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Abstract
With the growing scale of social media, social event detection
and evolution modeling have attracted increasing attention. Graph
neural networks (GNNs) and transformer-based pre-trained lan-
guage models (PLMs) have become mainstream approaches in this
area. However, existing methods still face three major challenges.
First, the sheer volume of social media messages makes learning
resource-intensive. Second, the fragmentation of social media mes-
sages often impedes the model’s ability to capture a comprehensive
view of the events. Third, the lack of structured temporal con-
text has hindered the development of effective models for event
evolution, limiting users’ access to event information. To address
these challenges, we propose a foundation model for unsupervised
Social Event Detection and Evolution, namely RagSEDE. Specif-
ically, RagSEDE introduces a representativeness- and diversity-
driven sampling strategy to extract key messages from massive
social streams, significantly reducing noise and computational over-
head. It further establishes a novel paradigm based on Retrieval
Augmented Generation (RAG) that enhances PLMs in detecting
events while simultaneously constructing andmaintaining an evolv-
ing event knowledge base. Finally, RagSEDE leverages structural
information theory to dynamically model event evolution keywords
for the first time. Extensive experiments on two public datasets
demonstrate the superiority of RagSEDE in open-world social event
detection and evolution.
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1 Introduction
Social media platforms have become a vital source of real-time
signals for emerging events, drawing increasing attention to the
task of event analysis from large-scale, unstructured social message
streams [31, 49]. Social Event Detection (SED) focuses on automati-
cally identifying and clustering social messages that pertain to the
same real-world event [3]. Complementing this, Social Event Evolu-
tion (SEE) aims to characterize the temporal dynamics of an event,
capturing how its semantic content evolves over time [29]. Together,
SED and SEE support a wide range of downstream applications, in-
cluding community discovery [13], recommender systems [33, 56],
and information retrieval [6, 32].

As shown in Figure 1(a), recent models for social event analysis
primarily focus on event detection. These models typically fol-
low a representation–clustering paradigm, where social messages
are first encoded into latent representations and then clustered,
with each cluster corresponding to a distinct event. Several stud-
ies [3, 5, 24, 28, 35] leverage heterogeneous interactions (e.g., users,
entities, hashtags) to model the structural dependencies among
social messages. Furthermore, other works [20, 52] utilize the pow-
erful contextual semantics provided by PLMs such as BERT [7] and
SBERT [34] to encode social messages. Most of thesemethods [3, 30]
use K-Means or DBSCAN [9] to cluster message representations,
and [4] employs a structural entropy minimization algorithm [19]
to achieve unsupervised clustering.

However, existing approaches face several critical challenges
in the context of open-world, unsupervised social event model-
ing. First, the massive volume and informal nature of social mes-
sages lead to resource-intensive computation and high noise levels.
For popular events, there are often large numbers of semantically
similar or even identical messages. [3, 4, 35] use all messages for
event detection, resulting in significant resource waste. Further-
more, users often post messages randomly, and many messages
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Figure 1: Illustration comparison of the existing event analy-
sis model and our proposed RagSEDE.

lack attributes, leading to missing or noisy edges in GNN-based
methods. Although [53] employs message anchors to reduce com-
putational overhead, it still relies on building a global graph using
all messages with noisy edges. Second, the fragmented nature of
social messages often prevents models from capturing a complete
picture of events, resulting in shallow representations. As shown
in Figure 1(a), existing methods rely solely on message-level em-
beddings during the clustering process, without incorporating any
global semantic guidance from previously occurred events. Ignor-
ing these global signals hinders the model’s ability to align new
messages with the broader narrative, particularly in cases involving
ambiguous phrasing or topic drift [17]. Third, most current works
focus only on event detection, overlooking the temporal dynamics
and evolution of events, which are crucial for understanding how
narratives unfold over time. Although [23] considers the evolution
of sub-event structure over time, it ignores the evolution of event
semantics. This limitation significantly restricts users’ access to
time-sensitive event knowledge.

To tackle these three aforementioned challenges, we propose a
novel foundation model for unsupervised Social Event Detection
and Evolution, namely RagSEDE. Our proposed framework, as illus-
trated in Figure 1(b), consists of three parts: key message sampling,
RAG-based event detection, and structural entropy-based event evo-
lution. First, to mitigate the computational inefficiency caused by
highly semantically similar messages, RagSEDE employs a sampling
strategy that balances representativeness and diversity to extract
key messages from the social message stream. Using only these
key messages rather than the entire message set for event detec-
tion, RagSEDE achieves efficient detection in open-world settings.
Second, leveraging the powerful contextual reasoning capabilities
of PLMs, RagSEDE introduces a novel RAG-based event detection
paradigm. Unlike prior methods that follow a "representation-then-
cluster" approach, RagSEDE constructs and maintains a structured
knowledge base of detected events and employs RAG [11, 18, 40, 54]
to inject global semantic signals into PLMs during detection. Fur-
thermore, because RagSEDE relies solely on the semantic content of
messages, it avoids the issues of missing or noisy edges mentioned
above. Third, by integrating the constructed knowledge base with
structural information theory [19], RagSEDE dynamically model
the semantic evolution of events over time. Structural information
theory [19] suggests that minimizing structural entropy can reveal

the essential information embedded in the graph. Based on this
principle, RagSEDE introduces graph construction, inheritance, and
forgetting mechanisms, enabling it to extract temporally evolving
event keywords by minimizing the structural entropy. The codes
of RagSEDE are publicly available on GitHub1. In summary, the
contributions of this paper are as follows:
•We propose a novel framework for streaming, unsupervised

social event detection and evolution, termed RagSEDE, which inte-
grates RAG and structural information theory to effectively address
three key challenges in open-world social event analysis.
•We propose a novel paradigm for event detection that leverages

knowledge bases and RAG, fully exploiting the powerful contextual
understanding capabilities of PLMs. By incorporating a keymessage
sampling strategy, our method significantly reduces computational
costs while maintaining detection effectiveness.
•We model the dynamic evolution of event keywords. By min-

imizing structural entropy over time, our framework effectively
captures the evolving semantic cores of events.
• Extensive experiments on two benchmark datasets demon-

strate that RagSEDE consistently outperforms strong baselines in
both detection accuracy and evolution summarization.

2 Preliminaries
This section summarizes some important concepts and definitions.
The glossary of notations and the detailed introduction of structural
entropy are provided in Appendix B and Appendix C, respectively.

2.1 SED
A social stream 𝑆 is defined as a continuous and temporal sequence
of message blocks, that is, 𝑆 = {M1, M2, · · · }, where block M𝑡 =

{𝑚𝑖 | 1 ≤ 𝑖 ≤ |M𝑡 |} contains all messages that arrivewithin the time
interval [𝑡, 𝑡 + 1). The SED task is to extract clusters of correlated
messages from 𝑆 to represent real-world events. Finally, each𝑚𝑖

corresponds to an event label 𝑦𝑚𝑖
with which it is associated.

2.2 Structural Entropy
Structural entropy [19] is a measure of the uncertainty of a graph
structure. It is computed based on the graph’s 2D encoding tree,
where non-leaf nodes represent graph partitions. Given a graph 𝐺
and its encoding tree T , the 2D structural entropy is defined as:

𝐻T (𝐺) = −
∑︁

𝛼∈T , 𝛼≠𝜆

𝑔𝛼

𝑣𝑜𝑙 (𝐺) log2
𝑣𝑜𝑙 (𝛼)
𝑣𝑜𝑙 (𝛼−) , (1)

where 𝛼 is a non-root node of T , 𝑔𝛼 and 𝑣𝑜𝑙 (𝛼) is the cut degree
and volume of 𝛼 , and 𝛼− is the parent node of 𝛼 . [19] proposes
a vanilla greedy 2D structural entropy minimization algorithm,
which repeatedly merges any two nodes in the encoding tree until
structural entropy reaches the minimum possible value.

3 Methodology
In this section, we systematically describe the proposed RagSEDE.
Section 3.1 presents a strategy for sample key messages. Section 3.2
introduces the event detection paradigm of RagSEDE based on
RAG-enhanced PLMs. Section 3.3 introduces the event evolution
method based on structural entropy minimization.
1https://github.com/SELGroup/RagSEDE
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Figure 2: The proposed RagSEDE framework.

3.1 Key Message Sampling (KMS)
Given a message block M𝑡 in a high-throughput social stream, we
select a set of key messages from M𝑡 that preserves both the rep-
resentativeness and the diversity within each anchor, as shown in
Figure 2(A). This approach reduces computation while maintaining
detection quality for downstream detection and evolution.

3.1.1 Anchor Construction. This step aims to aggregate messages
that are highly semantically similar or even exactly identical into
anchors. We first encode each message𝑚𝑖 into a 𝑧𝑖 . Specifically,

𝑧𝑖 = Enc(𝑚𝑖 ) ∈ R𝑑 , (2)

where Enc(·) denotes a sentence encoder, whichwe use SBERT here,
and 𝑑 is the hidden state dimension of SBERT. Then, we compute
the cosine similarity between two messages, specifically,

𝑠𝑖 𝑗 =
𝑧⊤𝑖 𝑧 𝑗

∥𝑧𝑖 ∥2 ∥𝑧 𝑗 ∥2
, (3)

where ∥ · ∥ represents the euclidean norm. Messages are assigned
to the same anchor A𝑘 if and only if

𝑠𝑖 𝑗 ≥ 𝜏, ∀𝑚𝑖 ,𝑚 𝑗 ∈ A𝑘 , (4)

where 𝜏 ∈ (0, 1) is a predefined similarity threshold. To avoid over-
sized anchors for popular events, we set a maximum size 𝐾 to limit
the number of messages in each anchor. If adding a new message
would cause |A𝑘 | > 𝐾 , a new anchor is created. All messages can
thus be represented as an anchor collection A = {A1,A2, . . . }.

3.1.2 Key Message Sampling Strategy. To select key messages from
each anchor, we define two scoring criteria.

Representativeness Score. The representativeness score measures
how well a message reflects the central semantics of its anchor.
Formally, for a𝑚𝑖 in A𝑘 , representativeness score is defined as

Rep(𝑚𝑖 ) =
𝑧⊤𝑖 𝑐𝑘

∥𝑧𝑖 ∥2 ∥𝑐𝑘 ∥2
, 𝑐𝑘 =

1
𝑛

𝑛∑︁
𝑗=1

𝑧 𝑗 , (5)

where 𝑧𝑖 is the embedding of 𝑚𝑖 , 𝑐𝑘 is the center embedding of
A𝑘 , and 𝑛 is the message number ofA𝑘 . A high representativeness
score indicates strong semantic alignment with the anchor center,
thereby capturing the dominant event of the anchor.

Diversity Score. The diversity score measures the degree to which
a message provides novel information from the same anchor. For a
message𝑚𝑖 in anchor A𝑘 , its diversity score is defined as

Div(𝑚𝑖 ) =
1

𝑛 − 1
∑︁

𝑚 𝑗 ∈A𝑘 , 𝑗≠𝑖

𝑧⊤𝑖 𝑧 𝑗

∥𝑧𝑖 ∥2 ∥𝑧 𝑗 ∥2
, (6)

where 𝑧𝑖 is the embedding of𝑚𝑖 , and 𝑛 is the message number of
A𝑘 . A high diversity score means different aspects of the event.

Combined Score. The final score balances the two criteria:

S(𝑚𝑖 ) = 𝜆 · Rep(𝑚𝑖 ) + (1 − 𝜆) · Div(𝑚𝑖 ), (7)

where 𝜆 ∈ [0, 1] controls the trade-off. At each anchor A𝑘 , we
select the top 𝑝 messages with the highest combined scores as key
messages and concatenate them as 𝑎𝑘 for SED and SEE.

3.2 RAG-based Event Detection
In this section, we present our RAG-based event detection frame-
work, as shown in Figure 2(B), which is designed to incorporate both
the construction and maintenance of an event knowledge base (Sec-
tions 3.2.1 and 3.2.3) and the use of RAG to leverage the knowledge
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base as external global guidance for event detection (Section 3.2.2).
To ensure computational efficiency, we rely not on all messages but
only on the key messages sampled in Section 3.1. Take M𝑡 as an
example, the final input set for detection is thus 𝐴 = {𝑎1, 𝑎2, . . . },
where each 𝑎𝑘 serves as the detection unit in subsequent steps. We
present the algorithm for this section in Algorithm 1.

3.2.1 Evaluation-LLM for Knowledge Base Construction. We dy-
namically build and expand a knowledge base during detection.
This knowledge base stores structured information about previ-
ously detected events, including their names, salient keywords, and
embeddings. Formally, the knowledge base for M𝑡 is defined as:

KB (𝑡 ) = {𝑒 = (Name𝑒 , Keywords𝑒 , 𝑝𝑒 )}, (8)

𝑝𝑒 = Enc(Name𝑒 | | Keywords𝑒 ) ∈ R𝑑 , (9)
, where Name𝑒 denotes the name of 𝑒 , Keywords𝑒 = {𝑤1, 𝑤2,

. . . } is the keyword set of 𝑒 , and 𝑝𝑒 ∈ R𝑑 is the event embedding.
The embedding is obtained by encoding both the name and key-
words. Each 𝑒 is stored as an independent chunk in the knowledge
base, enabling efficient retrieval and expansion during detection.

The event information, i.e., Name𝑒 and Keywords𝑒 , is extracted
from key messages using an Evaluation-LLM guided by our de-
signed Prompt𝐸 . The Prompt𝐸 includes (i) a task description (“infer
the event names discussed in the provided social media comments
and extract keywords related to the event”), (ii) specific execution
rules, and (iii) output requirements specifying a structured JSON
format. We provide the complete Prompt𝐸 in Appendix A.1.

When new messages 𝑎𝑘 arrive and cannot be aligned with any
existing event in the knowledge base, the Evaluation-LLM is again
invoked to generate a new event chunk:

𝑒new = LLMPrompt𝐸 (𝑎𝑘 ) = (Namenew, Keywordsnew, 𝑝new), (10)

where 𝑎𝑘 is the aggregated message from the new anchor. The new
event 𝑒new is then inserted into the knowledge base:

KB (𝑡 ) ← KB (𝑡 ) ∪ {𝑒new}. (11)

Through this incremental process, the knowledge base gradually
accumulates structured information about various events, providing
powerful global semantic guidance for detection.

3.2.2 Detection-LLM for SED. To enhance the capability of LLMs in
social event detection, we design a RAG-based paradigm. Given an
incoming aggregated message 𝑎𝑘 , RAG first queries the knowledge
base KB (𝑡 ) to retrieve the most semantically relevant candidate
events by event embedding. Retrieval of RAG is performed using
cosine similarity. Formally, for each event 𝑒 in KB (𝑡 ) :

𝑟 (𝑒 | 𝑎𝑘 ) =
Enc(𝑎𝑘 )⊤𝑝𝑒

∥Enc(𝑎𝑘 )∥2 · ∥𝑝𝑒 ∥2
, (12)

where 𝑟 (𝑒 | 𝑎𝑘 ) represents the degree of correlation between event 𝑒
andmessage 𝑎𝑘 in the knowledge base, 𝑝𝑒 represents the embedding
of 𝑒 , and Enc is the embedding model used to obtain 𝑝𝑒 . Sort the
correlation of all events in the knowledge base from high to low,
and the top-𝑞 events are selected as the retrieval events:

N𝐸 (𝑎𝑘 ) = argmax𝑞
𝑒∈KB (𝑡 )

{𝑟 (𝑒 | 𝑎𝑘 ) | 𝑟 (𝑒 | 𝑎𝑘 ) ≥ 𝛾}, (13)

whereN𝐸 (𝑎𝑘 ) represents the retrieval event set, and 𝛾 represents
the similarity threshold of RAG.

Algorithm 1: RAG-based Event Detection of M𝑡

Input: Key message set 𝐴 = {𝑎1, 𝑎2, . . . }, empty knowledge
base KB (𝑡 ) , buffer threshold 𝜃

Output: Event label {𝑦𝑚𝑖
} for each𝑚𝑖 in M𝑡

1 for each aggregated message 𝑎𝑘 ∈ 𝐴 do
// — Step 1: Retrieval —

2 Encode 𝑎𝑘 and compute similarity 𝑟 (𝑒 | 𝑎𝑘 ) for all
𝑒 ∈ KB (𝑡 ) via Eq.12;

3 Select top-𝑞 events above threshold via Eq.13;
// — Step 2: Detection —

4 Query Detection-LLM via Eq.14;
5 if Detection-LLM outputs 𝑒 ∈ N𝐸 (𝑎𝑘 ) then
6 Assign 𝑦𝑎𝑘 = 𝑒 and append 𝑎𝑘 to buffer B𝑒 ;
7 else

// New event detected

8 𝑒new ← Query Evaluation-LLM via Eq.10;
9 Update KB (𝑡 ) via Eq.11;

10 Initialize buffer B𝑒new ← {𝑎𝑘 };
11 Assign 𝑦𝑎𝑘 = 𝑒new;

// — Step 3: Knowledge Base Maintenance —

12 for each 𝑒 ∈ KB (𝑡 ) do
13 if |B𝑒 | ≥ 𝜃 then
14 Generate refreshed (Keywords𝑒 , 𝑝𝑒 ) via

LLMPrompt𝐸 (B𝑒 ) in Eq.10;
15 Update KB (𝑡 ) via Eq.11;
16 Clear buffer B𝑒 ;

17 return {𝑦𝑚𝑖
} ← Eq.15

The Detection LLM is then prompted with both the query mes-
sage 𝑎𝑘 and theN𝐸 (𝑎𝑘 ) . Our designed Prompt𝐷 consists of (i) a task
description (“determine which one event the input belongs to in the
knowledge base”), (ii) specific execution rules, (iii) output require-
ments specifying a structured JSON format, and (iv) the retrieved
event set as global semantic guidance. We provide the complete
Prompt𝐷 in Appendix A.2. The detection decision is formalized as:

𝑦𝑎𝑘 = LLMPrompt𝐷 (𝑎𝑘 , N𝐸 (𝑎𝑘 ) ) =
{
𝑒 ∈ N𝐸 (𝑎𝑘 )

Others
, (14)

where 𝑦𝑎𝑘 is the event 𝑎𝑘 discussed obtained by Detection-LLM
based on Prompt𝐷 and the knowledge base. It is worth noting that
when the retrieval event set is empty or irrelevant, the Detection-
LLM output is "Others". For any 𝑎𝑘 predicted as "Others", we treat
it as belonging to a previously unseen event 𝑒new, i.e., 𝑦𝑎𝑘 = 𝑒new.
In this case, 𝑎𝑘 is forwarded to the Evaluation-LLM (Section 3.2.1),
which generates the event name and keywords of 𝑒new, and the
knowledge base is updated accordingly to enable Detection-LLM
to identify subsequent messages related to 𝑒new.

Finally, according to 𝑦𝑎𝑘 , the event label of the original message
is obtained as:

𝑦𝑚𝑖
= 𝑦𝑎𝑘 , ∀𝑚𝑖 ∈ A𝑘 , (15)

where A𝑘 is the corresponding anchor of 𝑎𝑘 . Through this RAG-
based paradigm, our framework effectively incorporates structured
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Algorithm 2: Structural Entropy-based Event Evolution

Input: Daily knowledge bases {KB (1) , . . . ,KB (𝑇 ) }
Output: Aligned events {E∗(1) , . . . , E∗(𝑇 ) }

1 for 𝑡 ← 1 to 𝑇 do
// — Step 1: Graph Construction —

2 Construct graph 𝐺𝑡 with E𝑡−1
inh via Eq.16 and Eq.17;

// — Step 2: Structural Entropy Minimization —

3 Enforce no-merge constraint for inherited nodes;
4 Apply structural entropy minimization in 𝐺𝑡 ;
5 Obtain aligned events E∗(𝑡 ) = {𝑒∗1, 𝑒∗2, . . . };

// — Step 3: Inheritance Mechanism —

6 E𝑡
inh ← E∗(𝑡 ) ;

// — Step 4: Forgetting Mechanism —

7 for each 𝑒∗𝑖 ∈ E∗(𝑡 ) do
8 if 𝑒∗𝑖 is not supported by ordinary nodes in

partitioning then
9 E𝑡

inh ← E𝑡
inh \ 𝑒

∗
𝑖 ;

10 return {E∗(1) , . . . , E∗(𝑇 ) }

event information as global semantic guidance, significantly en-
hancing LLMs to perform accurate and efficient SED.

3.2.3 Knowledge Base Maintenance over Time (KBM). To prevent
the event information in the knowledge base from becoming out-
dated during long-term detection, we design a maintenance mecha-
nism that periodically refreshes event information with new mes-
sages. Specifically, for each event 𝑒 ∈ KB (𝑡 ) , we maintain a buffer
B𝑒 to record the set of messages that have been assigned to 𝑒 by
the detection process. When the number of messages in the buffer
exceeds a predefined threshold 𝜃 , the buffered messages are concate-
nated and forwarded to the Evaluation-LLM. The LLM generates
refreshed event keywords, and we then update KB (𝑡 ) . After the
update, the buffer is cleared, and the system continues to collect
messages. Once the buffer again reaches 𝜃 , the update process is
repeated. Through this threshold-triggered refresh mechanism, our
framework ensures that event information remains up-to-date and
robust even in high-volume, long-duration social streams.

3.3 Structural Entropy-based Event Evolution
In this section, we present a structural entropy-based SEE frame-
work that tracks changes of event keywords over time, as shown
in Figure 2(C). After daily SED, we obtain a structured knowledge
base containing event names and their keywords. However, these
knowledge bases cannot directly capture event evolution due to two
issues: (i) Misaligned event granularity. During detection, for popu-
lar events, the LLM tends to generate fine-grained subcategories;
conversely, for cold events, it often generates coarse-grained cate-
gories. (ii) Daily initialization. Since event detection is performed
with a newly initialized knowledge base each day, it becomes diffi-
cult to determine which events in different daily knowledge bases
correspond to the evolution of the same real-world event. To address
these challenges, we design an SEE framework comprising four
components: graph construction, structural entropy minimization,

an inheritance mechanism, and a forgetting mechanism. The first
two components align event granularity, while the latter two ensure
temporal continuity of evolving events. We present the algorithm
for this section in Algorithm 2 and describe it as follows.

Graph Construction. At each day 𝑡 , given theKB (𝑡 ) = {𝑒1, 𝑒2, . . . },
where each event 𝑒𝑖 is represented by its keyword set Keywords𝑒𝑖
and embedding 𝑝𝑒𝑖 , we construct a weighted undirected graph
𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ,𝑊𝑡 ). The node set 𝑉𝑡 consists of both the events in
the current knowledge base KB (𝑡 ) and those inherited from the
previousKB (𝑡−1) (see the inheritance mechanism below). Formally,

𝑉𝑡 =

{
{𝑒1, 𝑒2, . . . , 𝑒𝑛𝑡 }, 𝑡 = 1,
{𝑒1, 𝑒2, . . . , 𝑒𝑛𝑡 } ∪ E𝑡−1

inh , 𝑡 > 1,
, (16)

where E𝑡−1
inh is the set of inherited event nodes, and each node also

has a keyword set and an embedding. Edges of 𝐺𝑡 are established
between event nodes sharing at least one keyword. Formally,

𝐸𝑡 = {(𝑖, 𝑗) | 𝑖 < 𝑗, Keywords𝑒𝑖 ∩ Keywords𝑒 𝑗 ≠ ∅}, (17)

where 𝑒𝑖 and 𝑒 𝑗 are events in 𝑉𝑡 . Furthermore, the weight of each
edge is the cosine similarity of the embeddings of the two events it
connects. By constructing such graphs at each time 𝑡 , we then use
the structural entropy to model event evolution.

Structural Entropy Minimization. Given the constructed graph
𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝑊𝑡 ), we apply structural information theory [19] to
align event granularity and track event evolution. Structural infor-
mation theory encodes a graph by an encoding tree T that induces
a partitioning 𝜋𝑡 = {𝑐1, 𝑐2, . . . } of 𝑉𝑡 . The structural entropy of𝐺𝑡

with respect to T is defined as

𝐻T (𝐺𝑡 ;𝜋𝑡 ) = −
∑︁
𝛼∈T

𝑔𝛼

𝑣𝑜𝑙 (𝐺𝑡 )
log2

𝑣𝑜𝑙 (𝛼)
𝑣𝑜𝑙 (𝛼−) , (18)

where 𝛼 is a non-root node in T and 𝛼− is the parent node of 𝛼 .
Structural information theory states that the T ∗ that minimizes
structural entropy corresponds to the optimal partitioning. Follow-
ing [19], we employ their structural entropy minimization algo-
rithm to obtain the optimal partitioning of 𝐺𝑡 . Formally,

𝜋∗𝑡 = {𝑐∗1, 𝑐∗2, . . . } = arg min
𝜋𝑡 ∈P (𝑉𝑡 ), T

𝐻T (𝐺𝑡 ;𝜋𝑡 ), (19)

whereP (𝑉𝑡 ) is all partitioning of𝑉𝑡 . Each partitioning 𝑐∗𝑖 is regarded
as an aligned event 𝑒∗𝑖 at time 𝑡 . For each 𝑒∗𝑖 , we collect the keywords
of all nodes within 𝑐∗𝑖 (excluding inherited nodes) and select the top-
15 keywords by frequency as keywords𝑒∗

𝑖
. During minimization,

multiple fine-grained events of a popular event tend to be grouped
into one aligned event, while sparse cold events are preserved
separately. This effect automatically aligns the event granularity
with the original KB (𝑡 ) . Furthermore, aligned event in {𝑒∗𝑖 } are
categorized into two types: if its partitioning contains inherited
node from time 𝑡−1, it is interpreted as the evolution of a previously
existing event; otherwise, it is a newly emerging event at time 𝑡 .

Inheritance Mechanism (IM). To continuously track event evolu-
tion over time, we design an inheritance mechanism. Specifically,
for each aligned event with its keywords obtained at time 𝑡 −1
through structural entropy minimization, we introduce a corre-
sponding inherited node. These inherited nodes participate in the
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Table 1: Social event detection results on Events2012. * marks results acquired with the ground truth message labels. The best
results are bolded, the second-best results are underlined, and the proposed method is marked in an orange background.

Blocks M1 M2 M3 M4 M5 M6 M7
Metric NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI
KPGNN* 0.39 0.37 0.07 0.79 0.78 0.76 0.76 0.74 0.58 0.67 0.64 0.29 0.73 0.71 0.47 0.82 0.79 0.72 0.55 0.51 0.12
QSGNN* 0.43 0.41 0.07 0.81 0.80 0.77 0.78 0.76 0.59 0.71 0.68 0.29 0.75 0.73 0.48 0.83 0.80 0.73 0.57 0.54 0.12
SBERT* 0.40 0.38 0.03 0.86 0.85 0.73 0.88 0.87 0.68 0.82 0.80 0.36 0.86 0.85 0.61 0.86 0.83 0.53 0.64 0.61 0.09

CP-Tuning* 0.50 0.48 0.06 0.87 0.86 0.73 0.85 0.84 0.66 0.79 0.76 0.27 0.84 0.83 0.59 0.87 0.84 0.58 0.69 0.67 0.30
PromptSED* 0.51 0.50 0.12 0.89 0.88 0.79 0.87 0.86 0.71 0.83 0.81 0.30 0.86 0.85 0.60 0.88 0.86 0.66 0.70 0.68 0.31
HISEvent 0.38 0.37 0.09 0.90 0.89 0.88 0.90 0.89 0.79 0.77 0.76 0.52 0.83 0.82 0.63 0.89 0.88 0.84 0.64 0.63 0.36
RagSEDE 0.55 0.53 0.27 0.95 0.95 0.93 0.95 0.95 0.94 0.90 0.89 0.68 0.93 0.93 0.90 0.97 0.96 0.97 0.75 0.73 0.26
Promotion ↑.04 ↑.03 ↑.15 ↑.05 ↑.06 ↑.05 ↑.05 ↑.06 ↑.15 ↑.07 ↑.08 ↑.16 ↑.07 ↑.08 ↑.27 ↑.08 ↑.08 ↑.13 ↑.05 ↑.05 ↓.10
Blocks M8 M9 M10 M11 M12 M13 M14
Metric NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI
KPGNN* 0.80 0.76 0.60 0.74 0.71 0.46 0.80 0.78 0.70 0.74 0.71 0.49 0.68 0.66 0.48 0.69 0.67 0.29 0.69 0.65 0.42
QSGNN* 0.79 0.75 0.59 0.77 0.75 0.47 0.82 0.80 0.71 0.75 0.72 0.49 0.70 0.68 0.49 0.68 0.66 0.29 0.68 0.66 0.41
SBERT* 0.88 0.86 0.65 0.85 0.83 0.47 0.87 0.85 0.62 0.84 0.82 0.49 0.86 0.85 0.63 0.73 0.70 0.24 0.79 0.77 0.40

CP-Tuning* 0.85 0.82 0.59 0.82 0.80 0.48 0.85 0.83 0.69 0.80 0.78 0.48 0.80 0.79 0.46 0.72 0.70 0.36 0.77 0.75 0.51
PromptSED* 0.87 0.85 0.59 0.86 0.83 0.56 0.86 0.85 0.71 0.84 0.82 0.51 0.86 0.85 0.52 0.74 0.71 0.54 0.80 0.78 0.53
HISEvent 0.82 0.81 0.68 0.89 0.88 0.65 0.91 0.90 0.87 0.85 0.84 0.66 0.87 0.87 0.82 0.75 0.74 0.39 0.83 0.82 0.71
RagSEDE 0.96 0.95 0.92 0.91 0.90 0.65 0.96 0.96 0.97 0.95 0.94 0.96 0.91 0.91 0.83 0.88 0.87 0.77 0.93 0.92 0.92
Promotion ↑.08 ↑.09 ↑.24 ↑.02 ↑.02 - ↑.05 ↑.06 ↑.10 ↑.10 ↑.10 ↑.30 ↑.04 ↑.04 ↑.01 ↑.13 ↑.13 ↑.23 ↑.10 ↑.10 ↑.21
Blocks M15 M16 M17 M18 M19 M20 M21
Metric NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI
KPGNN* 0.58 0.54 0.17 0.79 0.77 0.66 0.70 0.68 0.43 0.68 0.66 0.47 0.73 0.71 0.51 0.72 0.68 0.51 0.60 0.57 0.20
QSGNN* 0.59 0.55 0.17 0.78 0.76 0.65 0.71 0.69 0.44 0.70 0.68 0.48 0.73 0.70 0.50 0.73 0.69 0.51 0.61 0.58 0.21
SBERT* 0.70 0.67 0.17 0.81 0.78 0.50 0.78 0.77 0.35 0.82 0.81 0.52 0.84 0.83 0.54 0.83 0.80 0.52 0.72 0.70 0.24

CP-Tuning* 0.64 0.61 0.31 0.80 0.77 0.74 0.76 0.75 0.58 0.76 0.75 0.44 0.82 0.81 0.43 0.83 0.79 0.55 0.71 0.69 0.40
PromptSED* 0.67 0.64 0.34 0.82 0.81 0.75 0.80 0.79 0.61 0.82 0.80 0.49 0.84 0.83 0.50 0.86 0.83 0.57 0.74 0.72 0.41
HISEvent 0.69 0.67 0.27 0.87 0.86 0.83 0.77 0.76 0.56 0.74 0.73 0.64 0.85 0.84 0.60 0.82 0.80 0.67 0.73 0.73 0.46
RagSEDE 0.92 0.91 0.97 0.92 0.92 0.86 0.93 0.93 0.95 0.87 0.86 0.69 0.90 0.89 0.76 0.87 0.84 0.67 0.78 0.76 0.38
Promotion ↑.22 ↑.24 ↑.63 ↑.05 ↑.06 ↑.03 ↑.13 ↑.14 ↑.34 ↑.05 ↑.05 ↑.05 ↑.05 ↑.05 ↑.16 ↑.01 ↑.01 - ↑.04 ↑.03 ↓.08

subsequent graph construction and structural entropy minimiza-
tion at time 𝑡 . Importantly, these inherited nodes are prohibited
from being merged into the same partitioning during structural
entropy minimization. This no-merge constraint ensures that each
previously detected event is preserved as an independent evolving
entity, even if it expands by absorbing new nodes. Through this
inheritance mechanism, our method can effectively identify the
onset of events and track the evolution of event keywords.

Forgetting Mechanism (FM). For inherited nodes participating in
graph construction, we designed a forgetting mechanism to avoid
outdated events from persisting as noise. Specifically, during the
structural entropy minimization at time 𝑡 , if an inherited node from
𝑡−1 receives no support from ordinary event nodes (i.e., no other
nodes are assigned to the partitioning of this inherited node), we
regard the inherited event as outdated. Such events are excluded
from inheritance in the next time step 𝑡+1. Through this forgetting
mechanism, our method can effectively locate the end of events.

4 Experiments
We conduct experiments to validate the effectiveness and efficiency
of the proposed RagSEDE. In addition, we conduct ablation stud-
ies, hyperparameter studies, case studies, and visualization studies
(Appendix G) to demonstrate the superiority of RagSEDE.

4.1 Experimental Setups
4.1.1 Evaluation Metrics. To assess the effectiveness of SED, we
follow previous studies [4, 52] and use three clustering metrics
to measure the consistency between the detected event clusters
and the ground truth clusters: Normalized Mutual Information
(NMI) [10], Adjusted Mutual Information (AMI) [42], and Adjusted
Rand Index (ARI) [42]. To assess the effectiveness of SEE, we use
the popular 𝐶𝑣 metric [39] to evaluate the keyword coherence of
evolving events and employ the Topic Diversity (TD) metric [8]

to measure the diversity of events captured during the evolution
process. We take the average 𝐶𝑣 and TD over all time slices.

4.1.2 Datasets. We conduct experiments on two public Twitter
datasets: Event2012 (68,841 English messages, 503 events) [26] and
Event2018 (64,516 French messages, 257 events) [25]. Following
processing in [4], the datasets are split into daily message blocks.
The detailed statistical information is presented in Appendix D.

4.1.3 Baselines. To evaluate the SED performance of RagSEDE,
we compare it with two GNN-based methods (KPGNN [3] and QS-
GNN [35]), three PLM-basedmethods (SBERT [34],CP-Tuning [51],
and PromptSED [52]), and one structural entropy-based method
(HISEvent [4]). For SEE performance of RagSEDE, since there
are no established baselines, we compare it with topic modeling
approaches [46, 47] that can also extract event keywords. These
include three non-dynamic models (ProdLDA [41], DecTM [45],
and TSCTM [48]) and two dynamic models (CFDTM [44] and
BERTopic [14]). Appendix E and F show additional descriptions.

4.2 Main Results
4.2.1 Effectiveness Analysis of Unsupervised SED. The SED eval-
uation results of RagSEDE are reported in Tables 1 and 2, where
both Detection-LLM and Evaluation-LLM are instantiated with
deepseek-r1:32b. On the English dataset, RagSEDE consistently
outperforms all baselines across nearly all message blocks, achiev-
ing maximum gains of 0.22 in NMI, 0.24 in AMI, and 0.63 in ARI
(e.g., block M15). These improvements highlight the effectiveness
of global event guidance in forming more accurate event clusters.
Importantly, RagSEDE maintains stable promotion in both dense
message blocks (e.g., M1, M7, M12) and sparse message blocks (e.g.,
M16, M20), demonstrating robustness to varying data distributions.
On the French dataset, RagSEDE achieves the best or second-best
performance in almost all blocks. The observed marginal decrease
is due to the use of a relatively small 32B LLM, which has limited
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Table 2: Social event detection results on Events2018. * marks results acquired with the ground truth message labels. The best
results are bolded, the second-best results are underlined, and the proposed method is marked in an orange background.

Blocks M1 M2 M3 M4 M5 M6 M7 M8
Metric NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI
KPGNN* 0.54 0.54 0.17 0.56 0.55 0.18 0.52 0.55 0.15 0.55 0.55 0.17 0.58 0.57 0.21 0.59 0.57 0.21 0.63 0.61 0.30 0.58 0.57 0.20
QSGNN* 0.57 0.56 0.18 0.58 0.57 0.19 0.57 0.56 0.17 0.58 0.57 0.18 0.61 0.59 0.23 0.60 0.59 0.21 0.64 0.63 0.30 0.57 0.55 0.19
SBERT* 0.60 0.60 0.20 0.62 0.61 0.29 0.64 0.63 0.34 0.61 0.60 0.23 0.77 0.76 0.47 0.73 0.73 0.41 0.66 0.65 0.29 0.76 0.75 0.50

CP-Tuning* 0.74 0.74 0.36 0.65 0.64 0.10 0.57 0.56 0.31 0.53 0.52 0.30 0.62 0.61 0.35 0.65 0.64 0.31 0.50 0.50 0.11 0.60 0.59 0.33
PromptSED* 0.75 0.75 0.38 0.66 0.65 0.28 0.63 0.62 0.35 0.58 0.57 0.34 0.65 0.63 0.36 0.68 0.67 0.38 0.55 0.54 0.27 0.69 0.68 0.39
HISEvent 0.74 0.74 0.58 0.73 0.73 0.60 0.72 0.72 0.52 0.67 0.66 0.48 0.74 0.73 0.56 0.80 0.79 0.66 0.79 0.78 0.59 0.82 0.82 0.75
RagSEDE 0.72 0.71 0.55 0.77 0.76 0.68 0.71 0.70 0.49 0.71 0.69 0.65 0.81 0.80 0.72 0.78 0.77 0.66 0.72 0.71 0.59 0.82 0.81 0.67
Promotion ↓.03 ↓.04 ↓.03 ↑.04 ↑.03 ↑.08 ↓.01 ↓.02 ↓.03 ↑.04 ↑.03 ↑.17 ↑.04 ↑.04 ↑.16 ↓.02 ↓.02 - ↓.07 ↓.07 - - ↓.01 ↓.08
Blocks M9 M10 M11 M12 M13 M14 M15 M16
Metric NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI
KPGNN* 0.48 0.46 0.10 0.57 0.56 0.18 0.54 0.53 0.16 0.55 0.56 0.17 0.60 0.60 0.28 0.66 0.65 0.43 0.60 0.58 0.25 0.52 0.50 0.13
QSGNN* 0.52 0.46 0.13 0.60 0.58 0.19 0.60 0.59 0.20 0.61 0.59 0.20 0.59 0.58 0.27 0.68 0.67 0.44 0.63 0.61 0.27 0.51 0.50 0.13
SBERT* 0.64 0.63 0.23 0.74 0.72 0.39 0.72 0.70 0.31 0.77 0.76 0.54 0.66 0.65 0.34 0.69 0.68 0.43 0.72 0.71 0.40 0.66 0.65 0.25

CP-Tuning* 0.49 0.47 0.31 0.64 0.61 0.34 0.65 0.63 0.35 0.64 0.62 0.33 0.52 0.50 0.31 0.53 0.52 0.30 0.59 0.58 0.33 0.48 0.46 0.28
PromptSED* 0.55 0.53 0.29 0.65 0.63 0.28 0.67 0.65 0.35 0.68 0.67 0.36 0.57 0.55 0.31 0.60 0.59 0.33 0.66 0.64 0.34 0.55 0.53 0.30
HISEvent 0.65 0.64 0.42 0.77 0.76 0.66 0.72 0.71 0.44 0.84 0.83 0.80 0.78 0.78 0.86 0.83 0.82 0.75 0.76 0.75 0.61 0.70 0.69 0.38
RagSEDE 0.65 0.63 0.32 0.76 0.74 0.57 0.78 0.76 0.62 0.87 0.86 0.83 0.67 0.65 0.51 0.73 0.71 0.64 0.79 0.78 0.70 0.67 0.64 0.39
Promotion - ↓.01 ↓.10 ↓.01 ↓.02 ↓.09 ↑.06 ↑.05 ↑.18 ↑.03 ↑.03 ↑.03 ↓.11 ↓.13 ↓.35 ↓.10 ↓.11 ↓.11 ↑.03 ↑.03 ↑.09 ↓.03 ↓.05 ↑.01

Table 3: Social event Evolution results. In dynamic methods,
the best results are bolded, the second-best are underlined.

Events2012 Events2018
Method 𝐶𝑣 TD Avg Dynamic 𝐶𝑣 TD Avg Dynamic
ProdLDA 0.46 0.48 0.47 × 0.40 0.74 0.57 ×
DecTM 0.48 0.63 0.56 × 0.39 0.85 0.62 ×
TSCTM 0.44 0.93 0.69 × 0.36 0.96 0.66 ×
CFDTM 0.65 0.14 0.40 ✓ 0.66 0.34 0.50 ✓
Bertopic 0.61 0.42 0.52 ✓ 0.59 0.39 0.49 ✓

RagSEDE w/o IM 0.53 0.90 0.72 × 0.53 0.87 0.70 ×
RagSEDE w/o FM 0.76 0.28 0.52 ✓ 0.69 0.42 0.56 ✓

RagSEDE 0.49 0.88 0.69 ✓ 0.52 0.87 0.70 ✓

Table 4: Ablation results for SED on two datasets. The best
results are bolded, the second-best are underlined.

Blocks M3 (Event2012) M10 (Event2012) M8 (Event2018) M15 (Event2018)
Metric NMI AMI ARI NMI AMI ARI NMI AMI ARI NMI AMI ARI

RagSEDE w/o KMS .84 .81 .61 .93 .92 .88 .72 .67 .41 .73 .69 .55
RagSEDE w/oKB .86 .85 .57 .91 .89 .72 .73 .68 .34 .68 .64 .28
RagSEDE w/o KBM .95 .95 .94 .96 .96 .97 .81 .79 .67 .77 .76 .68

RagSEDE (deepseek-r1:32b) .95 .95 .94 .96 .96 .97 .82 .81 .67 .79 .78 .70
RagSEDE + deepseek-r1:70b .96 .95 .95 .96 .96 .97 .81 .79 .64 .79 .78 .72
RagSEDE + GPT-4o-mini .96 .95 .95 .97 .97 .97 .82 .81 .68 .81 .80 .77

RagSEDE + GPT-4o .96 .95 .95 .97 .96 .97 .82 .80 .68 .79 .78 .68

capacity for French comprehension. In practical deployment, se-
lecting language-specific LLMs can further enhance performance.
Furthermore, beyond strong SED performance, RagSEDE uniquely
supports SEE, which none of the baseline methods provide.

4.2.2 Effectiveness Analysis of Unsupervised SEE. The SEE evalua-
tion results of RagSEDE are reported in Table 3, and all values are
with two decimal precision. For non-dynamic methods, we execute
the algorithms independently on each daily block. When a method
achieves a high 𝐶𝑣 but a very low TD value, the keywords for dif-
ferent events exhibit significant overlap, meaning these events are
actually the same real-world event (e.g., CFDTM, Bertopic). When
a method achieves a very high TD but a low 𝐶𝑣 , it excessively pun-
ishes keyword sharing across events, resulting in incoherent key-
words that fail to adequately describe the events(e.g., TSCTM). The
results reveal that RagSEDE achieves a better balance between 𝐶𝑣

and TD, with its average score consistently surpassing all dynamic
baselines. This advantage stems from maintaining a high-quality
knowledge base during the SED process and from using structural

entropy minimization to align event granularity. Moreover, un-
like non-dynamic approaches that fail in real-world applications,
RagSEDE can effectively track event evolution over time.

4.3 Ablation Study
We conduct ablation studies on both datasets to further demon-
strate the effectiveness of each module in RagSEDE. For SED, as
shown in Table 4, removing the KMS, KB, or KBM modules leads
to varying degrees of performance degradation. This is because the
KMS module samples key messages instead of all messages, thereby
improving the quality of LLM queries; the KB module provides
event information as global guidance, enhancing the LLM’s capabil-
ity; and the KBM module maintains the freshness of the knowledge
base, which becomes particularly important for larger message
blocks (e.g., M8 and M15 in Events2018). For SEE, the results in Ta-
ble 3 demonstrate that removing the IM module prevents RagSEDE
from capturing the dynamic evolution of events, whereas removing
the FM module results in insufficient event diversity, confirming
the necessity of both modules. Finally, we ablate RagSEDE with
different base LLMs. While larger LLMs naturally achieve higher
accuracy, RagSEDE with a 32B LLM already delivers competitive
performance while significantly reducing computational resources.

4.4 Hyperparameter Study
We conduct a hyperparameter study of the similarity threshold
𝜏 in the key message sampling module (Section 3.1.1), with the
results shown in Figure 3. Figure 3 indicates that setting 𝜏 too
low (e.g., 𝜏 = 0.1) significantly decreases detection performance
across all blocks, as messages from different events are aggregated
into the same anchor and cannot be further distinguished during
detection. As 𝜏 increases, performance improves, with the best
results observed around 𝜏 = 0.4 on the Event2012 and 𝜏 = 0.3
on the Event2018. RagSEDE remains relatively robust to 𝜏 within
this reasonable range. However, when 𝜏 is set too high, detection
efficiency decreases. Therefore, selecting an appropriate 𝜏 enables
a favorable balance between performance and efficiency.

4.5 Case Study
We conduct a case study to demonstrate RagSEDE’s capability
in SEE. Figure 4 presents the evolution keywords obtained by
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Figure 3: Sensitivity of hyperparameter 𝜏 on four blocks.
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Figure 4: Case study for SEE of RagSEDE. Evolution keywords
of an Event about Cyclone Nilam from the Event2012 dataset.

RagSEDE for the detected event Cyclone Nilam2 over a four-day
period. The curve in the figure shows changes in the event’s dis-
cussion intensity. The bold keywords in the figure 4 indicate that
RagSEDE not only correctly localizes the Nilam region on the first
day, but also continuously tracks the impact and damages of the
disaster in the following days (e.g., electrical issue in M15 and casu-
alties in M16). Finally, RagSEDE captures the post-disaster recovery
process. This ability to consistently track events across time periods
demonstrates the effectiveness of the inheritance and forgetting
mechanisms in the evolution framework RagSEDE.

4.6 Efficiency Analysis
We report the running time of the proposed RagSEDE, RagSEDE
without the key message sampling module, and the strongest base-
line HISEvent on the three largest message blocks of datasets, as
shown in Figure 5. The results demonstrate that incorporating the
KMS module improves the efficiency of RagSEDE by up to 15 times,
as it effectively avoids redundant LLM queries on semantically sim-
ilar messages. Furthermore, compared to HISEvent, which incurs
higher computational complexity, RagSEDE achieves superior ef-
ficiency on large-scale message blocks that more closely reflect
real-world scenarios. Importantly, RagSEDE employs the locally
deployed deepseek-r1:32b, constrained by our local computational
resources. When the backbone LLM is replaced with gpt-4o-mini,
we observe a further improvement in efficiency.
2https://en.wikipedia.org/wiki/Cyclone_Nilam
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Figure 5: Running time comparison on the largest blocks.

5 Related Work
In the past decade, SED [2] has been extensively studied. Early
approaches relied on incremental clustering [1, 16], topic model-
ing [43, 50, 57], and community detection [12, 21, 22] to identify
events from social streams. While effective to some extent, these
methods often suffer from limitations in scalability, adaptability,
and semantic expressiveness. With the emergence of GNNs, which
are capable of modeling complex structural dependencies among
messages, GNN-based methods have rapidly become the domi-
nant approach for SED. These methods span a wide spectrum, in-
cluding supervised approaches based on evidential learning and
contrastive learning [3, 35, 36, 38], as well as unsupervised [15],
cross-lingual [37], and multimodal [55] approaches. More recently,
the rapid advancement of PLMs has enabled the use of their strong
contextual reasoning capabilities in SED tasks. [20, 52] utilizes
PLMs and appropriate prompts to obtain message embeddings,
followed by clustering to obtain events. In addition, structural en-
tropy [19, 27], as an unsupervised clustering method, has shown
remarkable potential for social event analysis [4]. However, none
of the above methods can track the evolution of detected events,
and our method achieves this, which is our advantage.

6 Conclusion
In this paper, we propose RagSEDE, a novel unsupervised model for
SED and SEE. First, RagSEDE introduces a key message sampling
module that improves the quality of LLM queries while substan-
tially reducing computational overhead. Second, RagSEDE proposes
a new RAG-based event detection paradigm that leverages a knowl-
edge base for global semantic guidance. Finally, RagSEDE leverages
structural entropy to track the evolution of events over time. Ex-
tensive experiments on two benchmark datasets demonstrate that
RagSEDE outperforms all baselines. In future work, we plan to
extend this framework to multimodal scenes.
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A PROMPT OF RagSEDE
In this appendix, we provide the complete prompts used in RagSEDE.

A.1 Prompt for Evaluation-LLM
This prompt is designed to guide the LLM in extracting structured
event information, e.g., event name and keywords, from messages.
The prompt contains role setting, task instruction, and output con-
straint, as shown in box Prompt𝐸 .

A.2 Prompt for Detection-LLM
This prompt is designed to decide whether a message belongs to an
existing event or a new event. The prompt contains input descrip-
tion, role setting, task instruction, output constraint, and guidance
from the knowledge base, as shown in box Prompt𝐷 . When asking
LLMs, the location of {knowledge} will be replaced with relevant
events retrieved from the knowledge base.

B GLOSSARY OF NOTATIONS
We summarize the notation used in this paper, along with their
corresponding description, in Table 5.

C STRUCTURAL ENTROPY
Structural entropy [19] is a measure of the uncertainty of the graph
structure. It represents the minimum number of bits required to

encode a reachable vertex during a single-step random walk on the
graph. Structural information theory utilizes the encoding tree T
to measure the structure of the graph 𝐺 (𝑉 , 𝐸), which is as follows:
(1) Each node 𝛼 ∈ T corresponds to a partitioning of graph nodes

𝑇𝛼 ⊆ 𝑉 . Significantly, the root node 𝜆 of T is associated with
the entire set of graph nodes, 𝑇𝜆 =𝑉 . And for any leaf node 𝛾
of T , T𝛾 contains exactly one graph node from 𝑉 .

(2) For any non-leaf node 𝛼 in T , let its children be denoted as
𝛽1, ..., 𝛽𝑁𝛼 , where 𝑁𝛼 is the number of children of 𝛼 . Then,
(𝑇𝛽1 , ...,𝑇𝛽𝑁𝛼

) form a partitioning of 𝑇𝛼 .
The structural entropy is defined under the graph𝐺 and the encod-
ing tree 𝑇 , as follows:

𝐻T (𝐺) = −
∑︁

𝛼∈T , 𝛼≠𝜆

𝑔𝛼

𝑣𝑜𝑙 (𝐺) log2
𝑣𝑜𝑙 (𝛼)
𝑣𝑜𝑙 (𝛼−) , (20)

where 𝛼− is the parent node of non-root node 𝛼 in T , the cut 𝑔𝛼
is the weight sum of edges with exactly one endpoint in 𝑇𝛼 , and

Prompt𝐸

“You are an event analysis assistant. Your task is to
infer the event names discussed in the provided social
media comments and extract keywords related to the event.

First, carefully read all the COMMENTS and under-
stand the core content they discuss.

Second, summarize a concise and accurate EVENT
NAME based on the COMMENTS.

Third, extract no more than 10 KEYWORDS related to
the event from the comments, which should cover the core
theme, characters, location, time, or other vital information
about the event. Each KEYWORD must be a single word
that appears in the COMMENTS.

Answer in JSON format, including EVENT-NAME
(str) and KEYWORDS (list) attributes. Other than that, the
answer must not include any other information.”

Prompt𝐷

“The knowledge base contains EVENTs and corre-
sponding KEYWORDs.

You are a social media comment classifier determining
which one EVENT the INPUT belongs to in the knowledge
base.

Answer in JSON format, including INPUT and EVENT
attributes. Other than that, the answer must not include
any other information.

When all knowledge base content is irrelevant to the
INPUT, your EVENT answer must be ‘Others’.

When the knowledge base is empty, your EVENT
answer must be ‘Others’.

Answers don’t need to consider chat history.
Here is the knowledge base:
{knowledge}
The above is the knowledge base.”
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Table 5: Glossary of Notations.

Notation Description

S Social stream, a temporal sequence of message blocks
M𝑡 The 𝑡-th message block in S
𝑚𝑖 A social message in block M𝑡

A𝑘 The 𝑘-th anchor containing similar messages
𝜏 Similarity threshold in each anchor
𝜆 The trade-off parameter of sampling
𝑝 The number of key messages selected from an anchor
𝑎𝑘 The aggregated key message of anchor A𝑘

𝑦𝑚𝑖
, 𝑦𝑎𝑘 Event label assigned to𝑚𝑖 and 𝑎𝑘

KB (𝑡 ) Knowledge base at day 𝑡 used for M𝑡

𝑒 , 𝑝𝑒 Event and its corresponding representation in KB
Name𝑒 Name of event 𝑒 in KB
Keywords𝑒 Keyword set describing event 𝑒 in KB
Enc(·) Embedding model for messages and events
𝑟 (𝑒 | 𝑎𝑘 ) Relevance score between event 𝑒 and 𝑎𝑘
𝛾 Similarity threshold in RAG retrieval
N𝐸 (𝑎𝑖 ) Top-𝑞 retrieved candidate events for 𝑎𝑖

B𝑒
Message buffer for event 𝑒 in knowledge base
maintenance

𝜃 Threshold of buffered messages for KB (𝑡 ) update

𝐺𝑡 Event graph at day 𝑡 , with nodes, edges, and weights
𝐻T (𝐺𝑡 ;𝜋𝑡 ) Structural entropy of graph 𝐺𝑡 with partitioning 𝜋𝑡
𝜋∗𝑡 The optimal partitioning of 𝐺𝑡

the volume 𝑣𝑜𝑙 (𝛼), 𝑣𝑜𝑙 (𝛼−), and 𝑣𝑜𝑙 (𝜆) denote the degrees sum of
graph nodes within 𝑇𝛼 , 𝑇 −𝛼 , and 𝑇𝜆 , respectively.

The encoding tree corresponding to the minimum structural
entropy is regarded as the optimal encoding tree T ∗, which captures
the essential structure of the graph. Without requiring supervision
or a predefined number of clusters, the two-dimensional structural
entropy minimization algorithm obtains such an optimal encoding
tree by an MERGE operator, described as follows:

Definition C.1 (MERGE Operator [19]). Given an encoding tree T
and two of its non-root nodes𝛼𝑖 and𝛼 𝑗 , the operationMERGE(𝛼𝑖 , 𝛼 𝑗 )
removes 𝛼𝑖 and 𝛼 𝑗 from T and introduces a new node 𝛼𝑛 into T .
The children of 𝛼𝑛 are the union of the children of 𝛼𝑖 and 𝛼 𝑗 , and
the parent of 𝛼𝑛 is the root node.

Executing the MERGE operator will change the structural en-
tropy of T . After initializing the encoding tree, while keeping the
tree height no more than 2, the MERGE operator is repeatedly
applied to any two nodes that can largest decrease the structural
entropy, until the structural entropy reaches the minimum possible
value. This results in the optimal encoding tree, which corresponds
to the optimal partitioning of the graph.

D DATASETS
Following the data processing procedure in [4], we divide the
datasets into daily blocks. The time spans of the Event2012 and
Event2018 datasets are 21 days and 16 days, respectively. Dividing
into blocks ensures that event detection from the previous day does
not use data from the following day, making it more suitable for

open-world scenarios. Detailed statistics of the two datasets are
shown in Tables 1 and 2.

Table 6: Detailed statistics of message blocks in Event2012.

Blocks M1 M2 M3 M4 M5 M6 M7
# Messages 8,722 1,491 1,835 2,010 1,834 1,276 5278
# Events 41 30 33 38 30 44 57
Blocks M8 M9 M10 M11 M12 M13 M14

# Messages 1,560 1,363 1,096 1,232 3,237 1,972 2,956
# Events 53 38 33 30 42 40 43
Blocks M15 M16 M17 M18 M19 M20 M21

# Messages 2,549 910 2,676 1,887 1,399 893 2,410
# Events 42 27 35 32 28 34 32

Table 7: Detailed statistics of message blocks in Event2018.

Blocks M1 M2 M3 M4 M5 M6 M7 M8
# Messages 5,356 3,186 2,644 3,179 2,662 4,200 3,454 2,257
# Events 22 19 15 19 27 26 23 25
Blocks M9 M10 M11 M12 M13 M14 M15 M16

# Messages 3,669 2,385 2,802 2,927 4,884 3,065 2,411 1,107
# Events 31 32 31 29 28 26 25 14

E IMPLEMENTATION DETAILS
RagSEDE is implemented using the RAGFlow framework, and all
experiments are conducted on a server with two NVIDIA RTX
6000 Ada Generation (48GB) GPUs. For the KMS module, we use
the “all-MiniLM-L6-v2” model (384 dimensions) for embedding
the Event2012 dataset and the “distiluse-base-multilingual-cased-
v1” model (512 dimensions) for the Event2018 dataset. We set the
anchor similarity threshold to 𝜏 = 0.4 for Event2012 and 𝜏 = 0.3
for Event2018, the sampling trade-off parameter to 𝜆 = 0.7, and the
number of sampled key messages to 𝑝 = 3. For the event detection
module, the RAG retrieval similarity threshold is set to 𝛾 = 0, with
a maximum of 𝑞 = 8 candidate events, and the buffering message
threshold is set to 𝜃 = 10.

F BASELINES
For the SED task, we compare RagSEDE with two GNN-based
methods, three PLM-based methods, and one structural entropy-
based method. KPGNN is a knowledge-preserving incremental
learning framework for supervised SED using a heterogeneous
graph network. QSGNN is a framework for self-supervised SED
that fine-tunes unlabeled data using pseudo-labels. SBERT is a
transformer-based model that extends BERT to generate seman-
tically meaningful sentence embeddings. We first learn message
embeddings using SBERT and then apply K-means clustering on
the embeddings to acquire events, following [4]. CP-Tuning is an
end-to-end contrastive prompt tuning framework for PLMs. We use
it as [52]. PromptSED is an evolving topic-enhanced prompt learn-
ing framework for SED in an incremental social stream, which does
not require additional training or manual labeling. HISEvent cus-
tomizes a hierarchical structure entropy minimization algorithm for
unsupervised SED. In the main results, we set the hyperparameter
𝑛 to 200 to mitigate occasional deadlock issues.
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

Event 4 Event 142 Event 164 Event 17 Event 80 Event 143 Event 15 Event 125 Event 121 Event 67

Event 13 Event 68 Event 178 Event 148 Event 5 Event 32 Event 94 Event 135 Event 212 Event 169

Event 36 Event 104 Event 147 Event 54 Event 3 Event 144 Event 87 Event 197 Event 109 Event 12
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Figure 6: The visualization of events and their evolution detected by RagSEDE on the dataset Event2012.
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Figure 7: The visualization of events and their evolution detected by RagSEDE on the dataset Event2018.

For the SEE task, we compare RagSEDE with three non-dynamic
topic modeling methods and two dynamic topic modeling methods.
All these baselines can extract keywords for events, among which
dynamic methods can track the evolution of events. ProdLDA
introduces autoencoding variational inference for non-dynamic
topic modeling. DecTM is a causal inference framework to explain
and overcome the issues of topic modeling on long-tailed corpora,
which is a non-dynamic method. TSCTM employs a contrastive
learning method to overcome the data sparsity issue in short text
non-dynamic topic modeling.Bertopic is a dynamic topic modeling
method that extracts coherent topic representations through a class-
based variation of TF-IDF. CFDTM is a chain-free dynamic method
for topic modeling using an evolution-tracking contrastive learning.

G VISUALIZATION
We present the visualizations of the top 30 most discussed social
events and their temporal evolution detected by RagSEDE on the
Event2012 and Event2018 datasets, as shown in Figure 6 and Fig-
ure 7, respectively. In the figures, different colors correspond to
different events. The vertical width of each event reflects the dis-
cussion intensity, and the “flowing” shape along the horizontal
axis illustrates the temporal dynamics of popularity. The results
show that RagSEDE successfully detects a wide range of significant
events on both datasets, such as the U.S. presidential election and
related debates. More importantly, RagSEDE not only captures the
initial emergence of these events but also tracks their subsequent
developments, resembling the rise and fall of the event streams
in the figures. This ability to provide explicit event evolution in-
formation distinguishes RagSEDE from prior SED methods, which
typically fail to model the evolution of detected events.
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