ascent for both parameters and word vec-
tors (e.g., in Eq. (2)). Thus, we can see that the most com-
putational cost is saved by not updating word vectors in old
corpus, and partially saved by adjusting (partially not updat-
ing) the parameters in old corpus. An illustration is shown in
Figure 1. From the figure we can see that, we adjust the inter-
nal node to approximate the process of complete re-training.

Similarly for Skip-gram, if u ∈ T ′, θ′uj−1 ∈ Θ(u), j ∈
{2, . . . , Lu

C+1}, we have: θ′uj−1 := θ′uj−1. If u ∈ T ′, θ′uj−1 ∈
Φ′(u), j ∈ {Lu

C + 2, . . . , L′u}, we have: θ′uj−1 := θ′uj−1 +

η′[1 − duj − σ(v(w)T θ′uj−1)]v(w). If u ∈ T , θuj−1 ∈
Φ(u), j ∈ {Lv

C + 2, . . . , Lv}, we have: θ′uj−1 := θ′uj−1 −
η′[1 − duj − σ(v(w)T θ′uj−1)]v(w). For above equations,
u ∈ C(w).

Theoretical Analysis

In this section, we present the theoretical analysis of our in-
cremental learning algorithm using CBOW model.

Convergence Analysis

The log-likelihood function (1) is negative. Thus, maximiz-
ing the objective is bounded by zero. However, since in the

2We can also update the word vectors in the meantime, however,
it will introduce more computational cost.

objective function, it involves the dot product of the word
vectors and parameters XT

wθ
w
i−1, this is a non-convex opti-

mization problem. By using alternative optimization altering
the word vectors and parameters, fixing one and optimizing
the other is a convex problem. In our incremental learning
process, the convergence of optimizing over the update cor-
pus ΔW is the same as original word2vec models. When
optimizing over the old corpus, we assume the word vectors
are already (local) optimal, and optimize the parameters over
the new Huffman tree. For example for CBOW model, by
checking the second order derivative of the parameters, we
have ∇2

θ′
i−1

=
∑

w∈W
∑L′w

i=2 −σ(XT
wθ

′
i−1)X

T
wXw, where

σ(x) ∈ [0, 1] and XT
wXw ≥ 0.

Compared to the original second order derivative over old
corpus, we replace the summation term

∑Lw

i=2 by
∑L′w

i=2 .
This is guaranteed by using both stochastic gradient ascent
and descent in Eqs. (6)-(8) if we scan the old corpus in the
same times, and thus the process is toward another local op-
timum. The Skip-gram model has the similar property.

Parameter Error Bound

Here we focus on the internal nodes that updated with
stochastic gradient descent. In CBOW model, as shown in
Eqs. (6)-(8), there are two parts affecting the final results.

First, the learning rate change is: Δη = η0| κ
φ+1 − κ′

φ′+1 |.
Second, we first assume that the parameter vector can be
bounded by ξ and then infer the bounded ξ in stochastic gra-
dient descent. We also assume that the word vectors XT

w
can be bounded by a vector �εXw where each element is
ε. Since we have noted that the optimization process push
the solution from on local optimum to another, based on
first order Taylor expansion, we have |σ(XT

w (θ
′w
i−1 + ξ) −

σ(XT
wθ

′w
i−1)| < σ(XT

wθ
′w
i−1)(1−σ(XT

wθ
′w
i−1))ξ < ξ. Then

we have the difference of the gradients:

|ΔBθ′w
i−1

| = |σ(XT
wθ

w
i−1)− σ(XT

wθ
′w
i−1)||Xw| � ξ�εXw

,
(9)

where � denotes element-wise less than or equal to. If we
denote |B| = |[1 − dwi − σ(XT

wθ
′w
i−1)]Xw| � �εXw

, then
the parameter will be bounded as by aggregating the dif-
ferences in Eq. (7): �ξ = |ΔηB + ΔBη′ + ΔηΔB| �
Δη�εXw + η′ξ�εXw + Δηξ�εXw , where �ξ is a vector of the
same value ξ. Then we solve ξ as:

(1− (η′ +Δη)ε)ξ ≤ Δηε. (10)

To have more concrete idea of the bound (10), for ex-
ample, assume we have φ = 109 trained with one billion
words/tokens, and κ = 106 meaning that the vocabulary
is with one million unique words. We augment the training
data with |ΔW| = 108. Suppose we have η0 = 0.025, which
is the default setting in word2vec package. Then we have
ηmin ≤ η ≈ η′ = η0(1 − κ′

φ′+1 ) ≤ η0, and Δη ≈ 10−10.
In addition, we assume that the elements of word vectors
bounded by ε is in [−5, 5]. Thus, for η0, we can compute
Eq. (10) as (1− (0.025 + 10−10) ∗ 5)ξ ≤ 10−10 ∗ 5, which
means ξ ≤ 5.7 ∗ 10−10. For ηmin = η0 ∗ 0.0001 as that
in word2vec package, we have ξ ≤ 5.0 ∗ 10−10. At most,
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(b) Internal node change.

Figure 2: Leaf and internal nodes change with incremental
corpus.

there can be half of the leaves changed from one side of the
tree to the other side corresponding to completely reversing
the order of frequencies. However, this will never happen in
practice. Moreover, in practice, we found that on the top of
the Huffman tree, more updates affected to perform stochas-
tic gradient descent. However, it is also likely that the leaf
will be in the same sub-tree even if it is moved from one
successor to another. For example, in Figure 1, the move
of w2 and w3 does not affect θ2. For n = 2 ∗ 105 which
means 20% of the leaves moving out of a sub-tree, if we
assume the error accumulates, then the error bound will be
2 ∗ 105 ∗ 5.7 ∗ 10−10 = 1.1 ∗ 10−4.

Experiments

In this section, we present the experiments to verify the ef-
fectiveness and efficiency of incremental training for hierar-
chical softmax function in NNLMs.

Training Time and Quality

We use the English Wikipedia as the source to train the
NNLMs. We split the data into several sets. We use 2GB
texts as the initial training corpus, which is the old corpus
in previous sections. The 2GB data contains 474,746,098
tokens and 100,278 unique words. Then, we select 10KB,
100KB, 1MB, 10MB, 100MB, and 1GB as new update cor-
pora to compare the performance of the algorithms. The
number of words arises with new update corpus, as shown
in Figure 2(a). For original global training, we combine the
old and new corpora as a whole, and run the original CBOW
and Skip-gram models. For the incremental training, we use
the model trained based on the 2GB initial training corpus,
and run our algorithm to update the Huffman tree as well
as the parameters and word vectors. For all the experiments,
we run with 10 CPU threads and generate word embeddings
with 300 dimensions.

First, we check the percentage of Huffman tree change.
In Figure 2(b) it shows the percentages of the internal nodes
that are affected by the change of the tree. If an internal node
is updated with stochastic gradient descent in Eq. (8), then
we label it as affected. From the figure we can see that, there
are more nodes affected when adding more training mate-
rials. The increase is not as much as the increase of total
number of leaf nodes.

Items Global Incremental T-Reserved

CB
MSE 6.68× 10−3 6.66× 10−3 7.84× 10−3

1-Cos 0.361 0.361 0.411
E-Dis 1.415 1.413 1.543

SG
MSE 6.65× 10−3 6.68× 10−3 7.83× 10−3

1-Cos 0.363 0.365 0.409
E-Dis 1.413 1.415 1.533

Table 1: Average of MSE (mean square error), 1-Cos (con-
verting cosine similarity to dissimilarity), and E-Dis (Eu-
clidean) on 2G+1G corpus. “T-Reserved” means that we re-
serve the old tree to perform a trivial incremental learning.

Then we check the training time and speedup using our
incremental training algorithm. We show the training time
results in Figure 3(a). It is shown that both CBOW and Skip-
gram are linear to the training size. Since adding from 10KB
to 100MB is relatively small compared to the original train-
ing size 2GB, the time curves for both CBOW and Skip-
gram with global training is flat until with the 1GB addi-
tional training data. Moreover, we find that Skip-gram is
in an order of magnitude slower than CBOW. By compar-
ing CBOW and Skip-gram, we can see that for each con-
text word, Skip-gram needs to update the parameters fol-
lowing the path from root to that word. Thus, the order
comes from the number of window size used in the lan-
guage model, which is five in all of our experiments. Further-
more, incremental training for both CBOW and Skip-gram
benefits from the algorithm and faster than global training.
Again, both scale linearly with the number of additional up-
date corpus. The speedup results are shown in Figure 3(b).
We can see that for smaller update corpus, the speedup
is more significant. The Skip-gram model can have up to
30 times speedup with our incremental training algorithm,
while CBOW model has up to 10 times speedup.

We also randomly selected 5,000 word vectors to test the
difference of the word vectors. We use the mean square er-
ror (MSE) to evaluate the difference between two sets of
word vectors. For global training, we run the same algorithm
twice using different random initialization. For incremental
training, we compare the incremental training results with
the global training results. In Table 1, we compare the re-
sults. “Global” represents global training in all corpus. “In-
cremental” represents our incremental learning models, and
“T-Reserved” is a trivial incremental learning by working
with stochastic gradients on the new corpus with the old tree
reserved. We can see that in general, the MSE of global
training is better than incremental training. Nonetheless,
they are of the same order of magnitude, which is around
10−3 ∼ 10−2. “T-Reserved” is worst since it only uses the
tree based on the old corpus. To further understand the MSE
with the bound, we show the average number of gradient up-
dates at each level of the Huffman tree for CBOW model in
Figure 3(c), when scanning the 2GB old data. We can see
that, the number of updates exponentially decreases when
the depth of the tree increases. For top levels, the moves in-
dicate that there are indeed a lot of nodes moved from one
side to the other to trigger the change of parameter updates.
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Figure 3: Training performance of global and incremental training.

The order of change is at most 105. For deepest levels, there
are no descents but only ascents, which indicates the new
Huffman tree is deeper than the old one. Then for the 300
vectors, MSE will aggregate all the ξ of each dimension.

Word Similarity/Relatedness

Now we use the word similarity/relatedness evaluation
benchmarks to evaluate the correctness of our incremen-
tal training algorithm. Specifically, we use the datasets col-
lected by Faruqui and Dyer (Faruqui and Dyer 2014) which
include MC-30, TR-3k, MTurk-287, MTurk-771, RG-65,
RW-STANFORD (RW), SIMLEX-999, VERB-143, WS-
353-ALL, WS-353-REL, WS-353-SIM, and YP-130.3 We
use cosine value to compute the similarities between words,
and then rank the words similar/related to each other. The
Spearman’s rank correlation coefficient (Myers and Well.
1995) is used to check the correlation of ranks between hu-
man annotation and computed similarities. Due to the lim-
ited space, for incremental training, we show the average
results trained over 1GB update data. From Figure 4 we
can see that, the incremental training results are compara-
ble and sometimes better than the global training results. “T-
Reserved” is again the worst among the three methods we
compared.

Dependency Parsing (DP)

We also test DP using different training methods. Different
from the previous task, DP uses word embeddings as fea-
tures, and train a model to predict the structural output of
each sentence. Thus, it is more complicated than comparing
the similarities between words. We use the CNN model (Guo
et al. 2015) to train a model based on the word embed-
dings produces by our experiments. The data used to train
and evaluate the parser is the English data in the CoNLL-
X shared task (Buchholz and Marsi 2006). We follow (Guo
et al. 2015; Upadhyay et al. 2016) to setup the training and
testing processes, using the tools available online.4 We train
the model with 200,000 iterations, and set the parameters as
distance of embedding to be 5, valency of embedding to be
5, and cluster of embedding to be 8 (Guo et al. 2015).

The results are shown in Figure 5. Both the labeled attach-
ment score (LAS) and unlabeled attachment score (UAS)

3http://www.wordvectors.org/
4https://github.com/jiangfeng1124/acl15-clnndep

are reported. We can see that, the incremental training and
global training are also similar, and it seems incremen-
tal training is a little bit better than global training. This
again demonstrates that incremental training is comparable
to global training, and saves a lot of training time. More-
over, the CBOW model and Skip-gram model perform sim-
ilarly. This may be because the supervised learning model
can eliminate the vector representation difference produced
by different algorithms but with the same training corpus.
Moreover, we found that there is a step of performance im-
provement at 10M new data. This may be because some im-
portant words are included starting from this data. However,
for “T-Reserved”, there is much less improvement when the
step happens to the other two. This again demonstrates that
the tree can affect the final embedding results. If we do not
consider the tree change for incremental training, we may
lose a lot of information provided by the update corpus.

Conclusion

In this paper, we present an incremental training algorithm
for the hierarchical softmax function for CBOW and Skip-
gram models. The results of the systematic evaluation and
down-stream tasks show that our incremental training is sig-
nificantly faster than global training, and has similar perfor-
mance. Theoretical analysis also helped us better understand
the performance of the incremental algorithm. The natural
future work is to extend our approach to other advanced
NNLMs beyond CBOW and Skip-gram such as dependency
RNN (Mirowski and Vlachos 2015) and LSTM or deeper
RNN models (Renshaw and Hall 2015).5
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