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Abstract—With long-tailed data and complex label hierarchy,
hierarchical text classification (HTC) is a challenging multi-label
text classification task. Applying prompts to pre-trained language
models (PLMs) has recently become a mainstream approach
in HTC. However, existing prompt-based models experience a
significant drop in classification performance on tail labels. Due
to the imbalanced data, HTC models still face two challenges.
First, text embeddings, learned for classification, often lack
distinctiveness for tail categories. Second, label embeddings suffer
from significant degeneration, especially for tail labels. To address
these issues, in this paper, we propose a novel Hierarchical Text
Classification Optimization method via Structural Entropy and
SIngular Spectrum Smoothing, namely SIHTC. SIHTC contains
two parts: text embedding optimization and label embedding
optimization. First, based on the structural information theory,
we design a tree aggregation network and construct encoding
trees to minimize the structural entropy of texts under the
hierarchical labels. In this manner, SIHTC injects label structural
information into text embeddings, hierarchically optimizing the
embedding space by enclosing the text embeddings within related
ground truth labels while separating them from unrelated ground
truth labels. Second, we propose a global and local singular
spectrum smoothing regularization method to maximize the area
under the singular value curve. In this way, SIHTC decreases
representation degeneration and learns label embeddings with
improved label generalization capability. Extensive experiments
are conducted on three popular HTC datasets. The results show
that SIHTC outperforms all baseline methods, especially with an
advantage in handling tail labels, indicating the effectiveness of
the above two optimizations.

Index Terms—Hierarchical Text Classification, Long-tailed
Data, Structural Entropy, Singular Spectrum Smoothing.
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Figure 1: Illustration comparison of existing prompt tuning-
based HTC model and our proposed SIHTC.

H IERARCHICAL text classification (HTC) is a special-
ized form of multi-label text classification where the

labels have a hierarchical structure organized as a tree or a
directed acyclic graph [1] [2]. The labels of a text correspond
to one or more consistent, non-mandatory paths within this
hierarchy [3]. Multi-label text classification data typically
exhibit a long-tailed distribution, where head labels generally
cover the majority of texts, while tail labels cover fewer
texts [4] [5]. Apart from HTC, long-tail data is prevalent in
many fields, such as relation classification [6], recommender
system [7], social event detection [8] and link prediction [9],
garnering increasing attention and research.

Inspired by the “in-context learning” capabilities of GPT-
3 [10], an increasing number of researchers have adopted
prompt tuning place of traditional fine-tuning, thereby nar-
rowing the gap between pre-training strategies of pre-trained
language models (PLMs) and downstream tasks [11] [12]
[13] [14]. Consequently, research in HTC has shifted toward
designing hierarchy-aware prompt tuning-based models, as
illustrated in Figure 1(a). In general, existing prompt-tuning-
based models [15] [16] [17] construct hierarchical templates
using either soft or hard prompts to wrap the input text.
This input is then fed into PLMs for the Masked Language
Modeling (MLM) task. The resulting outputs, treated as text
embeddings, are ubsequently mapped to the final classification
using hierarchical verbalizers. For example, Wang et al. [15]
constructs learnable soft templates using a graph encoder.
Building on this, Cai et al. [17] introduce contrastive learning
with momentum update and dynamic queue methods to obtain
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positive text samples. Xiong et al. [18] apply a dual prompt
tuning method to capture interactions between peer labels. Ji
et al. [16] manually design fixed hard templates and further
incorporate hierarchical label knowledge into the verbalizer
through probabilistic propagation.

Prompt tuning-based methods further exploit the potential of
PLMs, achieving excellent performance in HTC tasks. How-
ever, existing methods still struggle with HTC’s long-tailed
data. They all experience a significant drop in classification
performance on tail labels because, when trained on long-tailed
distribution data, models tend to learn features associated with
prevalent head labels while overlooking features in most tail
labels with fewer samples [19]. The challenges posed by long-
tailed data can be categorized into two main aspects: 1) Text
Embeddings for tail labels lack distinctiveness. Due to
the scarcity of training samples, text embeddings often lack
clarity and separability for tail labels, leading to confusion
during classification. Most existing HTC models [20] [21]
focus solely on the semantic information of the text when
learning text embeddings, overlooking the guiding role of the
label structure. Although Ji et al. [16] attempt to regulate
distance between text embeddings using four superficial label
relationships, this approach is too coarse-grained for complex
label structures in HTC. 2) Representations of long-tail
labels suffer from degeneration. As noted in [22] [23] [24]
[25], long-tail labels cause significant degradation in repre-
sentation quality, often evidenced by the rapid decay of the
singular spectrum of the embedding matrix. These degraded
embeddings lack rich features and generalization capacity,
ultimately resulting in poor classification performance for tail
labels. While many current methods use techniques such as
average embeddings of tokens [15], Graphormer [26], and
GCN [20] to generate label embeddings, their embedding
matrices exhibit rapid spectral decay——indicating severe
representation degeneration. Consequently, there is an urgent
need for research to effectively mitigate this degeneration
problem while maintaining embedding fidelity.

To tackle the two challenges of prompt tuning-based meth-
ods, we propose a novel Hierarchical Text Classification
Optimization method via Structural Information and Singular
Smoothing, namely SIHTC. The framework consists of two
parts: text embedding optimization using structural informa-
tion theory and label embedding optimization using singular
spectrum smoothing regularization, as shown in Figure 1(b).
First, we use the label hierarchy to guide the learning of
text embeddings, and we are the first to leverage structural
information theory to model inter-text relationships, thereby
injecting label structural information into text embeddings.
Structural information theory [27] implies that minimizing
the structural entropy can decode the essential information
embedded in the graph. Specifically, we combine the text
embeddings with their corresponding labels to form a label-
text tree at each level. We then design a tree aggregation
network to propagate label structure information from the
bottom up across different levels, forming encoding trees.
Finally, we introduce a structural entropy loss function to
minimize the structural entropy of each encoding tree. Our
method clusters texts around their relevant ground-truth labels

and separates them from unrelated labels, hierarchically in-
jecting label structural information into the text embeddings.
In this way, we optimize the text embedding space, enhancing
the distinguishability of text embeddings during classification.
Previous studies have applied structural entropy to HTC. [28]
minimizes the structural entropy of the label hierarchy to
enable classification without relying on prior statistics or label
semantics. [29] introduces a contrastive learning module that
generates positive samples based on structural information
theory. However, both [28] and [29] consider only the struc-
tural entropy of the label graph. In contrast, our approach
minimizes the structural entropy of a joint graph constructed
from both texts and labels, offering significant theoretical and
practical advantages. Second, inspired by [24], we design a
singular spectrum smoothing regularization module to alleviate
representation degeneration in HTC’s long-tail labels. Specifi-
cally, the regularization consists of two components: global
singular value smoothing regularization and local singular
value smoothing regularization, both implemented through
corresponding loss functions. The global loss provides a
foundational constraint for each label, while the local loss
hierarchically adjusts the constraint intensity based on the
label’s position within the hierarchy. Building upon the nuclear
norm and Frobenius norm [30] [31] [32], the regularization
suppresses the largest singular value while amplifying the
smaller ones. In this way, we flatten the rapidly decaying
singular spectrum, alleviate representation degradation, and
optimize the label embedding space.

Extensive experiments are conducted on three large-scale
HTC datasets for academic paper classification [33] and news
document classification [34] [35]. The results demonstrate that
SIHTC outperforms current baseline methods, especially in
handling tail labels. All codes of SIHTC are publicly available
on GitHub1.

In summary, the contributions of this paper are as follows:
• We propose a novel optimization method for prompt tuning-

based HTC models, named SIHTC. SIHTC effectively ad-
dresses the challenges of large-scale, imbalanced data of
HTC.

• Based on structural information theory, we carefully inject
label structural information into text embeddings. We design
a tree aggregation network and a structural entropy loss
function to minimize the structural information of texts
within the label hierarchy, thereby optimizing the text em-
bedding space.

• We are the first to alleviate label representation degradation
in HTC models. We propose a new global and local singular
spectrum smoothing regularization method to constrain label
representation and optimize the label embedding space.

• Extensive experiments are conducted on three large-scale
popular HTC datasets to demonstrate our model’s advan-
tages and effectiveness.
We organize this paper as follows: Section II summarizes

the relevant definitions and notation used in this paper; Sec-
tion III describes the framework of the proposed SIHTC;
Section IV describes the training details of SIHTC, as well

1https://github.com/SELGroup/SIHTC
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as the datasets, baselines, and evaluation metrics employed;
Section V presents comprehensive experimental results, pro-
viding an in-depth analysis of the advantages of SIHTC;
Section VI reviews a series of representative works on HTC
and structural information theory; and Section VII concludes
the paper, discussing potential future research directions.

II. PROBLEM FORMULATION AND NOTATIONS

In this section, we formalize related definitions of HTC in
Section II-A and the structural entropy-related definitions in
Section II-B. Additionally, we summarize the notation used in
this paper in Table I.

Table I: Glossary of Notations.

Symbol Definition
H; Y; E A label hierarchy; the node and edge set of H
y; ly ; L A label in Y; the depth of y; the depth of H
t; Y ; Yi A text; t’s label set; t’s label set of i-th depth
G; T A text graph; the encoding tree of G
V; A The data points set and adjacency matrix of G

α; λ; γ Node, root node, and leaf node in T
Tα A partition of data points corresponds to node α

h(α); k The height of α; the dimension of T
α− The parent node of α

gα; vol(α) The cut of α; The volume of α
HT (G;α); HT (G) The structural entropy of α and G within T

hi; HT ; Hi A i-th depth text embedding; The whole and i-th
depth text embedding matrix

m; M ; Mi A label embedding; the whole and i-th depth
label embedding matrix

T (i)
∗ ; T (i) the text-label tree and encoding tree of i-th depth
V∗; X ; E The nodes set; the nodes’ embeddings set; the

edge set of T∗
αt; αy ; αty A text node; a label node; and an aggregated node
LSE ; γ1 The structural entropy loss and it weight hyper-

parameter
LSS ; γ2 The singular value smoothing regularization loss

and it weight hyper-parameter

A. Hierarchical Text Classification

Hierarchical Text Classification (HTC) aims to assign a
set of labels to an input text, with these labels structured
in a predefined hierarchy. The formal definitions of Label
hierarchy, Input and output are as follows:

Definition 1 (Label hierarchy). Label hierarchy is defined as
a graph H = (Y, E), where Y is the label set (also the node
set of H), and E is the hierarchical connections within the
labels (also the edge set of H). H is a tree structure where
each node, except for the root node, has one and only one
parent node. The depth of node y is denoted by ly . For the
root node, ly = 0 and for the leaf nodes, ly = L, where L is
the depth of H.

Definition 2 (Input and output). The input is a set of texts split
into different batches. In each batch, B = {t1, t2, · · · , tb},
where every text is treated as a sequence of tokens ti =
{x1, x2, · · · , xn}. The classification output of each text ti is a
set of labels, Y = {Y1, Y2, · · · , Ym}, where Yi contains labels
in i depth of H. The labels in Y correspond to one or more
paths in the label structure H, from the root node to leaf or
non-leaf nodes.

B. Structural Entropy

Structural entropy is a measure of the uncertainty of a graph
structure. It represents the minimum number of bits required
to encode a reachable vertex during a single-step random walk
on the graph. Structural information theory models input data
as a graph and utilizes encoding trees to measure the graph’s
structure. An encoding tree that minimizes structural entropy
represents the essential structure of the graph. We follow the
definitions of the Encoding tree and Structural entropy as
presented in [27], which are as follows:

Definition 3 (Encoding tree). Given a graph G = (V, A), V is
the set of input data points, A is the adjacency matrix, and the
elements in A represent the weights of edges. The encoding
tree T for G is a hierarchical partitioning of G that can be
described as follows: (1) Each tree node α ∈ T corresponds
to a partition of data points Tα ⊆ V . Significantly, the root
node λ of T is associated with the entire set of data points,
Tλ = V . And for any leaf node γ of T , Tγ contains exactly one
data points from V . (2) For any non-leaf node α in T , let its
children be denoted as β1, ..., βNα

, where Nα is the number
of children of α. Then, (Tβ1

, ..., TβNα
) form a partition of Tα.

The encoding tree captures the graph’s complexity and
connectivity patterns. Each tree node depicts a partition of
the data point set V .

Definition 4 (Structural entropy). The structural entropy is
defined under the graph G and the encoding tree T . The
structural entropy of each tree node α ∈ T is as follows:

HT (G;α) = − gα
vol(λ)

log2
vol(α)

vol(α−)
, (1)

where the cut gα is the weight sum of edges with exactly one
endpoint in Tα. And the volume vol(α), vol(α−), and vol(λ)
denote the degrees sum of data points within Tα, T−

α , and Tλ,
respectively. The structural entropy of T is equal to the sum
of the entropy of all nodes, as follows:

HT (G) =
∑

α∈T ,α̸=λ

HT (G;α). (2)

A smaller structural entropy indicates that the uncertainty of
the graph G is lower.

III. METHODOLOGY

In this section, we systematically describe the framework
of our proposed SIHTC, which contains two optimization
methods. First, we introduce the details of the prompt tuning-
based HTC model in Section III-A. Then, we describe the text
embedding optimization method, which is based on structural
information theory in Section III-B. Specifically, we describe
the tree aggregation network in Section III-B1 and a structural
entropy minimization method in Section III-B2. Second, we
describe the label embedding optimization method in Sec-
tion III-C. We specifically introduce the singular spectrum
smoothing regularization. Finally, we describe the objective
function in Section III-D.
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Figure 2: The proposed SIHTC framework. (I) is the framework of prompt tuning-based HTC models. (II) and (III) is the text
embedding optimization based on structural information theory. (IV) is the label embedding optimization based on singular
spectrum smoothing.

A. Prompt Tuning-based Model

We chose HPT [15] as the foundational model for opti-
mization since it is the most representative prompt tuning-
based HTC model. We illustrate HPT’s simplified framework
in Figure 2 (I). Specifically, with a label hierarchy of depth
L, HPT constructs a template in the form of [Tem1][Mask1]
[Tem2] [Mask2] . . . [TemL] [MaskL], where [Temi] encap-
sulates the information from the i-th depth within the label
hierarchy, and [Maski] is used to predict the labels of the
text at the i-th depth. Then, HPT packages the text “x” as
“x, template” and feeds it into BERT for the MLM task. For
a batch of texts B, BERT outputs the final hidden states at
each mask position, which are the first optimization targets
in our proposed SIHTC. We refer to those outputs as text
embeddings, the formal definition of which is as follows:

Definition 5 (Text embeddings). Given a batch of texts B, B’s
text embedding is denoted as HT = {Hi|i ∈ [1, L]}, where
Hi ∈ Rb×r is the BERT’s output corresponding to [Maski]
tokens of all texts in B. For a text t in B, t’s text embedding
is denoted as h = {hi|i ∈ [1, L]} which is the set of hidden
state vectors corresponding to L [Mask] tokens of t, where
hi ∈ Rr and r is the hidden state dimension of BERT. Hi is
composed of all hi of texts in B.

Then, HPT utilizes L different hierarchical verbalizers
[Verb1][Verb2] . . . [VerbL] to process text embeddings, gen-
erating classification results for each text. HPT constructs
the verbalizers with label embeddings, which are the second
optimization targets in our proposed SIHTC. We formally
define label embeddings as follows:

Definition 6 (Label embeddings). Given a label y, the label
embedding of y is the learnable virtual label word m ∈ Rr in
the HPT’s verbalizer. M represents the entire label embedding
matrix, and Mi represents the i-th depth label embedding
matrix of the label hierarchy.

B. Text Embedding Optimization

We first design a tree aggregation network to construct
hierarchical two-dimensional encoding trees. Following this,
we introduce the structural entropy loss function, which opti-
mizes text embeddings by minimizing the structural entropy
of the encoding trees. Our method effectively injects label
structural information into the text embeddings. Next, we
will describe the tree aggregation network and the structural
entropy minimization process separately.

1) Tree Aggregation Network: Previous works ignore the
guidance of label structures on text embeddings. The Tree
Aggregation Network (TAN) aims to integrate text information
and label structure information, as shown in Figure 2(II).
During model training, the input to TAN includes the label
hierarchy, text embeddings, and ground truth labels. The
output of TAN is a set of two-dimensional encoding trees.
We present the algorithm for TAN in Algorithm 1. Each
encoding tree corresponds to a depth of the label hierarchy.
TAN contains two steps: text-label tree construction and inter-
level aggregation, where the first step integrates the intra-level
information of label structure, and the second step integrates
the inter-level information.
Text-label trees construction. In this step, we construct
multiple text-label trees, each corresponding to a depth of the
label hierarchy. The goal is to partition the text embeddings
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according to their ground truth labels. To facilitate the expla-
nation, we first define the text-label tree as follows:

Definition 7 (Text-label tree). A text-label tree is a height-
2 tree that consists of a root node, label nodes, and text
nodes, represented as T∗ = {V∗,X , E}. In this structure,
V∗ = {V0,V1,V2} is the level-wise nodes set, where V0 is
the root node set, V1 is the label node set, and V2 is the
text node set. X = {X0,X1,X2} is the corresponding node
embedding set, and E is the edge set between nodes.

First, we initialize the text-label trees. Given a label hier-
archy H with a depth of L, we construct a text-label tree set
T∗ = {T (1)

∗ , T (2)
∗ , . . . , T (L)

∗ }, where T (i)
∗ corresponds to the

i-th depth of H. We use T (i)
∗ ∈ T as an example to introduce

the construction details of a text encoding tree. T (i)
∗ only

partitions Hi ∈ HT , the text embedding matrix corresponding
to the i-th mask token. At the beginning, T (i)

∗ is initialized to
contain only the root node, i.e. V0 = {λ} and the other sets of
T (i)
∗ are empty sets. Then, we create the label nodes. We add

the appropriate label nodes as the children of the root node.
Formally,

V1 = {αy|ly = i}, E = {(λ, αy)|αy ∈ V1}, (3)

where αy denotes a label node corresponding to label y which
at the i-th depth ofH. Finally, we create the text nodes. During
model training, a text t has a hierarchical text embedding hi

and a ground truth label set Yi at the i-th depth of H. We
create a new text node αt for t in T (i)

∗ and add it as a child
of the ground truth label nodes. Formally,

V2 = V2 ∪ {αt}, E = E ∪ {(αy, αt)|y ∈ Yi},X2 = X2 ∪ {hi},
(4)

where αy is the label node in V1 which corresponds to t’s
ground truth label y ∈ Yi, and hi is the text embedding of t in
i-th depth, also the the embedding of the text node αt. Notably,
since a text in HTC may belong to multiple paths of H, Yi

may contain various elements, so a text node may have more
than one parent label node. We repeat the process described
in Equation 4 for all texts in a batch B. Once we complete
all texts, we obtain the full text-label tree T (i)

∗ . Following the
above process, we can construct all text encoding trees in T∗,
completing the partition of all text embeddings HT = {Hi|i ∈
[1, L]}.
Inter-level aggregation. The text-label trees complete the par-
tition but ignore a parent-child relationship between different
depth labels in the label hierarchy. Therefore, we introduce an
aggregation operation to bridge the L trees, integrating inter-
level label structure information into the text embeddings.

Specifically, We aggregate the L text-label trees from the
bottom up based on the label structure. We use the aggregation
from T (i)

∗ into T (i−1)
∗ as an example to introduce the details.

Before aggregation, in T (i)
∗ , only text nodes have embedding,

while label node embedding set X1 is empty till now. Thus,
we first aggregate the text nodes into the label nodes for
preparation. Formally, for each label node αy in V1,

X (i)
1 = X (i)

1 ∪ {xy}, xy = averageαt∈C(αy)
(xt), (5)

Algorithm 1: Proposed TAN.
Input: Label hierarchy H with depth L, text

embedding set {h} and ground truth labels set
{Y } of batch B.

Output: A set of two-dimensional encoding trees: T .
/* Text-label trees construction. */

1 for i = 1 to L do
2 Initialize T (i)

∗ with a root node λ;
3 Create label nodes of T (i)

∗ via Eq. 3;
4 for text t in B do
5 Create text nodes of T (i)

∗ via Eq. 4;
6 end
7 T∗ ← {T (1)

∗ , T (2)
∗ , · · · , T (L)

∗ };
8 end
/* Inter-level aggregation. */

9 for i = L to 2 do
10 for label node αy in T (i)

∗ do
11 if αy has child text nodes then
12 T (i)

∗ .X1 ← Eq. 5;
13 else
14 Remove αy from T (i)

∗ .V1;
15 end
16 end

/* Aggregation T (i)
∗ to T (i−1)

∗ . */

17 Create new text nodes of T (i−1)
∗ via Eq. 7, 9;

18 Aggregate embeddings to T (i−1)
∗ via Eq. 8;

19 end
20 return T = {T (1), · · · , T (L)} ← {T (1)

∗ , · · · , T (L)
∗ }

where xy is the embedding of label node αy , C(vy) is the
children set of αy , i.e. αt is a text node which has a edge
(αy, αt) in E(i), and xt is the embedding of αt. Notably, if
a label node has no child text nodes, we remove it from the
label nodes set. Formally,

V(i)
1 = V(i)

1 \{αy′ |C(αy′) = ∅}, (6)

where αy′ is a label node with no children nodes. Then, we
start the upward aggregation to T (i−1)

∗ . Specifically, we create
text nodes in T (i−1)

∗ corresponding to label nodes in T (i)
∗ .

Formally,

V(i−1)
2 = V(i−1)

2 ∪ {αty |αy ∈ V(i)
1 }, (7)

X (i−1)
2 = X (i−1)

2 ∪ {xty |αy ∈ V(i)
1 }, xty = xy ∈ X (i)

1 , (8)

where αty is a new text node in T (i−1)
∗ which represents the

union of all text nodes belong to αy in T (i)
∗ , and xty is the

embedding of αty which is equal to the embedding of αy in
T (i)
∗ . Then, based on the label hierarchy H, we connect these

newly created nodes to their parent nodes. Formally,

E(i−1) = E(i−1) ∪ {(αy′ , αty )|αy′ ∈ V(i−1)
1 , (y′, y) ∈ E},

(9)
where E is the edge set of H, y′ is the parent label of y in
H, and αy′ is the label node in T (i−1)

∗ corresponds to y′. At
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this point, we complete the aggregation from T (i) to T (i−1).
Refer to this example, repeating Equations 5, 6, 7, 8, 9, we can
sequentially complete the aggregation from T (L) to T (L−1),
T (L−1) to T (L−2) and so on, until T (2) to T (1).

After the aggregation, we obtain more comprehensive trees.
Each tree now accounts not only for the text embeddings of
its level but also for the text embeddings of all descendants.
We treat the aggregated text-label trees as two-dimensional
encoding trees, denoted as T = {T (1), T (2), . . . , T (L)}. These
encoding trees integrate text information and label structure
information.

2) Structural Entropy Minimization: We minimize the
structural entropy of the two-dimensional encoding trees ob-
tained in Section III-B1 by designing a structural entropy loss
function LSE , as shown in Figure 2(III). We use T (i) ∈ T as
an example to introduce the design of Lsei . Since structural
information theory is defined based on the partition of a graph,
we construct a graph that contains all the text nodes of T (i).
Specifically, a graph Gi for T (i) is construct as follows:

A = σ(X ×XT ), (10)

where X ∈ R|V2|×r is an embedding matrix composed of all
text nodes embedding in X2 of T (i), and σ denotes the sigmoid
activation function, which ensures that the elements in the
adjacency matrix A are positive. According to the definition
of the encoding tree, label nodes of T (i) serve as partitions
of the text nodes. Therefore, we constructed an assignment
matrix P ∈ {0, 1}|V2|×|V1| for Gi, where |V2| is the number
of text nodes and |V1| is the number of label nodes in T (i).
Pjk = 1 if the j-th text node belongs to the k-th label node in
T (i). During the model training, P remains constant. Then, we
propose a loss function Lsei to minimize the structural entropy
of label nodes in T (i), in other words, to reduce the uncertainty
of Gi under fixed partitions. For a two-dimensional encoding
tree T (i) and corresponding Gi, the sum of the structural
entropy of the label nodes is defined as follows [27]:

HT (i)

(Gi) =

|V1|∑
y=1

−
gαy

vol(λ)
log2

vol(αy)

vol(λ)
, (11)

where αy is a label node in V1, gαy is the weight sum of cut
edges of the partition corresponding to αy , and vol(αy) is the
degrees sum of text nodes in the partition corresponding to
αy . It is worth noting that, unlike traditional encoding trees
in [27], our encoding tree may contain nodes with multiple
parent nodes, as shown in Figure 3(A). We consider such nodes
to belong to various partitions simultaneously, as illustrated in
Figure 3(B). Therefore, the volume and cut of partition αy in
Gi can be calculated as follows:

vol(αy) = ({1}|V1|×|V2|AP )yy, (12)

gαy
= ({1}|V1|×|V2|AP )yy − (PTAP )yy, (13)

where A and P are adjacency matrix and assignment matrix of
Gi, respectively, and (·)yy indicates the element in the matrix

𝛼1
𝛼2

A) Encoding Tree B) Graph Partition

𝑔 𝛼1 = 1

𝑔 𝛼2 = 2

𝑣𝑜𝑙 𝛼1 = 13

𝑣𝑜𝑙 𝛼2 = 4

Figure 3: The encoding tree and its corresponding graph
partition. The yellow node has more than one parent node,
and it belongs to both partition α1 and partition α2.

at the y-th row and y-th column. We proposed the structural
entropy loss function Lsei as follows:

Lsei = HT (i)

(Gi)

=

|V1|∑
y=1

((PT − {1}|V1|×|V2|)AP )yy
sum(A)

log2
({1}|V1|×|V2|AP )yy

sum(A)

= trace(
(PT − {1}|V1|×|V2|)AP

sum(A)
⊙ log2

{1}|V1|×|V2|AP

sum(A)
),

(14)

where trace(·) is an operation that sums up the diagonal
elements of the matrix, sum(·) is an operation that sums up
all elements in a matrix, and ⊙ is the Hadamard product. We
use matrix operations instead of summation operations, which
can significantly improve computational efficiency.

We compute the loss following the Equation 14 for each
encoding tree in T and sum them together, resulting in the
overall structural entropy loss LSE as follows:

LSE =

L∑
i=1

Lsei , (15)

where Lsei is the structural entropy of T (i) ∈ T . During the
model training process, A and the text embeddings are updated
to achieve a smaller structural entropy as the LSE decreases.
In the same time, LSE optimizes the text embedding space
by enclosing the text embeddings on related labels while
separating those on unrelated labels.

C. Label Embedding Optimization

The long-tailed distribution of HTC data leads to representa-
tion degeneration in label embeddings, which previous works
ignore. One manifestation of representation degeneration is
the rapid decay of the singular spectrum of the embedding
matrix, i.e., the largest singular value is significantly greater
than the rest. [24] is the first to propose a singular spectrum
smoothing regularization method in sequence recommendation
to alleviate the degeneration of the user sequence and item
embeddings. Based on [24], we propose a singular spectrum
smoothing regularization loss to optimize label embeddings in
HTC, as shown in Figure 2(IV). The loss contains two parts: a
global part for macro-control and a local part for hierarchical
adaptation.
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1) Global Singular Spectrum Smoothing Regularization
Loss: In this section, we apply regularization constraints
uniformly to all label representations. By suppressing the
largest singular value and encouraging the sum of singular
values of the embedding matrix, we transform the singular
spectrum curve from a rapid decay, indicative of degeneration,
to a smoother distribution. Formally,

Lgss = −
∥M∥∗
∥M∥F

, (16)

∥M∥∗ =

min(n,r)∑
i=1

σi, ∥M∥F =

√√√√min(n,r)∑
i=1

σ2
i , (17)

where M ∈ Rn×r is the label embedding matrix, n is the
number of labels in H, and r is the dimension of label
embedding. ∥ · ∥∗ is the nuclear norm and ∥ · ∥F is the
Frobenius norm of of the matrix, σ is a singular value of M .
During training, the increase of the nuclear norm indicates an
increase in the sum of singular values, and the decrease of
the Frobenius norm implies a reduction in the largest singular
value. In summary, the Lgss helps to obtain smoother singular
spectrum curves.

2) Local Singular Spectrum Smoothing Regularization
Loss: The global loss alleviates representation degeneration
by smoothing the singular spectrum of the embedding matrix
formed by all labels. However, in HTC’s label hierarchy, the
degree of degeneration varies for labels located at different
positions. Intuitively, labels at deeper depths suffer from more
severe degeneration as they have fewer training samples,
making their embeddings harder to distinguish. Therefore, we
propose personalized coefficients to differentiate the regular-
ization constraint across different levels of labels. Formally,

Llss =

L∑
i=1

− ini

n

∥Mi∥∗
∥Mi∥F

, (18)

where ni is the number of labels at the i-th depth, n is the
number of total labels, and Mi ∈ Rni×r is the hierarchical
label embedding matrix corresponds to the i-th depth of H.
The personalized coefficients achieve two objectives: (1) to
apply more substantial regularization constraints to tail labels
at deeper levels to suppress degradation and apply relatively
weaker constraints to shallow levels labels to retain their rich
information, and (2) to normalize the varying number of labels
across different levels of the label hierarchy.

Therefore, the singular value smoothing regularization loss
is the sum of the above two components. Formally,

LSS = Lgss + Llss. (19)

D. Objective Function

With LSE minimizes the structural entropy of the text
embeddings, LSS performs singular spectrum smoothing on
the label embeddings, the final objective loss function to
minimize is defined as follows:

L = Lbase + γ1LSE + γ2LSS , (20)

where Lbase is the loss function of the based prompt tuning
HTC model, γ1 is the hyper-parameter for controlling the
text embeddings optimization weight, and γ2 is the hyper-
parameter for controlling the label embeddings optimization
weight.

IV. EXPERIMENTAL SETUP

This section provides a comprehensive description of the
experimental setup for this study. First, we introduce the
datasets of the experiments in Section IV-A. Then, we detail
the comparison baselines in Section IV-B. Furthermore, we
describe the implementation details of the experiments in
Section IV-C, including parameter settings of our proposed
SIHTC, implementation for SIHTC, and the software and
hardware environment. Lastly, we introduce the evaluation
metrics used in the experiments in Section IV-D.

A. Dataset

We conduct experiments on three datasets for hierarchical
multi-label text classification to evaluate the performance and
effectiveness of our SIHTC. We show the statistics of datasets
in Table II. WOS [33] includes abstracts of published papers
from the Web of Science. RCV1-v2 [34] is news classification
corpora from Reuters, Ltd while NYTimes [35] is news
classification corpora from New York Times. Each text in
these datasets is annotated with ground truth labels within the
label hierarchy. In the WOS dataset, these labels contain only
a single path, and in the RCV1-v2 and NYT datasets, they
contain multiple paths. We split and preprocess these datasets
following [20]. All paths are consistent and non-mandatory.

Table II: Statistics of the three HTC datasets. Depth is the
maximum level of label hierarchy. |Y| is the number of labels.
Avg(|Y |) is the average number of corresponding labels per
text.

Dataset Depth |Y| Avg(|Y |) # Train # Dev # Test
WOS 2 141 2.0 30070 7518 9397

RCV1-v2 4 103 3.24 20833 2316 781265
NYTimes 8 166 7.6 23345 5834 7292

B. Baselines

To validate the superiority of our proposed SIHTC, we
compare it against ten strong baselines belonging to four
categories. We introduce these baselines separately as follows:
• Four hierarchy-aware models. TextRCNN [36] is a typical

text classification model that uses an RNN network struc-
ture to extract text features. HiAGM [20] is a hierarchi-
cal text classification model with a dual-encoder structure.
HTCInfoMax [37] introduces text-label mutual information
maximization and label prior matching, applying statistical
constraints to label representations. HiMatch [21] is a se-
mantic matching model for hierarchical text classification.

• Two pre-trained language Models. Bert [38] is a PLM
designed for natural language processing tasks. It combines
the Transformer architecture with the MLM objective to
generate text embeddings. HGCLR [26] constructs positive
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Table III: The experimental results (%) of our proposed method compared to baselines on three datasets. The best results are
bolded, and the second-best results are underlined. ∆HPT(Abs.%) denotes the improvement of absolute value and percentage
achieved by our model compared to the based model HPT.

Model WOS RCV1-v2 NYTimes Average
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Hierarchy-Aware Models
TextRCNN [20] 83.55 76.99 81.57 59.25 70.83 56.18 78.65 64.14

HiAGM [20] 85.82 80.28 83.96 63.35 74.97 60.83 81.58 68.15
HTCInfoMax [37] 85.58 80.05 83.51 62.71 - - - -

HiMatch [21] 86.20 80.53 84.73 64.11 - - - -
Pretrained Language Models (BERT-based)

BERT [21] 86.26 80.58 86.26 67.35 - - - -
BERT [26] 85.63 79.07 85.65 67.02 78.24 65.62 83.17 70.57

BERT+HiAGM [26] 86.04 80.19 85.58 67.93 78.64 66.76 83.42 71.67
BERT+HTCInfoMax [26] 86.30 79.97 85.53 67.09 78.75 67.31 83.53 71.46

BERT+HiMatch [26] 86.70 81.06 86.33 68.66 - - - -
HGCLR [26] 87.11 81.20 86.49 68.31 78.86 67.96 84.15 72.49

Structural Entropy-based Models
TextRCNN+HiTIN [28] 86.66 81.11 84.81 64.37 75.13 61.09 82.20 68.86

BERT+HiTIN [28] 87.19 81.57 86.71 69.95 79.65 69.31 84.52 73.61
HILL [29] 87.28 81.77 87.31 70.12 80.47 69.96 85.02 73.95

Pretrained Language Models with Prompt Tuning
HPT [15] 87.16 81.93 87.26 69.53 80.42 70.42 84.95 73.96
DPT [18] 87.25 81.51 87.76 70.78 80.56 70.28 85.19 74.19

SIHTC (Ours) 87.65±0.14 82.02±0.20 87.83±0.09 70.36±0.38 80.84±0.07 70.87±0.13 85.44 74.42
∆HPT(Abs.%) ↑ .49(.56%) ↑ .09(.11%) ↑ .57(.65%) ↑ .83(1.19%) ↑ .42(.52%) ↑ .45(.64%) ↑ .49(.58%) ↑ .46(.62%)

samples for texts, implementing a hierarchical-guided con-
trastive learning model based on Bert.

• Two structural entropy-based Models. HiTIN [28] is a
memory-efficient model that does not rely on prior statistics
or label semantics. HILL [29] is an information lossless
contrastive learning model for HTC. Both baselines are
based on structural information theory, but consider only
the structural entropy of the label graph. In contrast, our
approach accounts for the structural entropy of both texts
and labels, offering a significant advantage.

• Two prompt tuning-based pre-trained language Models.
HPT [15] is a typical model for HTC based on prompt
tuning, which constructs learnable soft prompt templates
using label information. DPT [18] is a dual prompt tuning
model that distinguishes features among peer labels by
performing contrastive learning at each hierarchical level.

C. Implementation Details

We select the prompt-tuning-based HPT model [15] as the
base model for optimization, integrating our proposed SIHTC
method. We keep the relevant parameters of the HPT as
originally configured. We set the weight hyperparameters
[γ1, γ2] of Lse and Lss in Equation 20 to [5e−2, 5e−2] for
WOS, and [1e−1, 5e−3] for RCV1-v2 and [1e−2, 5e−3] for
NYTimes dataset. We set the training epoch number to 30 and
uniformly set the batch size to 32. We take the main results as
the average of six random experiments. SIHTC is implemented
in a software environment of Python 3.9 and PyTorch 1.13
and executed on a hardware environment of NVIDIA A800-
SXM4-80GB.

D. Evaluation Metrics

We select two widely used evaluation metrics of HTC:
Macro-F1 and Micro-F1 [39]. Macro-F1 computes the un-
weighted average of the F1-score for each class so that it treats
each class equally, regardless of the sample size for each class,
making it well-suited for evaluating imbalanced classification
problems. Micro-F1 aggregates true positives, false positives,
and false negatives across all classes before calculating the
F1 score so that it gives equal weight to all instances in the
averaging process, making it more sensitive to the performance
of larger classes. Due to the large-scale, imbalanced data of
HTC, we focused more on the performance of the Macro-F1
in our experiments, as it prefers accuracy for tail classes.

V. EXPERIMENTAL RESULTS

We conduct comparative studies and effectiveness studies
and detail the main results in Section V-A. We conduct ablation
studies for the components of SIHTC in Section V-B. To
explore SIHTC’s capability in handling long-tail labels, we
conduct long-tail hierarchy studies in Section V-C. Further-
more, we conduct hyperparameter studies and case studies
in Section V-D and Section V-E. Finally, we supplement the
computational cost in Section V-F.

A. Main Result

1) Classification Performance of SIHTC: We provide the
experimental results for the effectiveness in Table III. SIHTC
outperforms the base model HPT across all three datasets and,
except for Macro-F1 on the RCV1-v2 dataset, SIHTC sur-
passes all advanced baselines. On the WOS dataset, compared
to HPT, our proposed SIHTC improves 0.49% and 0.09%
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absolute Micro-F1 and Macro-F1, respectively. Additionally,
it outperforms the most advanced baseline by 0.40% in Micro-
F1. On the RCV1-v2 dataset with a label depth of 4, SIHTC
significantly outperforms HPT, with improvements of 0.57%
in Micro-F1 and 0.83% in Macro-F1. However, compared to
the most advanced baseline, there is a slight decline in Macro-
F1. On the NYT dataset, compared to HPT, SIHTC improves
by 0.42% in Micro-F1 and 0.45% in Macro-F1. Furthermore,
SIHTC achieves an additional 0.28% improvement in Micro-
F1 compared to the most advanced baseline. Overall, across
the three datasets, SIHTC achieves an average improvement
of 0.49% in Micro-F1 and 0.46% in Macro-F1 compared
to HPT and outperforms all baselines. Without altering the
base model’s network architecture or introducing additional
parameters, SIHTC achieved a surprising performance boost.
Moreover, the more significant improvement in Macro-F1
indicates that SIHTC is better for handling tail labels in HTC.
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(a) Visualization of text embeddings trained from HPT.
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(b) Visualization of text embeddings trained from SIHTC.

Figure 4: 2D Visualization of text embeddings. Different
colors represent texts belonging to different labels.

2) Effectiveness of Structural Entropy Loss: In the three
datasets, we select a series of samples belonging to single-
path labels and visualize their text embeddings to intuitively
demonstrate the effectiveness of our structural entropy loss
LSE on text embeddings. Figure 4(a) shows the visualization
of text embeddings from HPT, while Figure 4(b) from SIHTC.
Compared to HPT, the embeddings trained by SIHTC exhibit
clearer cluster boundaries and better discriminative ability.
Furthermore, SIHTC demonstrates a greater advantage for
texts with tail labels. This is attributed to our LSE , which
guides the model in learning an encoding tree with a lower
structural entropy. Given the fixed partition matrix, i.e., the
ground truth label assignments for texts, the only way to
reduce the structural entropy of the encoding tree is to cluster
embeddings of texts with the same labels while separating
those with different labels.

3) Effectiveness of Singular Spectrum Smoothing Regu-
larization Loss: We visualize the label embeddings in the
three datasets to intuitively demonstrate the effectiveness of
our singular spectrum smoothing regularization loss LSS .

First, we compare the singular spectrum curves of the label
embedding matrices trained by HPT and SIHTC. We provide
the experimental results in Figure 5. The curve corresponding
to HPT shows a trend of rapid decay, with the largest singular
value significantly exceeding the others, indicating that label
embeddings suffer from degeneration. Compared to HPT, the
curve corresponding to SIHTC is smoother and has a larger
Area Under the Curve (AUC), which is attributed to the
effect of the LSS . During training, the Frobenius norm term
∥ · ∥F in LSS suppresses the largest singular value, while the
nuclear norm term ∥ · ∥∗ promotes the sum of singular values.
Additionally, we visualize the SVD projection of the label
embeddings to further demonstrate the benefits of a smoother
singular spectrum. As noted in [22], embeddings with better
generalization capability are more diversely distributed around
the origin in their SVD projections, whereas degraded em-
beddings are confined in a narrow cone. Figure 6(a) shows
that the SVD projection corresponding to HPT is distributed
away from the origin in a clustered pattern. The degeneration
of label embeddings is particularly severe in the WOS and
RCV1-v2 datasets. In contrast, Figure 6(b) demonstrates that
the label embeddings trained by SIHTC, especially for tail
labels, effectively avoid degeneration. This improvement is
attributed to the LSS , which reshapes the distribution of label
embeddings by regularizing their singular value spectrum.
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Figure 5: Singular spectrum curve of label embeddings. The
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Figure 7: The classification Precision on tail labels of the WOS dataset.
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Figure 8: The classification Precision on tail labels of the RCV1-v2 dataset.
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Figure 9: The classification F1 scores on tail labels of the NYT dataset.

Table IV: Ablation Study for three loss functions of SIHTC
on Micro-F1. The best results are bolded.

Ablation Models WOS RCV1-v2 NYTimes Average
SIHTC 87.65 87.83 80.84 85.44

r.m. LSE 87.37 87.75 80.75 85.29
r.m. Lgss 87.59 87.51 80.92 85.34
r.m. Llss 87.53 87.81 80.65 85.33

Table V: Ablation Study for three loss functions of SIHTC on
Macro-F1. The best results are bolded.

Ablation Models WOS RCV1-v2 NYTimes Average
SIHTC 82.02 70.36 70.87 74.42

r.m. LSE 81.86 69.75 70.81 74.14
r.m. Lgss 81.75 69.92 70.55 74.07
r.m. Llss 81.61 69.85 70.42 73.96

B. Ablation Study

We conduct ablation experiments on the three datasets to
further demonstrate the effectiveness of the three loss functions
included in SIHTC. The Micro-F1 and Macro-F1 scores of
different variants are reported in Table IV and Table V,

respectively. Compared to its variants, the complete SIHTC
achieves the best results across all three datasets.

First, without the structural entropy loss LSE , Micro-
F1 scores drop by 0.28%, 0.08%, and 0.09% on the WOS,
RCV1-v2, and NYT datasets, respectively, with an average
decrease of 0.15%. Macro-F1 scores decrease by 0.16%,
0.61%, and 0.06% on the three datasets, averaging a 0.28%
drop. LSE models inter-text relationships by leveraging label
hierarchy information. The performance degradation observed
after removing LSE underscores its effectiveness in captur-
ing hierarchical structural dependencies, which are essential
for learning semantically meaningful and discriminative text
embeddings. Second, without the global singular spectrum
smoothing regularization loss Lgss, Micro-F1 scores drop
by 0.06%, 0.32% on the WOS and RCV1-v2 datasets, respec-
tively. Macro-F1 scores decrease by 0.27%, 0.44%, and 0.32%
on the three datasets, respectively, with an average decline of
0.35%. Lgss serves to smooth the singular value spectrum
of the label representation matrix. This dual constraint of
Lgss suppresses embedding collapse and promotes represen-
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(a) The impact of the weight hyperparameter γ1 for LSE on the performance of SIHTC.

(b) The impact of the weight hyperparameter γ2 for LSS on the performance of SIHTC.

Figure 10: Experimental results of hyperparameter sensitivity.

tational diversity across label embeddings. The performance
decline after removing Lgss indicates that, without spectral
smoothing, label representations often degenerate–particularly
impairing the discrimination of tail labels. Third, without
the local singular spectrum smoothing regularization loss
Llss, Micro-F1 scores drop by 0.12%, 0.02%, and 0.19% on
the three datasets, respectively, with an average decrease of
0.11%. Macro-F1 scores drop by 0.41%, 0.51%, and 0.45%
on the three datasets, respectively, with an average decrease
of 0.46%. Llss differentiates labels at various depths, pro-
viding personalized regularization. The observed decline in
classification performance after removing Llss suggests that
this personalized approach effectively enhances the impact of
regularization.

Additionally, after removing any component of SIHTC,
the drop in Micro-F1 is more significant than in Macro-F1,
confirming that our method contributes more to handling tail
labels. This discrepancy arises because Micro-F1 is dominated
by head labels, making it less sensitive to performance on tail
labels. In contrast, Macro-F1 treats all labels equally, providing
a clearer reflection of the model’s performance on tail labels.

C. Long-Tail Hierarchy Study

We sort all the labels in the training set in descending order
based on the number of samples they contain and consider the
labels in the bottom third as tail labels. Due to the insufficient
training samples, the model’s classification performance on
tail labels is often significantly lower than on head labels.
To further illustrate the advantages of our method, we explore
SIHTC’s classification performance on tail labels. Figure 7 and
Figure 8 illustrate the HPT and SIHTC experimental results
of precision on the WOS and RCV1-v2 datasets, respectively.
Due to unclear features, the precision of HPT and SIHTC is
0 on some labels. Figure 9 illustrates the experimental result
of F1 score on the NYT dataset. Compared with HPT, SIHTC
achieves an average precision improvement of 1.39% on the

WOS dataset and 2.6% on the RCV1-v2 dataset; meanwhile,
it achieves an F-score improvement of 1.04% on the NYTimes
dataset. These results demonstrate the superiority of LSE

and LSS in handling few-shot tail labels. Compared to head
labels, tail labels have limited supervision, making the label
structure information crucial for generating more discrimina-
tive text embeddings. Additionally, the non-degenerated label
embeddings learned by LSS reduce the difficulty of model
classification. In conclusion, these two losses promote robust
tail label classification from the perspective of text embedding
and label embedding, which complement each other.

D. Hyperparameter Study

First, we evaluate the impact of the newly introduced
weight hyperparameters γ1 on the performance of SIHTC.
We illustrate the experimental results in Figure 10(a), where
we label the median results for each type of experiment. The
experiments show that larger values of γ1 lead to significant
declines in F1 scores. γ1 value of 0.05 for the WOS dataset,
0.1 for the RCV1 dataset, and 0.01 for the NYT dataset result
in relatively higher and more stable classification performance.
Second, we evaluate the impact of the newly introduced
weight hyperparameters γ2 on the performance of SIHTC and
illustrate the experimental results in Figure 10(b). Compared
to γ1, γ2 is less sensitive. The experiments demonstrate that a
smaller weight for γ2 is sufficient to activate the effect of LSS .
A γ2 value of 5e−3 for the RCV1 and NYT datasets and 5e−2

for the WOS dataset achieves relatively higher classification
performance.

E. Case Study

We conduct case studies on three datasets to explore the
practical optimization effects of SIHTC. [18] categorizes
classification errors into three types: missed, excessive, and
misjudged. In Table VI, we provide example texts in which
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Table VI: Case study on three datasets. We provide each text’s index (WOS and RCV1-v2) or name (NYTimes) in the dataset.
The incorrect labels predicted by HPT and the corrections made by SIHTC are bolded. Notably, the labels predicted by SIHTC
are identical to the ground truth labels.

Type Text HPT Predicted Labels SIHTC Predicted Labels Ground Truth Labels

W
O

S

recall
missed

(7806) Background: Recurrent respiratory tract infections
(RRTIs) have a negative impact on both children ’s. . . Medical Medical/Children’s Health Medical/Children’s Health

remove
excessive

(35573) The immune response is determined by the speed
of the T cell reaction to antigens assured by a state. . .

biochemistry/Immunology biochemistry/Immunology biochemistry/Immunologybiochemistry/Cell biology
correct

misjudged
(21670) Low-cost, high-performance vision sensors in
conjunction with aerial sensing platforms are providing. . . CS/Image processing CS/Computer vision CS/Computer vision

R
C

V
1-

v2

recall
missed

(26276) Bulgaria’s Finance Ministry said on Tuesday it
will meet domestic debt maturity payments due on. . . ECAT/E21/E212 ECAT/E21/E212 ECAT/E21/E212

MCAT/M13/M131 MCAT/M13/M131
remove

excessive
(23864) Expertise ranging from snack packaging design to
nuclear waste disposal and the destruction of chemical. . .

CCAT/C18/C183 CCAT/C18/C183 CCAT/C18/C183ECAT GCAT
correct

misjudged
(24528) Templeton India Asset Management Company
and ITC Threadneedle Asset Management Company. . . CCAT/C15 CCAT/C17/C171 CCAT/C17/C171

N
Y

Ti
m

es

recall
missed

(0787212) Mr. Dole has not rounded up enough votes to
pass his welfare bill. Conservatives like Senator Phil. . . Opinion/Opinion/Editorials

Opinion/Opinion/Editorials Opinion/Opinion/Editorials
Features/Travel/Guides/Destinations/ Features/Travel/Guides/Destinations/

North America/United States North America/United States
remove

excessive
(0538261) She died after a stroke, said her literary agent,
Barbara Kouts.Yoshiko Uchida, a writer of children’s. . .

Features News/Obituaries News/Obituaries
News/Obituaries

correct
misjudged

(1842875) G. THOMAS SIMS and MARK LANDLER-
KLAUS KLEINFELD’S FUTUREas the chief. . .

News/ News/Business News/BusinessNew York and Region

Table VII: Number and proportion of SIHTC correcting three
types of classification errors compared to HPT.

Dataset recall
missed

remove
excessive

correct
misjudged

Total
Number

WOS 105 (25.30%) 121 (29.16%) 189 (45.54%) 415
RCV1-v2 14895 (36.29%) 21988 (53.57%) 4163 (10.14%) 41046
NYTimes 108 (25.84%) 274 (65.55%) 36 (8.61%) 418
Average 5036 (36.07%) 7461 (53.45%) 1463 (10.48%) 13960

SIHTC corrects the three types of errors made by HPT. Since
SIHTC enhances the representation capability of text embed-
dings and the generalization capability of label embeddings, it
can effectively recall missed labels, remove excessive labels,
and correct misjudged labels from HPT’s errors. Even when
the errors involve an entire label path, SIHTC can fully correct
them. Furthermore, we analyze the number and proportion of
SIHTC correcting three types of errors, as shown in Table VII.
Across the three datasets, the average proportions of recalling
missed, removing excessive, and correcting misjudged are
36.07%, 53.45%, and 10.48%, respectively, demonstrating that
SIHTC’s primary advantage over HPT is its ability to avoid
predicting unnecessary labels.

F. Computational Cost of SIHTC
We compare the computational cost of SIHTC with the base

model HPT on the three datasets with batch size of 32, as
shown in Table VIII. SIHTC does not introduce additional
training parameters and maintains a similar evaluation time
compared to HPT. Adding two optimization modules for text
and label embeddings, the training time per epoch increases
by 0.31, 0.31, and 0.36 minutes compared to HPT in the
three datasets, while the evaluation time decreases by 0.07,
0, and 0.11 minutes, respectively. Additionally, the two opti-
mizations of SIHTC result in a 514MB, 516MB, and 518MB
increase in training memory in the three datasets. Since SIHTC
consistently outperforms HPT across all three datasets, the
slight increase in training time and memory consumption is
an acceptable trade-off.

VI. RELATED WORK

A. Hierarchical Text Classification

The labels in hierarchical text classification possess a hierar-
chical structure, which can be represented as a tree [40] [41]
or a directed acyclic graph (DAG). HTC is widely applied
in fields such as research proposal classification [42] and
software requirements classification [43]. We categorize HTC
research into single encoder, dual encoder, and prompt tuning-
based approaches.

Early studies only utilize text encoders, ignoring label
semantic and structural information. Various approaches have
been explored, including reinforcement learning [3], Graph-
CNN [44] [45] and meta-learning [46]. Compared to the
single encoder method, the dual encoder method adds a label
encoder. Zhou et al. [20] propose a dual encoder model
structure that extracts text features and label features, using
hybrid representations for classification. [37] introduces an
information maximization module and a label prior matching
module. With the success of the fine-tuning paradigm, many
studies employ powerful pre-trained language models (PLMs)
as text encoders in HTC. Chen et al. [21] pioneer the approach
of modeling HTC as a semantic matching problem. Wang et
al. [26] propose the use of contrastive learning to inject label
representations into the text encoder. After sufficient training,
this approach yields a hierarchy-aware text representation.

However, due to the significant discrepancy between the
objectives of downstream tasks and pre-training tasks, fine-
tuning does not fully leverage the potential of PLMs. To
address this issue, Wang et al. [15] construct a dynamic virtual
template and label words, using soft prompts to integrate
hierarchical label knowledge. Ji et al. [16] use hard prompts
to construct templates by level, integrating hierarchical label
knowledge into verbalizers and defining a few-shot setting
for HTC. Cai et al. [17] incorporate contrastive learning into
prompt tuning.
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Table VIII: Computational cost statistics of HPT and SIHTC on three datasets with batch 32.

Computational Cost WOS RCV1-v2 NYTimes Average
HPT SIHTC ∆ HPT SIHTC ∆ HPT SIHTC ∆ HPT SIHTC ∆

Params (M) 114.94 114.94 ↑ 0 114.92 114.92 ↑ 0 114.97 114.97 ↑ 0 114.94 114.94 ↑ 0
Training Time (min/epoch) 13.56 13.87 ↑ 0.31 9.35 9.66 ↑ 0.31 10.63 10.99 ↑ 0.36 11.18 11.51 ↑ 0.33

Evaluation Time (min/epoch) 1.96 1.89 ↓ 0.07 0.64 0.64 ↓ 0 3.04 2.93 ↓ 0.11 1.88 1.82 ↓ 0.6
Training Memory (M) 35322 35836 ↑ 514 35352 35868 ↑ 516 35470 35988 ↑ 518 35381 35897 ↑ 516

B. Structural Entropy
Structural entropy, first proposed by Li and Pan [27], is

a metric to measure the uncertainty of graphs. Structural
entropy is a natural extension of Shannon entropy, which
extends from unstructured probability distributions to graphs
with arbitrary structures. Structural information theory uses
an encoding tree to encode graphs. Minimizing structural
entropy can reveal the intrinsic structure of a graph. It is
initially used to analyze biological information structures [47].
In recent years, structural entropy has been widely applied
in various research, including graph structural learning [48],
graph contrastive learning [49], reinforcement learning [50],
social event detection [51], social bot detection [52], graph
classification [53]. [54] proposes a structural entropy-based
loss in graph neural network. However, it is limited to the
original two-dimensional encoding tree. Our work is the first
to extend the structural entropy loss to high-dimensional trees
with an aggregation approach.

VII. CONCLUSION

This paper proposes a novel HTC optimization framework
SIHTC based on structural entropy and singular spectrum
Smoothing, handling long-tailed data and complex label hier-
archies effectively. Firstly, we minimize the structural entropy
of texts within the label hierarchy via a tree aggregation
network and a structural entropy loss function to inject label
structural information into text embeddings, improving their
distinctiveness. Secondly, we smooth the singular spectrum of
the label embedding matrix to mitigate label representation de-
generation and enhance generalization capability, particularly
for tail labels. Experiments on three datasets show that SIHTC
outperforms all baselines and improves tail label classification
performance.
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