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Hierarchical Abstracting Graph Kernel
Runze Yang, Hao Peng, Angsheng Li, Peng Li, Chunyang Liu, Philip S. Yu Fellow, IEEE

Abstract—Graph kernels have been regarded as a successful tool for handling a variety of graph applications since they were proposed.
However, most of the proposed graph kernels are based on the R-convolution framework, which decomposes graphs into a set of
substructures at the same abstraction level and compares all substructure pairs equally; these methods inherently overlook the utility of
the hierarchical structural information embedded in graphs. In this paper, we propose Hierarchical Abstracting Graph Kernels (HAGK), a
novel set of graph kernels that compare graphs’ hierarchical substructures to capture and utilize the latent hierarchical structural
information fully. Instead of generating non-structural substructures, we reveal each graph’s hierarchical substructures by constructing its
hierarchical abstracting, specifically, the hierarchically organized nested node sets adhering to the principle of structural entropy
minimization. To compare a pair of hierarchical abstractings, we propose two novel substructure matching approaches, Local Optimal
Matching (LOM) and Priority Ordering Matching (POM), to find appropriate matching between the substructures by different strategies
recursively. Extensive experiments demonstrate that the proposed kernels are highly competitive with the existing state-of-the-art graph
kernels, and verify that the hierarchical abstracting plays a significant role in the improvement of the kernel performance.

Index Terms—Graph Classification, Graph Kernels, Structural Entropy.

✦

1 INTRODUCTION

Graph kernels [1] are one of the most potent approaches to
handling graph-related tasks in various domains. Roughly
speaking, the graph kernel methods implicitly map the dis-
crete graph structures into a high-dimensional feature space
and measure the similarities between graph pairs. These
similarities can then be fed to various kernel-based machine
learning algorithms, e.g., SVM [2] and PCA [3], to perform
different tasks. For example, in the Web context, graph
kernels [4] can help classify graph-represented web pages
or documents into categories or topics, aiding in content
recommendation or search engine optimization. In addition
to leveraging feature information conveyed through nodes
and edges, previous works [5], [6], [7], [8], [9] have focused
on exploiting graph structural information by comparing var-
ious substructures extracted from the whole graph structure.
For instance, the random walk graph kernel [6] decomposes
graphs into random walks and compares the walk pairs to
compute kernel values. Utilizing structural information in
this manner can significantly enhance the expressive power
of graph kernels, i.e., the ability to distinguish between
two graphs, since the difference between substructures from
different graphs can be easily detected by comparison.

In the real world, graphs are often hierarchically orga-
nized, as illustrated in Fig. 1(a): the substructures consist
of sub-substructures. The hierarchical substructures contain
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Fig. 1: a) An example of a graph with three 2-level substruc-
tures, “A”, “B”, and “C”, where “A” consists of two 3-level
substructures “A.1” and “A.2”. b) The graph’s 3-dimensional
hierarchical abstracting. Each tree node has a marker denot-
ing the node set of its corresponding substructure.

rich hierarchical structural information that is potential in
graph-related tasks. Intuitively speaking, discovering the
hierarchical substructures of graphs can contribute to the
expressive power of graph kernels because the difference
between the sub-substructures may help distinguish the
initially similar substructures based on the “Similarity by
Composition” principle [10]. We introduce this principle
as follows: If two objects are similar, then each of their
composing components must have a distinct similar match-
ing component on the other object. If an object is a tree,
then two trees are similar if each subtree from the root
has a distinct matching or similar subtree on the other tree.
Similarly, for two graphs to be similar, their subgraphs must
have matching or similar counterparts. This principle can
be applied recursively to determine whether two objects
are similar. However, few existing graph kernels [5], [6],
[7], [8], [9] follow this principle. Most graph kernels de-
compose substructures at the same level without hierarchy,
thereby ignoring the structural information embedded in
their sub-substructure comparisons. For example, the walk
substructures decomposed by the random walk graph kernel
are not hierarchical and any walk can be compared with any
other walk, which violates the “Similarity by Composition”
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Fig. 2: The overview of the proposed HAGK method.

principle [10]. Therefore, a current challenge is to develop
a graph kernel that enables hierarchical substructure com-
parison following the “Similarity by Composition” principle
and fully utilizes the hierarchical information embedded in
graphs.

To tackle this challenge, we propose a new family of
Hierarchical Abstracting Graph Kernels (HAGK) to fully cap-
ture the hierarchical structural information by decomposing
graphs into multi-level nested substructures and comparing
the hierarchically organized substructures from different
graphs. Rather than decomposing graphs into hierarchically
equivalent substructures, we use a tree structure—namely
hierarchical abstractings (see Fig. 1(b))—to encode the hierar-
chical structural information within the graphs. The nodes of
a hierarchical abstracting represent the substructures in the
form of nested node sets extracted from a graph following the
principle of structural entropy minimization [11], which is widely
used to discover a graph’s natural hierarchical structure. The
graph substructure comparison problem can be converted
into a tree comparison problem since each substructure is
mapped into a hierarchical abstracting node.

Nevertheless, the hierarchical abstracting comparison
raises two key issues: (1) How to measure the similarity between
two hierarchical abstracting nodes? (2) How to align or match
the hierarchical abstracting nodes at different levels? For the
first issue, one of the most effective ways to measure the
similarity is to count the number of “common substructures”
between the two comparison objects. Since the objects are
non-structural node sets and we mainly focus on node-
labeled graphs in this paper, an intuitive way is to calculate
the number of common node labels. Therefore, we choose the
histogram intersection function [12], which counts common
labels of all categories as the inner kernel to compare
two hierarchical abstracting nodes. For the second issue,
we have two options: one is to follow the R-convolution
framework [5], i.e., compare all pairs of hierarchical nodes
between two graphs and add the similarities up; the other is
to leverage the concept of optimal assignment [12], [13], [14]
to find the optimal match between hierarchical abstracting
nodes which maximizes the total similarities. We choose the
latter for the following two reasons: the time consumption
will be too high if we compare all pairs of nodes when
the tree height goes deep; the tree structure is naturally
suitable to recursively “one-to-one” node matching from root
to leaves. To be more specific, we introduce a new node-
matching method named Local Optimal Matching (LOM),
which first matches the roots, and then recursively finds the
local optimal matching between the direct successors of two
matched nodes, thereby maximizing their total similarity.
This node-matching approach keeps all comparisons at the

same level and avoids meaningless comparisons, e.g. root
and leaf nodes are intuitively not comparable. However, the
optimal assignment-based LOM has two inherent disadvan-
tages: the high time complexity and no theoretical guarantee
for the positive semi-definite property which is critical in
kernel validity [15]. The former is due to the extra time
consumption of the Jonker-Volgenant algorithm [16] from the
optimal matching process while the latter is mainly because
the order of substructure alignment between different graphs
is not transitive making the induced similarity measure not
satisfy the triangle inequality. To address these issues, we
introduce another node-matching approach Priority Ordering
Matching (POM) which first orders the sibling nodes of
hierarchical abstractings and then matches the arranged
nodes according to their relative positions. Its hierarchical
ordering process not only reduces the matching time but
also keeps the substructure alignment order to guarantee
the positive semi-definite property. Finally, LOM and POM
can induce corresponding HAGK kernels by adding up the
similarities between all matched nodes and the kernel matrix
can then be calculated for each pair of graphs in a dataset
preparing for downstream tasks like graph classification.

The overview of the proposed HAGK method is shown
in Fig. 2. First, the hierarchical abstractings of graphs are
constructed (Fig. 2(a)). Second, the hierarchical abstractings
are compared pairwise by LOM or POM to compute kernel
values (Fig. 2(b)). Third, the kernel matrix is formed by
collecting the kernel values of all pairs of hierarchical ab-
stractings and then given to SVM [2] to perform classification
(Fig. 2(c)). To summarize, our contributions are three-fold.

• Problem. We design a new set of HAGK kernels to fully
leverage hierarchical structural information by comparing
graphs’ hierarchical substructures. To our best knowledge,
this is the first attempt to compare hierarchically nested
structures decomposed from graphs for kernel computation.

•Algorithm. We propose two novel matching approaches,
LOM and POM, which find appropriate matching between
the hierarchical substructures by different strategies.

• Evaluation. We have conducted extensive experiments
to validate the effectiveness and analyze the properties of
the HAGK kernels via thorough comparisons with state-of-
the-art graph kernels.

This paper is organized as follows. Section 2 and Sec-
tion 3 present the related work and preliminary, respectively.
Section 4 outlines our proposed graph kernels. Section 5
shows the results and analysis of the experiments. Section 6
concludes the paper.
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2 RELATED WORK

Below we summarize research on graph kernels, structural
entropy, and similarity of hierarchical domain structures.

2.1 Graph Kernels
One of the most popular methods to handle graph tasks
is graph neural network models (GNN) [17], [18], [19].
The advantages of GNN methods include their ability to
automatically learn feature representations of graphs, handle
large-scale graph data, and capture the topological structure
and relationships between nodes [17], [20]. However, they
may suffer from overparameterization and overfitting on
small graphs [21], [22]. Graph kernel methods [1] are another
type of traditional approach for computing graph similarities
with a certain theoretical basis. Some graph kernels, like
WLSK [23], can consider the distribution of node labels
and capture the distribution of subtree patterns using the
Wasserstein distance. Nevertheless, some graph kernels may
have high time complexity when dealing with large-scale
graph data.

Most graph kernels are developed based on the R-
convolution framework [5], which decomposes graphs into
substructures and compares graphs regarding the pairwise
similarity between all their substructures. The types of the
substructures include walks [6], paths [7], cycles [8] and
subtrees [9], [23], etc. Besides the R-convolution kernels,
another family of graph kernels, the optimal assignment
kernels [13], [14], [12], has also received a lot of atten-
tion. These kernels compare graphs by finding the optimal
matching between the substructures, which maximizes the
overall similarity. However, most R-convolution kernels and
optimal assignment kernels compare substructures at the
same level, lacking the ability to utilize the hierarchical
structural information embedded in graphs, which our
method focuses on.

The subgraph matching kernel [24] counts the number of
matchings between subgraphs up to a fixed size and therefore
has polynomial runtime. The Wasserstein Weisfeiler-Lehman
kernel [25] extends WLSK to continuously attributed graphs
by treating each graph as node embeddings and using
the Wasserstein distance to compare them. The isolation
graph kernel [26] employs a distributional kernel in the
framework of kernel mean embedding, avoiding the costly
computation of the Wasserstein distance. The hierarchical
transitive-aligned graph kernel (HTAK) [27] transitively
aligns vertices between pairs of graphs by means of a
family of hierarchical prototype representations. The multi-
scale Wasserstein shortest-path graph kernel (MWSP) [28]
employs the Wasserstein distance to compute the simi-
larity between the multi-scale shortest-path node feature
maps of two graphs, capturing the distributions of shortest
paths. To conclude, [24], [25] and [26] support attributed
graphs while [27] and [28] mainly focus on unattributed
graphs. The graph neural tangent kernel (GNTK) [21] is
inspired by the connections between overparameterized
neural networks and kernel methods. It is equivalent to
an infinitely wide GNN trained by gradient descent and
has been proven to learn a class of smooth functions on
graphs. GraphQNTK [22] extends GNTK by incorporating
the attention mechanism and quantum computing into

GNTK’s structure and computation. The faster graph neural
tangent kernel [29] accelerates GNTK by decoupling the
Kronecker-vector product in GNTK construction into matrix
multiplications and a newly designed iterative sketching
algorithm. GNTK and its variants are powerful due to the
effectiveness of the GNN’s representation. Nevertheless, they
may be overparameterized and overfitting on small graphs.

2.2 Structural Entropy
In recent years, Li and Pan [11] have proposed structural
entropy for measuring structural information embedded
in graph data. By minimizing the structural entropy, the
natural hierarchical structures of a graph can be revealed.
This information measurement has been used extensively
in the fields of biological information [30], [31], information
security [32], [33], and graph neural networks [34], [35],
[36], [37]. In this paper, we construct hierarchical abstractings
following the principle of structural entropy minimization
for utilizing hierarchical structural knowledge.

2.3 Similarity of Hierarchical Domain Structures
Recently, some work has been done on the comparison
of hierarchical structures. For instance, Ganesan et al. [38]
have developed a method to compare hierarchical domain
structures extracted from the data in the field of information
retrieval. Wu et al. [39] improve the Weisfeiler-Lehman graph
kernel by propagating labels from child nodes to their parents
based on the hierarchical structures of the encoding trees [11].
To the best of our knowledge, the HAGK kernels firstly give
a method to compare hierarchically nested substructures
decomposed from graphs in an optimal assignment scheme.

3 PRELIMINARY

In this paper, our main focus is on node-labeled, undi-
rected, and unweighted graphs. Given a graph dataset
G = {G1, G2, ..., G|G|}, each graph in G is denoted as
G = (V, E), where V and E represent the set of nodes and
the set of edges in the graph, respectively. Assume that each
node has a label l ∈ L, where L = {l1, l2, ..., l|L|} denotes
the label set of G. In the following, we introduce the basic
definitions and foundations used throughout the paper.

To represent the hierarchical substructures, we use a novel
tree structure, namely hierarchical abstracting (Definition 1), by
adapting the concept of the partitioning tree proposed by Li
and Pan [11]. Different from the partitioning tree in [11], the
height of leaf nodes in the hierarchical abstracting is designed
to be the same for the convenience of comparison. The
height of the root of a hierarchical abstracting is set as 1 and
(leaf height− 1) is defined as a dimension of the hierarchical
abstracting to keep consistent with [11]. In this representation,
each i-level substructure is denoted by an i-height tree node
of the graph’s hierarchical abstracting. Each i-height non-
leaf tree node has several (i + 1)-height direct successors,
denoting that each i-level substructure is decomposed into
several (i + 1)-level non-overlap substructures, forming a
partition of the i-level substructure. The node sets of all
substructures on the same level constitute a partition of the
graph node set. Fig. 1 gives an example of a graph and its
3-dimensional hierarchical abstracting.
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Fig. 3: An illustration of the hierarchical abstracting and
structural entropy calculation. Tree node α1 corresponds to
the node set M(α1). Leaf node γ corresponds to a yellow
graph node. The node structural entropy calculation of α1

and γ is listed below.

To find the best hierarchical abstracting, we generalize
the principle of the structural entropy minimization (Defi-
nition 2) [11]. Fig. 3 illustrates the calculation of structural
entropy. Following this principle, we construct the hierarchi-
cal abstracting for each graph to reveal the graph’s essential
hierarchical structure by minimizing the structural entropy.

Definition 1 (Hierarchical Abstracting). The hierarchical
abstracting T of an undirected unweighted graph G = (V, E)
is a directed tree with a root node λ(T ). Let V (T ) be the node set
of T . Let the marker of a node α ∈ V (T ), denoted by M(α),
be a subset of V . Let M(λ(T )) = V . Let α+ be the set of
the direct successors of a non-leaf node α. Let α+

i be the i-th
direct successor of α from left to right. For each non-leaf node α,
M(α+

1 ),M(α+
2 ), ...,M(α+

|α+|) constitute a partition of M(α).
The marker of a leaf node γ is a single node set, i.e., |M(γ)| = 1.

Definition 2 (Structural Entropy Minimization Principle).
The optimal hierarchical abstracting T ∗ of G = (V, E) minimizes
the structural entropy of G, i.e.,

T ∗ = min
T

HT (G). (1)

HT (G) denotes the structural entropy of G by a hierarchical
abstracting T :

HT (G) =
∑

α∈V (T )−{λ(T )}

HT (G,α), (2)

where HT (G,α) is the node structural entropy of α:

HT (G,α) = −cut(α)

2|E|
log2

vol(α)

vol(α−)
, (3)

where cut(α) represents the number of cut edges of M(α); vol(α)
denotes the volume of M(α), i.e., the sum of the degrees of all
nodes in M(α); α− is the parent of α.

4 THE PROPOSED HAGK
In this section, we first present the two novel node-matching
approaches, LOM and POM (Section 4.1), which compare
two hierarchical abstractings. After that, we introduce the
HAGK kernels based on the two approaches (Section 4.2).

4.1 The Node-Matching Approaches
Before we introduce the two node-matching approaches, we
first describe the inner kernel, i.e., the histogram intersection
function [12], which measures the similarity between two

matched hierarchical abstracting nodes. Let Tx denote the
hierarchical abstracting of Gx ∈ G and λ(Tx) denote the
root of Tx. Given two nodes α and β from two different
hierarchical abstractings, the histogram intersection function
between two hierarchical abstracting nodes is defined as:

s(α, β) =

|L|∑
i=1

min{h(M(α), i), h(M(β), i)}, (4)

where h(M(α), i) denotes the number of the graph nodes
with label li in M(α). Let α ▷◁ β denote that α and β are
matched. In the following, we describe how hierarchical ab-
stracting nodes are matched in LOM and POM, respectively.

4.1.1 Local Optimal Matching (LOM)
We provide the definition of LOM in Definition 3, accompa-
nied by an illustration in Fig. 4. As shown in this figure, LOM
first matches the roots of a pair of hierarchical abstracting.
Next, it matches the roots’ direct successors to maximize the
sum of the pairwise similarities. Finally, the direct successors
of the newly matched nodes are matched recursively.

Definition 3 (Local Optimal Matching). Given two hierarchical
abstractings Tx and Ty , their roots are first matched, i.e., λ(Tx) ▷◁
λ(Ty). For two nodes α ∈ V (Tx) and β ∈ V (Ty), if α ▷◁ β,
then α+

i ▷◁ β+
q∗(i) (w.l.o.g. |α+| ≤ |β+|), where q∗ is an injection

between the subscripts of the direct successors of α and β and
satisfies:

q∗ = argmax
q∈Q

|α+|∑
i=1

s(α+
i , β

+
q(i)), (5)

where Q is the set of all injections from {1, 2, ..., |α+|} to
{1, 2, ..., |β+|}.

② Match the roots’ direct successors to 

maximize the total similarities.

③ Match the direct successors of the 

matched nodes like ② recursively.

① Match the roots of two hierarchical 

abstractings.

①
Tx Ty

①
Tx Ty

Matched

②
Tx Ty

Matched

②
Tx Ty

Matched

③ ③

Tx TyMatched

③ ③

Tx TyMatched

③ ③

Tx Ty

(a) (b)

(c)

Fig. 4: An illustration of LOM.

4.1.2 Priority Ordering Matching (POM)
Node Order Relation. We begin by introducing the concept
of node order relation, which defines the priority of the
nodes of a hierarchical abstracting. Roughly speaking, we
choose the node structural entropy defined in Eq. (3) as the
priority indicator. That is, given two nodes α1 and α2 from
a hierarchical abstracting T , we define that α1 has priority
over α2, denoted by α1 ≽ α2, if HT (G,α1) ≥ HT (G,α2).
One of the main reasons why we use node structural entropy
is that it approximately represents the probability of random
walking from the whole graph to a particular hierarchical
substructure [11]. When we compare two hierarchical ab-
stractings ordered by node structural entropy, the matched
substructures usually have similar graph invariants (cut edge
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and volume) and the same rank of random walk probability,
which indicates that this measure does have the capability
for characterizing and matching appropriate substructures.
Another reason is that the node structural entropy can
be easily obtained as the intermediate of the hierarchical
abstracting construction process, which requires no extra
time complexity.

We name h(M(α)) = [h(M(α), 1), ..., h(M(α), |L|)] as
the label histogram of α. Given two hierarchical abstracting
nodes α and β, we define h(M(α)) > h(M(β)) as ∃N ∈
{1, 2, ..., |L|}, ∀i ∈ {1, 2, ..., N−1}, h(M(α), i) = h(M(β), i)
and h(M(α), N) > h(M(β) , N). The strict definition of
node order relation is shown in Definition 4. In this defi-
nition, we first recursively define that two nodes are equal
when their node structural entropy values, label histograms,
and direct successors are equal, respectively. Secondly, we
recursively define that a node is greater than or equal (“≽”)
to another node, roughly speaking, when the former’s node
structural entropy, label histogram, or direct successors is
greater than or equal (“≽”) to the latter’s. Note that only
the first condition of “≽” definition (the node order relation
indicator) is used most of the time and the others are mainly
used to keep the uniqueness of the ordered hierarchical
abstracting to guarantee the positive semi-define property.

Definition 4 (Node Order Relation). Given two hierarchical
abstracting nodes α ∈ V (T ) and β ∈ V (T ′) where T and
T ′ are both constructed from G. Define α = β if and only if
(1) HT (G,α) = HT ′

(G, β) (if α and β are non-root nodes)
and h(M(α)) = h(M(β)); and (2) |α+| = |β+| = 0, or
|α+| = |β+| ̸= 0 , ∀i ∈ {1, 2, ..., |α+|}, α+

i = β+
i . Define

α ≽ β if and only if α and β satisfy one of the following conditions:

1) HT (G,α) > HT ′
(G, β);

2) HT (G,α) = HT ′
(G, β) and h(M(α)) > h(M(β));

3) HT (G,α) = HT ′
(G, β) and h(M(α)) = h(M(β));

∃N ∈ {1, 2, ...,min(|α+|, |β+|)} , ∀i ∈ {1, 2, ..., N},
α+
i = β+

i and α+
N+1 ≽ β+

N+1;
4) HT (G,α) = HT ′

(G, β) and h(M(α)) = h(M(β));
∀i ∈ {1, 2, ...,min(|α+|, |β+|)}, α+

i = β+
i and

|α+| ≥ |β+|;
5) α = β.

Ordered Hierarchical Abstracting. We first give the defi-
nition of the equivalence of hierarchical abstractings (Def-
inition 5). Briefly speaking, if we can convert T into T ′

only by swapping sibling nodes of T without changing
the corresponding decomposed substructures, T and T ′ are
equivalent. In other words, the hierarchical substructures
represented by T and T ′ are the same. Next, we describe the
final ordered hierarchical abstracting (Definition 6): for each
node, all its direct successors are arranged in descending
order of structural entropy. This ensures the same alignment
order when comparing substructures between different
graphs, which makes the kernel transitive and thus positive
semi-definite. In addition, we prove that any hierarchical
abstracting can only be converted into a unique ordered
hierarchical abstracting (Theorem 1), which also aims to
guarantee the positive semi-definite property.

Definition 5 (Equivalence of Hierarchical Abstractings).
Given two hierarchical abstractings T and T ′ constructed from

G, we define that T equals to T ′, denoted by T = T ′, as
λ(T ) = λ(T ′). We say that T are equivalent to T ′, denoted
by T ∼= T ′, if and only if T can be converted into T ′ only by
swapping the position of its sibling nodes.

Definition 6 (Ordered Hierarchical Abstracting). An ordered
hierarchical abstracting T⃗ is a hierarchical abstracting where each
non-leaf node α’s r direct successors satisfy α+

1 ≽ α+
2 ≽ ... ≽ α+

r .

Lemma 1. For any hierarchical abstracting T , there must exist
an ordered hierarchical abstracting T⃗ such that T⃗ ∼= T .

Proof. Let T ′ be a copy of T . Execute Order(λ(T ′)) (Algo-
rithm 4). Then for each non-leaf node α ∈ V (T ′), its r direct
successors satisfy α+

1 ≼ α+
2 ≼ ... ≼ α+

r . So T ′ is an ordered
hierarchical abstracting. Since Algorithm 4 sorts the nodes
only by swapping their position, we have T ′ ∼= T . Therefore
Lemma 1 is proved.

Lemma 2. Let T be an arbitrary hierarchical abstracting. Let T⃗ be
an ordered hierarchical abstracting and T⃗ ∼= T . Then T⃗ is unique.

Proof. Suppose that there exists two ordered hierarchical ab-
stractings T⃗1 and T⃗2 where T⃗1

∼= T , T⃗2
∼= T and T⃗1 ̸= T⃗2. Ob-

viously we have T⃗1
∼= T⃗2. According to Definition 5, λ(T⃗1) ̸=

λ(T⃗2) since T⃗1 ̸= T⃗2. Due to h(M(λ(T⃗1))) = h(M(λ(T⃗2)))
and |λ(T⃗1)

+| = |λ(T⃗2)
+|, we have ∃i ∈ {1, 2, ..., |λ(T⃗1)

+|},
λ(T⃗1)

+
i ̸= λ(T⃗2)

+
i (Definition 6). Let α and β denote a

pair of unequal nodes at the same position in λ(T⃗1)
+ and

λ(T⃗2)
+. If H T⃗1(G,α) ̸= H T⃗2(G, β) or h(M(α)) ̸= h(M(β))

or |α+| ̸= |β+|, the order of the nodes in T⃗1 and T⃗2

must be different. Hence, T⃗1 and T⃗2 cannot be ordered
at the same time (contradiction). If |α+| = |β+|, we have
∃i ∈ {1, 2, ..., |α+|}, α+

i ̸= β+
i . We then let α′ and β′ denote

a pair of unequal nodes at the same position in α′+ and β′+,
and the above process can be executed recursively. When α′

and β′ are leaf nodes, |α′+| = |β′+| = 0, and thus α′ = β′

(contradiction). Thus T⃗1 = T⃗2 and Lemma 2 is proved.

Theorem 1. Given an arbitrary hierarchical abstracting T , it
must be equivalent to a unique ordered hierarchical abstracting T⃗ .

Proof. Theorem 1 holds since Lemma 1 and 2 hold.

Definition of POM. Finally, we give the definition of POM
in Definition 7 and an illustration in Fig. 5. As shown in
this figure, POM first swaps the siblings to get the ordered
hierarchical abstractings based on the node order relation
and then matches the nodes at the same relative position of
the ordered hierarchical abstractings.

Definition 7 (Priority Ordering Matching). Given two ordered
hierarchical abstractings T⃗x and T⃗y , their roots are first matched,
i.e., λ(T⃗x) ▷◁ λ(T⃗y). For two nodes α ∈ V (T⃗x) and β ∈ V (T⃗y),
if α ▷◁ β, then α+

i ▷◁ β+
i , i = 1, 2, ...,min{|α+|, |β+|}.

Discussion. If two hierarchical abstractings, Tx and Ty ,
are closely matched, the POM generally will produce the
optimal matching on substructures as the corresponding
substructures will follow the same priority ordering. That
is, matching pairs will not be missed under POM. However,
if two hierarchical abstractings, Tx and Ty , are not closely
matched, e.g., one high-priority substructure in Tx is not
present in Ty , the POM may result in a less optimal matching
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①

① Swap the siblings to get ordered hierarchical 

abstractings according to the node order relation.

① ①

② Match the nodes at the same relative posi-

tion of the ordered hierarchical abstractings.

Tx Ty

②

②

②
......

Tx Ty

(a) (b)

Fig. 5: An illustration of POM.

of their substructures and a lower kernel value. This should
not be a problem since the goal is to identify the pair as a non-
match. In Section 5.3 the effectiveness of POM is validated.

4.2 The Hierarchical Abstracting Graph Kernels

In this subsection, we describe the HAGK kernels based
on LOM and POM, namely HAGK-LOM and HAGK-POM
(Section 4.2.1). They add up the similarity of the matched
nodes between a pair of hierarchical abstractings to compute
the kernel value. We also prove that the HAGK-POM kernel
is positive semi-definite, enabling it to implicitly map data
to higher-dimensional spaces and capture complex relation-
ships. In addition, we analyze the computational complexity
of the hierarchical abstracting construction and the HAGK
kernel value computation algorithms (Section 4.2.2).

4.2.1 HAGK-LOM and HAGK-POM

Definition 8 (HAGK-LOM and HAGK-POM). For a pair of
graphs Gx and Gy , Tx and Ty are two hierarchical abstractings
constructed from Gx and Gy by a deterministic algorithm S . The
HAGK-LOM kernel kLOM between Gx and Gy is defined as:

kLOM(Gx, Gy;S) =
∑

α∈V (Tx)

∑
β∈V (Ty)

ILOM(α ▷◁ β)s(α, β), (6)

where ILOM(α ▷◁ β) = 1 if α and β are matched by LOM,
otherwise 0. Let T⃗x and T⃗y be two ordered hierarchical abstractings
where T⃗x

∼= Tx and T⃗y
∼= Ty . The HAGK-POM kernel kPOM

between Gx and Gy is defined as:

kPOM(Gx, Gy;S) =
∑

α∈V (T⃗x)

∑
β∈V (T⃗y)

IPOM(α ▷◁ β)s(α, β), (7)

where IPOM(α ▷◁ β) = 1 if α and β are matched by POM,
otherwise 0.

Theorem 2. HAGK-POM is positive semi-definite.

Proof. Given a deterministic hierarchical abstracting
construction algorithm S , any graph G = (V, E) ∈ G
must correspond to a unique hierarchical abstracting T .
According to Theorem 1, there exists a unique ordered
hierarchical abstracting T⃗ ∼= T . We use a coordinate vector
a⃗ = [a1, a2, ..., ak] to denote a certain k-height node of T⃗ ,
where ai is an integer and 1 ≤ ai ≤ |V|. [a1] denotes the a1-
th direct successor of λ(T⃗ ), and [a1, a2, ..., ai] represents the
ai-th direct successor of the node at [a1, a2, ..., ai−1]. At this
time, all nodes in V (T⃗ ) are mapped into a complete η-ary
tree TC , in which each non-leaf node has η direct successors,
where η is the maximum node number of all graphs in G.

The node denoted by [a1, a2, ..., ak] is mapped to the n-th
node of all k-height nodes in TC where

n = 1 +
k∑

i=1

(ai − 1)ηk−i. (8)

Thus, we can encode the markers and positions of all nodes of
T⃗ with an∞-dimensional vector θ by a hierarchical traversal
of TC :

θj =


ξ(⃗a), j ∈ {1 +

k∑
i=1

aiη
k−i |⃗a ∈ V (T⃗ )};

0, others,

(9)

where θj represents the j-th node of the hierarchical traversal
on TC , and ξ(⃗a) = [ξ1(⃗a), ξ2(⃗a), ..., ξD (⃗a)] represents the
encoding vector of the marker of a⃗ where each part ξi(⃗a) is a
η-dimensional 0-1 vector in which

ξit(⃗a) =

{
1, 1 ≤ t ≤ h(M (⃗a), i);

0, others.
(10)

Therefore, each graph G corresponds to a unique encoding
vector, denoted by θ(G). For a pair of graphs G1 and G2,
the HAGK-POM kernel is equal to the inner product of their
encoding vectors, i.e.,

kPOM(G1, G2;S) =< θ(G1), θ(G2) > . (11)

Therefore, HAGK-POM maps a graph into a∞-dimensional
vector space, thus Theorem 2 is proved. Actually, whether
HAGK-POM is positive semi-definite depends on whether
the inner kernel is positive semi-definite. Obviously, s(·, ·) is
positive semi-definite since

s(⃗a, b⃗) =< ξ(⃗a), ξ(⃗b) > . (12)

Fig. 6 shows a brief illustration of Theorem 2. First,
the sample graph is converted to a unique hierarchical
abstracting using S (Fig. 6(a)-(b)). Second, the hierarchical
abstracting is ordered by Algorithm 4 (Fig. 6(c)). Third,
each node of the ordered hierarchical abstracting is mapped
with the node at the same position of a complete η-ary
tree (Fig. 6(d)). Finally, the mapped complete η-ary tree is
encoded into an encoding vector (Fig. 6(e)). Thus, the graph
kernel can then be regarded as the inner product of two
encoding vectors and is obviously positive semi-definite.
However, there exists a strong assumption that S must be a
deterministic algorithm that any two same input graphs must
be converted into a unique hierarchical abstracting. That is,
the input order of the edge sequences must not affect the
output. The hierarchical abstracting construction algorithm
used in our experiments is sensitive to the input order of data,
and developing an input-insensitive construction algorithm
is rather difficult.

4.2.2 Algorithms and Computational Ananlysis

Hierarchical Abstracting Construction. It is a cost-effective
variant of the structural entropy minimization algorithm
proposed by Li et al. [30] which converts a graph into its
3-dimensional hierarchical abstracting. For a complete graph
classification evaluation process, we need to compare all
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Fig. 7: Illustration of the hierarchical abstracting construction. The graph is first initialized to an initialized k-height
((k− 1)-dimensional) hierarchical abstracting, and then nodes are merged greedily to get a k-height hierarchical abstracting.

pairs of graphs in a dataset. Therefore we pre-construct
the hierarchical abstractings for all graphs and save the
node structural entropy for the POM process. The total time
complexity of the pre-constructing process is O(n3) for each
3-dimensional hierarchical abstracting, where n denotes the
maximum number of nodes in each graph.

Algorithm 1 shows the pseudo-code of the 3-dimensional
hierarchical abstracting construction following Li et al. [30].
First, an initial 2-dimensional hierarchical abstracting is
constructed (line 1-3). It has |V| 2-height nodes and |V|
3-height nodes. Each of the 2- and 3-height nodes have
a single node set marker. Second, we use Algorithm 2 to
repeatedly merge the optimal pair of the direct successors
of the root, which minimizes the structural entropy after
merging (line 4). Third, we add |V| 4-height nodes to the
hierarchical abstracting and execute Algorithm 2 for each 3-
height node to get the 3-dimensional hierarchical abstracting
(line 5-9).

Fig. 7 gives an illustration of the hierarchical abstracting
construction and the layer selection according to the tree
height k. In this instance, the sample graph (Fig. 7(a)) is
first converted into a 1-dimensional hierarchical abstracting
(Fig. 7(b)). Each leaf node corresponds to a node in the
graph. Second, each leaf node is appended with a child that
corresponds to the same node of the graph, forming the
initialized 2-dimensional hierarchical abstracting (Fig. 7(c)).
Third, the best pair of the 2-height nodes are merged towards
the minimized structural entropy (Fig. 7(d)). The merged
nodes correspond to all nodes its children correspond to.
Fourth, the merging operation is repeatedly executed until no
candidate pair is able to be merged to decrease the structural
entropy (Fig. 7(e)). Fifth, like the second step, the initialized
3-dimensional hierarchical abstracting is formed (Fig. 7(f)).
Sixth, the children of each 2-height node are repeatedly
merged to get the final 3-dimensional hierarchical abstracting

(Fig. 7(g)). At last, we choose the top k layer to compare with
other hierarchical abstracting according to the tree height
parameter (Fig. 7(h)).
Kernel Value Computation. For the HAGK-LOM kernel, we
use LOM(λ(Tx), λ(Ty)) (Algorithm 3) to recursively match
the nodes and add up the node pair similarities of Tx and
Ty . Let ni be the total number of the i-height nodes of a
hierarchical abstracting, and let ni,j denote the number of
the direct successors of the j-th (i− 1)-height node. In this
algorithm, the key step is matching nodes between two given
node sets (line 6), in which we first calculate all the pairwise
similarities to form a matrix (O(n2

i,j |L|)) and then use the
Jonker-Volgenant algorithm [16] to find the optimal assign-
ment (O(n3

i,j)). Hence, the time complexity of HAGK-LOM
is O(n2

2|L|+ n3
2 +

∑
j(n

2
3,j |L|+ n3

3,j) +
∑

z(n
2
4,z|L|+ n3

4,z))
for 3-dimensional hierarchical abstracting comparison. Since
n ≥

∑
z n4,z ≥

∑
j n3,j ≥ n2, the total time complexity is

O(n2(|L|+n)). For the HAGK-POM kernel, we first order the
hierarchical abstractings using the hierarchical abstracting
ordering algorithm. Specifically, this algorithm receives a
node of an arbitrary hierarchical abstracting and orders all
successors of the given node recursively.

Algorithm 4 shows the pseudo-code of the hierarchical
abstracting ordering algorithm, and Fig. 8 gives an ex-
ample of execute Order(λ(T )) on the sample hierarchical
abstracting T . In this example, we suppose that nodes
with lighter colors should be further to the left. Fig. 8(a)
gives a 3-dimensional hierarchical abstracting that is not
yet ordered. We then execute Algorithm 4 with the input
of its root node. Sorting will be done from bottom to top,
from left to right (Fig. 8(a)-(e)). Finally, we get the ordered
sample hierarchical abstracting shown as Fig. 8(f). Then we
compute the kernel value using POM(λ(Tx), λ(Ty)) (Algo-
rithm 5). For the hierarchical abstracting ordering algorithm,
we recursively sort the direct successors of each non-leaf
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node. In the worst case, all the sorting direct successors
are equal according to Definition 4. All their successors
need to be traversed, and all labels need to be compared
once while comparing. Then the worst time complexity
is O(

∑
z n4,z log n4,z|L| + n4

n3

∑
j n3,j log n3,j |L| + (n3

n2
+

n4

n2
)n2 log n2|L|) = O(n4 log

n4

n2
|L| + (n3 + n4) log n2|L|) =

O(n log n|L|). For Algorithm 5, nodes are directly matched
according to their positions, and their similarities are added
up to get the kernel value, which requires O(n2|L|+ n3|L|+
n4|L|) = O(n|L|). In summary, the total time complexity of
HAGK-POM is O(n log n|L|). Overall, the time complexity
of the above is summarized in Table 1.

③

(c)

③

(c)

④

(d)

④

(d)

⑤

(e)

⑤

(e) (f)(f)

②

(b)

②

(b)

①

(a)

①

(a)

Fig. 8: An illustration of the hierarchical abstracting ordering
algorithm. The steps are briefly listed as follows. (a-b) The
leaf nodes (4-height nodes) are ordered. (c-d) The 3-height
nodes are ordered. (e) The 2-height nodes are ordered. The
final ordered hierarchical abstracting is shown in (f).

Algorithm 1: Hierarchical Abstracting Construction

Input: A graph G = (V, E).
Output: 3-dimensional hierarchical abstracting T 3 of G.

1: Let T be a hierarchical abstracting with only a root
node λ(T ) where M(λ(T )) = V ;

2: Let the direct successors of λ(T ) be |V| new 2-height
nodes γ(2)

1 , γ
(2)
2 , ..., γ

(2)
|V| where M(γ

(2)
i ) = {vi} and

vi ∈ V ;
3: Let the direct successor of γ(2)

i be a new 3-height
node γ

(3)
i where M(γ

(3)
i ) = {vi}, i = 1, 2, ..., |V|;

4: RepeatMerge(T, λ(T )); // See Algorithm 2
5: Let the direct successor of γ(3)

i be a new 4-height
node γ

(4)
i where M(γ

(4)
i ) = {vi}, i = 1, 2, ..., |V|;

6: for all node α ∈ λ(T )+ do
7: RepeatMerge(T, α);
8: end for
9: T 3 ← T .

Algorithm 2: Repeat Merging: RepeatMerge(T, α)

Input: A hierarchical abstracting T of graph G, a
hierarchical abstracting node α ∈ V (T ).

Output: A new hierarchical abstracting T ′ of G.
1: Hmin ← HT (G);
2: repeat
3: Ttemp ← T ;
4: imin ← 0, jmin ← 0;
5: for all node βi ∈ α+ (i = 1, 2, ..., |α+|) in Ttemp do
6: for all node βj ∈ α+ (j = 1, 2, ..., |α+| and j ̸= i)

do
7: M(βi)←M(βi) ∪M(βj); β+

i ← β+
i ∪ β+

j ;
8: Remove βj ;
9: if HTtemp(G) < Hmin then

10: imin ← i, jmin ← j; Hmin ← HTtemp(G);
11: end if
12: Ttemp ← T ;
13: end for
14: end for
15: if imin ̸= 0 and jmin ̸= 0 then
16: M(βimin)←M(βimin) ∪M(βjmin);
17: β+

imin
← β+

imin
∪ β+

jmin
;

18: Remove βjmin ;
19: end if
20: until imin = 0 or jmin = 0;
21: T ′ ← Ttemp.

Algorithm 3: LOM(α, β)

Input: Two nodes α and β from hierarchical abstractings
Tx and Ty , respectively.

Output: The function value l.
1: if |α+| > |β+| then
2: l← LOM(β, α);
3: end if
4: l← s(α, β);
5: if α+ ̸= ∅ and β+ ̸= ∅ then
6: q∗ ← argmaxq∈Q

∑|α+|
i=1 s(α+

i , β
+
q(i));

7: for all node α+
i ∈ α+ do

8: l← l + LOM(α+
i , β

+
q∗(i));

9: end for
10: end if

5 EXPERIMENTS

In this section, we conduct extensive experiments to demon-
strate the effectiveness of our proposed HAGK kernels.
Through the experiments, we aim to answer the follow-
ing five research questions: RQ1: How effective are the
HAGK kernels in graph classification tasks? RQ2: To what
extent can hierarchical abstracting with different depths and
different node-matching approaches boost the performance
of the inner kernel (Eq. (4))? RQ3: How much time do
the HAGK kernels take during the hierarchical abstracting
construction and the graph classification process? RQ4: How
do substructures match at each abstraction level in different
comparison cases? RQ5: To what extent do the matched
substructure pairs at each abstraction level contribute to the
total similarity?
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Algorithm 4: Hierarchical Abstracting Ordering:
Order(α)

Input: A hierarchical abstracting node α of T .
1: for all non-leaf nodes β ∈ α+ do
2: Order(β);
3: end for
4: Sort the nodes in α+ to ensure α+

1 ≽ ... ≽ α+
|α+|.

Algorithm 5: POM(α, β)

Input: Two nodes α and β from two ordered hierarchical
abstractings T⃗x and T⃗y , respectively.

Output: The function value p.
1: p← s(α, β);
2: if α+ ̸= ∅ and β+ ̸= ∅ then
3: for i = 1, 2, ...,min{|α+|, |β+|} do
4: p← p+ POM(α+

i , β
+
i );

5: end for
6: end if

5.1 Experimental Setups

Evaluation Process. Firstly, we pre-construct 3-dimensional
hierarchical abstractings for all graphs in each dataset
and report the time consumed. Then we use the graph
classification task to compare the performance between the
HAGK kernels and the existing state-of-the-art kernels. For
the graph classification process, we perform a 10-fold cross-
validation using the C-SVM from LIBSVM library [43] to
compute the classification accuracy. For each kernel and
each dataset, we find the optimal parameters for the C-SVM
and the kernel by an inner 10-fold cross-validation on each
training split of the outer 10-fold. The search ranges of the
parameters follow the setting of Siglidis et al. [44]. We repeat
the whole process for 10 times and report the mean and the
standard deviation of the classification accuracy. We conduct
the experiments using a graph kernel python library, namely
“GraKeL” [44]. The hardware we adopted is Intel(R) Xeon(R)
Silver 4214R CPU @ 2.40GHz.
Datasets. We choose various datasets from different domains,
including MUTAG, BZR_MD, COX2_MD, ER_MD, PTC_FM
(small molecules), MSRC_9, MSRC_21C (computer vision),
PROTEINS (bioinformatics), SYNTHIE (synthetic data), and
IMDB-M (social networks)1. The statistics of the datasets are
shown in Table 2. More detailed descriptions of the used
datasets are listed below.
• MUTAG [46]. MUTAG consists of 188 chemical com-

pounds divided into two classes according to their mutagenic
effect on a bacterium.
• MSRC_9 and MSRC_21C [47]. The MSRC datasets

are state-of-the-art datasets in semantic image processing
originally introduced by Winn et al. [48]. Each image is
represented by a conditional Markov random field graph.
The nodes of each graph are derived by over-segmenting the
images using the quick shift algorithm, resulting in one graph
among the superpixels of each image. Nodes are connected

1. All the datasets are available on http://graphkernels.cs.
tu-dortmund.de [45].

TABLE 1: Time complexity of HAGK algorithms.

Hierarchical Abstracting Construct (3d) O(n3)
HAGK-LOM O(n2(|L|+ n))
HAGK-POM O(n log n|L|)

if the superpixels are adjacent, and each node can further be
annotated with a semantic label.
• BZR_MD, COX2_MD, and ER_MD [49]. These datasets

are chemical compound datasets that come with 3D coordi-
nates and were used to study the pharmacophore kernel.
• PTC_FM [50]. The PTC dataset contains compounds

labeled according to carcinogenicity on rodents divided into
male mice (MM), male rats (MR), female mice (FM), and
female rats (FR). We use PTC_FM in this paper.
• SYNTHIE [51]. The SYNTHIE dataset is generated

using Erdős-Rényi graphs [52] with structural and attribute-
based class divisions through random edge modifications
and attribute assignments.
• PROTEINS [53]. PROTEINS is a dataset of proteins that

are classified as enzymes or non-enzymes. Nodes represent
the amino acids and two nodes are connected by an edge if
they are less than 6 Angstroms apart.
• IMDB-M [54]. “IMDB” is a set of relational datasets

that consists of a network of 1000 actors or actresses who
played roles in movies in IMDB. A node represents an actor
or actress, and an edge connects two nodes when they appear
in the same movie. In IMDB-M, the edges are collected from
three different genres: Comedy, Romance, and Sci-Fi.
HAGK Hyper-parameter Settings. The HAGK kernels
have two parameters: the node-matching approach A ∈
{LOM,POM} and the tree height (the abstraction level)
k ∈ {1, 2, 3, 4}. A decides which node-matching approach
is chosen and k denotes that only the first k layers of the
3-dimensional hierarchical abstractings are used while the
rest is ignored.
Baselines. For the competing graph kernels, we choose (1)
the Weisfeiler-Lehman subtree kernel (WLSK) [23], (2) the
Weisfeiler-Lehman optimal assignment kernel (WLOA) [14],
(3) the pyramid match graph kernel (PM) [12], (4) the shortest
path kernel (SP) [7], (5) the core variants of the SP kernel
(CORE-SP) [40], (6) the graphlet sampling kernel (GS) [41],
(7) the ordered decomposition DAGs kernel (ODD) [42],
(8) the multi-scale Wasserstein shortest-path graph kernel
(MWSP) [28], and (9) the hierarchical transitive-aligned
graph kernel (HTAK) [27]. Among them, WLOA and PM
are optimal assignment kernels while others are all R-
convolutional kernels.
Codes. The codes for all baseline models and HAGK, along
with all datasets, are publicly accessible on GitHub2.

5.2 Performance Comparison (RQ1)
Table 3 shows the performance of HAGK and the exist-
ing graph kernels on graph classification. According to
the results, HAGK is highly competitive with the current
methods. More specifically, on 7 of the 10 datasets, MSRC_9,
MSRC_21C, BZR_MD, COX2_MD, ER_MD, PTC_FM, and
SYNTHIE, the classification accuracy of HAGK is higher than

2. https://github.com/SELGroup/HAGK

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
https://github.com/SELGroup/HAGK
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TABLE 2: The statistics of the used 10 datasets in the experiments.

MUTAG MSRC_9 MSRC_21C BZR_MD COX2_MD ER_MD PTC_FM SYNTHIE PROTEINS IMDB-M
Mean # nodes 17.93 40.58 40.28 21.30 26.28 21.33 14.11 95.00 30.96 13.00
Mean # edges 19.79 97.94 96.60 225.06 336.12 234.85 14.48 172.93 72.82 65.94

# graphs 188 221 209 306 303 446 349 400 1113 1500
# classes 2 8 20 2 2 2 2 4 2 3

TABLE 3: Classification accuracy (%± standard error) of HAGK and the existing kernels. The highest and second highest
results are highlighted with boldface and underline, respectively.

MUTAG MSRC_9 MSRC_21C BZR_MD COX2_MD ER_MD PTC_FM SYNTHIE PROTEINS IMDB-M
WLSK [23] 82.05±0.36 89.65±0.98 80.43±1.31 59.46±1.79 57.19±1.95 65.92±1.20 62.58±2.25 50.42±1.96 74.56±1.03 48.49±0.53
WLOA [14] 84.05±1.70 90.93±1.44 82.35±1.32 63.42±1.65 60.08±1.32 65.45±0.98 62.78±2.11 50.62±1.92 76.40±0.40 49.36±0.68
PM [12] 86.67±0.60 90.55±0.82 84.25±1.40 65.83±1.37 61.18±1.66 69.77±1.58 57.53±2.83 51.25±1.92 72.54±1.13 46.23±0.44
SP [7] 80.88±1.49 90.64±1.38 81.49±1.75 67.32±1.69 63.74±0.68 60.41±1.91 60.72±1.63 50.00±1.68 75.63±0.75 42.35±0.98
CORE-SP [40] 82.05±0.36 90.21±1.58 82.45±1.13 65.62±1.75 60.29±2.24 68.19±2.34 59.95±2.62 52.92±1.60 75.89±1.62 48.36±0.43
GS [41] 78.03±0.35 13.00±2.16 11.72±1.65 48.77±2.45 48.28±1.62 59.42±0.01 61.19±1.32 44.62±1.94 71.13±0.59 35.38±0.39
ODD [42] 77.40±1.28 88.44±2.07 80.68±1.71 67.31±1.47 61.20±1.59 63.08±2.47 63.06±1.83 51.85±1.57 71.41±1.26 42.35±0.55
MWSP [28] 84.50±9.70 91.49±6.24 83.68±5.47 63.05±7.62 57.05±4.97 69.83±4.25 62.75±3.40 53.05±1.63 OOM∗ 47.93±3.86
HTAK [27] 82.82±0.85 88.65±2.33 80.56±0.89 67.36±0.99 60.25±0.16 68.88±0.57 61.20±0.25 52.98±1.76 72.25±1.10 47.54±0.53
HAGK 84.59±0.75 92.30±0.49 84.27±0.64 68.44±1.25 63.84±0.82 70.15±0.95 63.22±1.08 53.45±1.40 75.94±0.86 48.68±0.51
* “OOM” denotes that the case is out of memory.

all other baselines. On three other datasets, i.e. MUTAG, PRO-
TEINS, and IMDB-M, HAGK achieves the second highest
accuracy. The main reason for the outstanding effectiveness
of HAGK is that it fully extracts and captures the latent
hierarchical structural information of graphs by constructing
and comparing their hierarchical abstractings under the
guidance of the principle of structural entropy minimization.
In contrast, WLSK, WLOA, SP, GS, and ODD decompose
the graph into substructures at the same abstraction level,
missing a large amount of structural information embedded
in deep hierarchy. Although WLSK and WLOA can indeed
obtain some structural information in the form of logical
subtrees through multiple iterations [14], compared with
HAGK, their neighbor-aggregation-based strategy is still
local and lacks theoretical guidance in terms of partitioning.
Their substructures are partitioned using the intuitive ag-
gregation method, while we partition substructures using
structural entropy [11]. MWSP uses the Wasserstein distance
to compute the similarity between the multi-scale shortest-
path node feature maps of two graphs and captures the
distributions of shortest paths. However, MWSP is not
positive semi-definite, which may impact the graph kernel’s
effectiveness. The HTAK kernel is another existing kernel that
utilizes the hierarchical method for classifying graphs. There
are two main differences between our HAGK and HTAK.
First, HTAK relies on graph embedding methods to map
graph nodes into vector spaces, which loses a lot of topology
information. Second, in HTAK, the k-means method used
to gather nodes at the same level to form hierarchies has no
theoretical guarantee, while our HAGK uses the structural
entropy minimization principle proposed by [11] and reveals
the natural structures of graphs. CORE-SP uses the k-core
decomposition [55] to discover topological and hierarchical
properties of graphs. However, the k-core decomposition
is designed only based on node degree and lacks sufficient
theoretical support to utilize the natural structure of graphs.
Similar to HAGK, PM also adopts hierarchical structures to
partition graph nodes. However, in PM the graph nodes must
first be embedded into a vector space, which may aggravate
the loss of rich topological information. In summary, the
above results and analysis demonstrate that HAGK has

achieved state-of-the-art performance compared to current
mainstream methods.

5.3 Comparison between LOM & POM and between
Different Tree Heights (RQ2)
Accuracies with Different Hyper-parameters. The classi-
fication accuracies of the HAGK kernels under LOM and
POM with different tree heights are shown in Fig. 9. For
the node-matching approach A, POM performs better than
LOM in 7 of the 10 datasets. Specifically speaking, on
MSRC_21C, ER_MD, and SYNTHIE, LOM can enhance
the classification effectiveness while POM cannot. On the
contrary, on MUTAG, BZR_MD, COX2_MD, and PROTEINS,
only POM could boost the performance. In addition, on
MSRC_9, PTC_FM, and IMDB-M, both LOM and POM are
effective though POM is better. The main reason for this
may be that HAGK-POM is a positive semi-define kernel
which could theoretically allow for better optimization of
the SVM. For the tree height k, HAGK performs best on 4,
5, and 1 datasets when k = 2, 3, and 4, respectively. The
accuracy boosts of the best tree height k compared with
the inner kernel (k = 1) are annotated in Fig. 9, ranging
from 2.11% on MSRC_21C and 8.86% on IMDB-M. These
results demonstrate that the hierarchical abstractings take full
advantage of the graph structural information and effectively
improve the inner kernel with various optional depths.
Kernel Matrix Visualization. To better illustrate the enhance-
ment of our hierarchical abstracting, we visualize the kernel
matrices of HAGK-LOM (k = 4), HAGK-POM (k = 4), and
HAGK (k = 1) on IMDB-B [54] in Fig. 10. IMDB-B is a dataset
similar to IMDB-M but contains only two classes: Action and
Romance. The darker color in each matrix grid denotes the
higher normalized kernel value (similarity) between two
graphs, i.e., kN (Gx, Gy) =

k(Gx,Gy)√
k(Gx,Gx)

√
k(Gy,Gy)

. As we can

see from the two left matrices, the intra-class similarities
are significantly higher than the inter-class similarities both
in HAGK-LOM (k = 4) and HAGK-POM (k = 4). In
contrast, HAGK (k = 1) (the 3rd matrix) struggles to
distinguish between the two classes without the help of
hierarchical abstractings. Additionally, more visualization
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Fig. 9: The accuracy of the HAGK kernels with different node-matching approaches A and different tree height k. When
k = 1, the HAGK kernels will degenerate to the histogram intersection kernel (Eq. (4)) with no hierarchical abstractings.
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Fig. 10: The visualization of the HAGK kernel matrices of
8 example graphs from 2 different classes of the IMDB-B
dataset. Graph A1-A4 are of class “Action” while graph R1-
R4 are of class “Romance”.

results, including partial kernel matrices with numerical
represented accuracy and whole kernel matrices, can be seen
in Appendix B.

5.4 Computational Time Analysis (RQ3)

Time Consumption of Hierarchical Abstracting Construc-
tion. Fig. 11 shows the mean time consumption for con-
verting each graph into its hierarchical abstracting on each
dataset. In Fig. 11, the two subplots (a) and (b) demonstrate
the relationship between mean construction time and mean
number of nodes and edges. From the results, we can
conclude that the mean time consumption grows nearly
linearly with the mean node number yet shows no significant
correlation with the number of edges. Besides, the mean time
for constructing a hierarchical abstracting is always less than
2s, and the total construction time for each dataset is no
more than 1513s (except the large dataset SYNTHIE, with
22.50s per graph and 9001s in total). This indicates that the
time cost is practically acceptable when we pre-construct the
hierarchical abstractings in advance. More details of the time
consumption analysis of hierarchical abstracting construction
can be seen in Appendix A.
Time Consumption of HAGK and the Optimal Assignment
Competitors. We report the time consumption on the graph
classification task on each dataset of all optimal assignment
kernels, including our proposed HAGK, as well as the
two best performing baselines, WLOA, and PM, in Fig. 12.
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Fig. 11: Mean hierarchical abstracting construction time for
each graph on each dataset except SYNTHIE. The x-axis
indicates the mean number of graph nodes (left) or edges
(right). For SYNTHIE, the mean time is 22.50s, with mean
node number 95.00 and mean edge number 172.93.
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Fig. 12: Time consumption for graph classification evaluation
of the optimal assignment kernels (HAGK, WLOA, and PM)
compared in Table 3. The times of HAGK are annotated.

Overall, there is no significant difference in the order of
magnitude for the three methods. More specifically, the time
consumption of HAGK is larger than that of WLOA and
less than (and close to) that of PM on all datasets except
SYNTHIE, PROTEINS (WLOA>HAGK>PM) and IMDB-
M (WLOA>PM>HAGK). Combining the accuracy results
shown in Table 3, we can find that HAGK can beat other
2 optimal assignment kernels while maintaining small dif-
ferences in time consumption. The detail time consumption
analysis of all HAGK variants and other competitors are
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(a) Two graphs from the same class: G1 (1st row) & G2 (2nd row).
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(b) Two graphs from different classes: G1 (1st row) & G3 (2nd
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Fig. 13: Matched substructures by LOM at each abstraction
level (k = 2, 3, 4) of two different graph pairs from MSRC_9
(shown in (a) and (b), respectively). Graphs are represented
by adjacency matrices and the grid (i, j) is filled with grey
when there is an edge between node i and j of the graph.
Red-edged blocks represent the matched substructures while
blue-edged blocks denote the mismatched ones. Each red-
edged block in an upper graph is matched with another one
in the lower graph at the same level. Blocks with darker
colors indicate higher similarity with their matched blocks.

shown in Appendix A.

5.5 Case Study: Matched Substructures (RQ4, 5)
To further explore and demonstrate how the mechanism
of hierarchical abstracting matching can distinguish two
graphs, we visualize the matched substructures under views
of different abstraction levels between graphs from the
same class and graphs from different classes in Fig. 13. To
better display the hierarchical structure of each graph, we
first arrange graph nodes by clustering them according to
the hierarchical abstracting and rank the nested clusters in
descending order of structural entropy before we show their
adjacency matrices.

As we can see from Fig. 13(a), for graphs from the
same class, most of the substructures are matched at each

abstraction level. Furthermore, the substructure similarities
are quite high (most of the blocks are dark red), representing
the two graphs are very similar. For example, when k = 2,
there are 7 substructures in G1 (Fig. 13(a1)) matched with
another 7 of the 9 substructures in G2 (Fig. 13(a4)), and
most of them are quite similar. When k = 3 or k = 4, there
are only a few substructures mismatched. On the contrary,
when comparing graphs from different classes (Fig. 13(b)),
the mismatched substructures are significantly increasing
(especially evident in Fig. 13(b6)). Moreover, the similarity of
the matched ones is apparently lower than those of Fig. 13(a).
For instance, there are only two high-similarity matched
blocks between G1 and G3 when k = 2 (Fig. 13(b1) and (b4))
and four when k = 3 (Fig. 13(b2) and (b5)). To summarize,
this case study visually demonstrates our method’s ability to
distinguish between two graphs from both the same class and
different classes. More case studies on the dataset MSRC_9
can be found in Appendix C.

5.6 Ablation Study
Table 4 shows the ablation study of the HAGK kernels un-
der different hierarchical abstracting construction strategies
(“Louvain”, “Random” and “SEM”) and different kernel
design schemes (“OA” and “R-conv”). Specifically, “Louvain”
denotes that we recursively use Louvain [56], one of the
most commonly used community discovery algorithms, to
construct 3-dimensional hierarchical abstractings. “Random”
denotes that we randomly partition the graph node set to
construct hierarchical abstractings. “SEM” denotes that the
hierarchical abstracting is constructed following the principle
of structural entropy minimization [11], which is used in our
proposed method. “OA” denotes the “one-to-one” optimal
assignment scheme and “R-conv” denotes the “one-to-all”
R-convolution scheme (summing up the similarities of all
pairs of substructures). As we can see from the results, our
method achieves the best accuracy in all 5 chosen datasets,
indicating that the “SEM”+“OA” combination can extract
and utilize the hierarchical structural information best.

TABLE 4: Test accuracy of HAGK under different setups in 5
representative datasets.

MUTAG MSRC_9 BZR_MD PTC_FM IMDB-M
Louvain-OA 82.30 89.63 64.25 60.23 47.21
Random-OA 77.56 83.02 59.66 55.08 41.36
SEM-Rconv 80.25 91.16 66.67 61.03 44.50
SEM-OA (ours) 84.59 92.30 68.44 63.22 48.68

5.7 Robustness Analysis
To evaluate HAGK’s robustness against adversarial graphs,
we randomly remove edges from or add edges to the original
graph structure of the MUTAG dataset and validate the
performance on the corrupted graphs. We change the ratios
of modified edges from 0 to 0.5 to simulate different attack
intensities. We compared our method to WLOA [14] (the
strongest optimal assignment baseline) and WLSK [23] (the
most widely used graph kernel). As we can see in Fig. 14,
HAGK consistently achieves better or comparable results
in both settings. When the edge deletion rates become
larger, our method shows more significant performance
gains, indicating that HAGK is more robust against serious
structural attacks.
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Fig. 14: Test accuracy in the scenarios where graphs are
perturbed by edge deletion or addition.

5.8 Discussions
Between HAGK-LOM and [38]. [38] provided a genetic
way to compare two hierarchies, which is similar to LOM.
They both begin by comparing the roots and then comparing
the matched children. However, the node of our defined
hierarchical abstracting corresponds to a set of graph nodes,
which is different from the definition of the hierarchy
mentioned in [38].
Limitations. HAGK is based on node-labeled graphs, so it
cannot utilize the node attribute information. This makes
it perform less satisfactorily in specific datasets with rich
attribute information, such as ENZYMES [53]. Therefore, for
the sake of fairness in comparison, we choose HTAK [27]
and MWSP [28] which also focus on non-attributed graphs
as recent baselines.

6 CONCLUSION

In this paper, we propose a family of HAGK kernels, mea-
suring the similarity of the hierarchical abstractings to fully
extract and capture the hierarchical structural information
contained in graphs. To compare hierarchical abstractings,
we design two novel node-matching approaches, LOM and
POM. The former is based on the optimal assignment idea
and the latter is based on node arrangement and alignment
matching. The proposed method outperforms the existing
competitors and is verified to be capable of boosting the inner
histogram intersection kernel considerably. In the future, we
will extend the proposed kernels to other downstream tasks.
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