
Structural Information-based Hierarchical Diffusion
for Offline Reinforcement Learning

Xianghua Zeng1, Hao Peng1, Yicheng Pan1, Angsheng Li1,2, Guanlin Wu3

1 State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
2 Zhongguancun Laboratory, Beijing, China

3 National University of Defense Technology, Changsha, China
{zengxianghua, penghao, yichengp, angsheng}@buaa.edu.cn,

wuguanlin16@nudt.edu.cn

Abstract

Diffusion-based generative methods have shown promising potential for modeling
trajectories from offline reinforcement learning (RL) datasets, and hierarchical
diffusion has been introduced to mitigate variance accumulation and computa-
tional challenges in long-horizon planning tasks. However, existing approaches
typically assume a fixed two-layer diffusion hierarchy with a single predefined
temporal scale, which limits adaptability to diverse downstream tasks and reduces
flexibility in decision making. In this work, we propose SIHD, a novel Structural
Information-based Hierarchical Diffusion framework for effective and stable offline
policy learning in long-horizon environments with sparse rewards. Specifically,
we analyze structural information embedded in offline trajectories to construct
the diffusion hierarchy adaptively, enabling flexible trajectory modeling across
multiple temporal scales. Rather than relying on reward predictions from local-
ized sub-trajectories, we quantify the structural information gain of each state
community and use it as a conditioning signal within the corresponding diffu-
sion layer. To reduce overreliance on offline datasets, we introduce a structural
entropy regularizer that encourages exploration of underrepresented states while
avoiding extrapolation errors from distributional shifts. Extensive evaluations show
that SIHD significantly outperforms state-of-the-art baselines in decision-making
performance and demonstrates superior generalization across diverse scenarios.

1 Introduction

Offline reinforcement learning (also known as batch RL) [Lange et al., 2012] trains policies using pre-
collected data without further interaction with the environment [Levine et al., 2020]. This paradigm
is particularly well-suited to high-stakes domains where online data collection is costly or infeasible,
such as healthcare [Tang et al., 2022], education [De Lima and Krohling, 2021], and robotic control
[Villaflor et al., 2022]. Out-of-distribution (OOD) states and actions—underrepresented or absent in
offline datasets—often cause temporal-difference learning methods to suffer from severe extrapolation
errors [Kumar et al., 2019, Fujimoto et al., 2019]. Additionally, suboptimal and diverse historical
trajectories give rise to the mode-covering challenge [Chen et al., 2023, 2024b], where conventional
unimodal policies fail to capture the multi-modal nature of offline behavioral strategies.

To mitigate these challenges, recent approaches have incorporated diffusion models [Ho et al., 2020]
with strong generative capacity to build expressive diffusion-based policies [Chen et al., 2023, 2024b].
Offline sequential decision-making has been further reframed as a trajectory generation task, where
diffusion models are conditioned on reward-related signals (e.g., returns or reward-to-go) to generate
high-return sequences [Liang et al., 2023, He et al., 2023]. However, deploying these models in

Preprint.

d) regularized explorationa) offline trajectory b) 2-layer rigid diffusion c) multi-scale hierarchy
Figure 1: Illustrative example of navigation from the green start point to the red goal: (a) the offline
suboptimal trajectory; (b) the rigid two-layer diffusion hierarchy with a single predefined temporal
scale; (c) the adaptive multi-scale hierarchical diffusion framework based on structural information
principles; (d) the enhanced state exploration guided by structural entropy regularization.
long-horizon tasks remains difficult due to the exponential increase in value estimate variance [Ren
et al., 2021] and the high computational cost of iterative denoising steps [Wang et al., 2022].

To improve efficiency in long-horizon decision-making, hierarchical policies have been incorporated
into diffusion-based offline RL, enabling the decomposition of complex tasks into manageable
subproblems guided by intermediate subgoals [Sacerdoti, 1974, Pertsch et al., 2020]. Early approaches
[Ajay et al., 2022, He et al., 2023] introduce manually predefined skills into diffusion models via
one-hot encodings, which limit the scalability of the resulting policies. Subsequently, the HDMI
framework [Li et al., 2023] advances this direction by learning reward-conditioned subgoals and
generating goal-directed trajectories using a hierarchical diffusion model. Building on this, the
Hierarchical Diffuser [Chen et al., 2024a] utilizes lightweight trajectory segmentation to streamline
subgoal inference, further enhancing long-horizon planning performance.

Despite their success, existing methods typically rely on a single predefined temporal scale to
segment offline trajectories (Figure 1(a)) and assume a fixed two-layer diffusion hierarchy composed
of subgoal and action layers (Figure 1(b)). Such rigid structures hinder adaptability to varying
temporal patterns and task-specific complexities, limiting both decision-making performance and
flexibility. Recent work [Evans and Şimşek, 2023] has demonstrated the potential of multi-layer policy
hierarchies, structured from state transition dynamics, to enhance generalization in compositional
long-horizon tasks. This raises a central open challenge in offline RL: how can historical trajectories
be systematically analyzed to construct a diffusion hierarchy that is both generalizable and task-aware?

In this work, we propose a novel Structural Information-based Hierarchical Diffusion framework,
called SIHD, for stable and effective offline policy learning. We begin by extracting structural
information from a similarity-guided topological graph constructed over state elements, from which
tree-structured state communities are derived. Offline trajectories are adaptively segmented based on
community partitioning at each layer, enabling the construction of a multi-scale diffusion hierarchy
(Figure 1(c)). We quantify the structural information gain of each state community and use it as
conditional guidance between adjacent diffusion layers, thereby reducing reliance on reward predic-
tion over locally receptive sub-trajectories. We further introduce a structural entropy regularizer to
promote exploration of underrepresented states in historical trajectories (Figure 1(d)), mitigating over-
reliance on offline datasets. To prevent extrapolation errors arising from distributional shifts between
behavioral and learned policies, this exploration is constrained to the lowest-level communities in
the hierarchy. Comparative evaluations on the D4RL benchmark show that SIHD outperforms both
non-hierarchical and hierarchical state-of-the-art baselines by up to 12.6% in decision-making perfor-
mance and exhibits superior generalization in long-horizon, sparse-reward tasks. Our contributions
are summarized as follows:

•We propose a novel hierarchical diffusion framework that leverages structural information from
historical trajectories to enable adaptive modeling across multiple temporal scales.

• We quantify the structural information gain of each state community and use it as conditional
guidance for the corresponding diffuser over localized sub-trajectories.

•We introduce a structural entropy regularizer that promotes exploration of underrepresented states
within low-level communities, mitigating overreliance on offline datasets and reducing extrapolation
errors from distributional shifts.

•We conduct comprehensive evaluations on the D4RL benchmark, demonstrating that SIHD signifi-
cantly outperforms state-of-the-art baselines in both decision-making performance and generalization
on long-horizon, sparse-reward tasks.

2

2 Related Work

2.1 Hierarchical Decision-Making

Hierarchical reinforcement learning (HRL) [Sacerdoti, 1974, Pertsch et al., 2020] addresses long-
horizon decision-making tasks by decomposing them into layered subtasks, where higher-layer
policies orchestrate lower-layer primitives to enable temporal abstraction. For example, Iris [Man-
dlekar et al., 2020] learns implicit hierarchical policies from offline robotic data, while HiGoC [Li
et al., 2022] integrates hierarchical abstraction with goal-conditioned offline RL for multi-stage
planning. Multi-level hierarchies [Evans and Şimşek, 2023] extend HRL by systematically organizing
skills at varying levels of granularity, enabling flexible adaptation to compositional tasks.

In offline settings, HRL mitigates challenges such as distributional shift and sparse rewards through
structured policy decomposition. OPAL [Ajay et al., 2021] accelerates learning by discovering
reusable primitives from offline datasets, while recent work [Villecroze et al., 2022, Rao et al., 2022]
explores data-driven skill extraction without predefined task hierarchies. Despite these advances,
offline HRL remains prone to instability due to the deadly triad of function approximation, bootstrap-
ping, and off-policy learning [Van Hasselt et al., 2018], further exacerbated by limited data coverage
[Ma et al., 2022] and persistent reward sparsity [Kumar et al., 2020].

These issues underscore the need for more stable and generalizable hierarchical frameworks for offline
policy learning in long-horizon decision-making scenarios with limited interaction and feedback from
the environment.

2.2 Diffusion-based Offline RL

Diffusion models [Ho et al., 2020] have emerged as a powerful tool in offline reinforcement learning
(RL), offering strong distribution-matching and sequence-generation capabilities that help mitigate
extrapolation errors [Kumar et al., 2019, Fujimoto et al., 2019] and poor mode coverage [Chen
et al., 2023, 2024b] commonly observed in conventional methods. By synthesizing high-fidelity
trajectories aligned with offline data, diffusion-based methods [Janner et al., 2022] reformulate
policy optimization as a generative modeling problem, enabling diverse behaviors while avoiding
out-of-distribution actions.

Despite these strengths, diffusion-based offline RL faces challenges in long-horizon tasks, where vari-
ance accumulation across extended trajectories [Ren et al., 2021] and high computational costs [Wang
et al., 2022] limit scalability. Recent work has sought to address these limitations by introducing
hierarchical diffusion models [Li et al., 2023, Chen et al., 2024a], which decompose decision-making
into a two-stage process: high-layer goal planning followed by low-layer action generation. However,
these methods typically rely on fixed temporal segmentation and manually defined two-layer hierar-
chies, limiting their adaptability to tasks requiring dynamic horizon adjustments or reasoning over
multiple temporal scales.

These limitations underscore the need for hierarchical diffusion frameworks that are flexible, task-
aware, and adaptively constructed from offline trajectories to enable robust long-horizon decision-
making in offline RL.

2.3 Structural Information Principles

Structural information principles [Li and Pan, 2016, Li, 2024] quantify uncertainty in graph-based
dynamics through structural entropy and hierarchical partitioning. Specifically, structural entropy
measures the minimum number of bits required to encode the probability distribution of vertices
reachable via a single-step random walk on a graph. In its one-dimensional form, it corresponds to the
Shannon entropy of the graph’s degree distribution, providing an upper bound on dynamic uncertainty.
Hierarchically grouping tightly connected vertices into communities reduces the encoding cost,
yielding a tree-structured partitioning known as an encoding tree. Encoding trees derived from
topological graphs have been effectively applied in graph learning [Wu et al., 2022], network analysis
[Zeng et al., 2024], and decision-making tasks [Zeng et al., 2023a,b].

In this work, we leverage structural information embedded in historical trajectories to construct an
adaptive multi-scale hierarchical diffusion framework, enabling stable and effective policy learning
in long-horizon, sparse-reward environments.

3

3 Preliminaries

In this section, we formalize the foundational concepts of offline reinforcement learning (RL),
diffusion probabilistic models, and structural information principles. The primary notations used
throughout the paper are summarized in Appendix A.1 for reference.

3.1 Offline RL

Reinforcement learning is typically formalized as a Markov Decision Process (MDP) [Bellman,
1957], defined by the tupleM =< S,A,P,R, γ >, where S denotes the state space, A the action
space, P(s′|s, a) the transition function, R(s, a) the reward function, and γ the discount factor.
The objective of a parameterized policy πθ(a|s) is to maximize the expected discounted return,
Es0=s,at∼πθ(·|st),st+1∼P(·|st,at) [

∑∞
t=0 γ

tR(st, at)]. This return is estimated using a state-action
value function Qϕ(s, a), which is learned via temporal-difference methods [Sutton, 1988].

In offline settings, the policy πθ(a|s) is trained exclusively on a static dataset Dπb
= {(s, a, r, s′)}

collected by a behavioral policy πb(a|s). The training objective of offline RL [Wu et al., 2019]
regularizes the learned policy πθ towards the policy πb and is reformulated as follows:

max
πθ

Es∼Dπb
,a∼πθ(·|s) [Qϕ(s, a)− ηDKL [πθ(·|s)||πb(·|s)]] , (1)

where η is the temperature coefficient that balances exploitation and behavioral regularization.

3.2 Diffusion Probabilistic Models

Diffusion probabilistic models [Ho et al., 2020] are generative methods that progressively corrupt
data samples with noise until they resemble a standard Gaussian distribution, and train a model to
reverse this transformation. The forward process gradually adds Gaussian noise ϵ ∼ N (0, I) to data
samples x0 over K steps, according to a predefined variance schedule β1, · · · , βK :

q(x1:K |x0) =

K∏
k=1

q(xk|xk−1), q(xk|xk−1) = N (xk;
√
1− βkxk−1, βkI). (2)

To recover the original data, the reverse process is trained to approximate the reverse transitions
q(xk−1 | xk) by predicting the added noise using a neural network ϵθ, starting from xK ∼ N (0, I):

pθ(x0:K) = p(xK)

K∏
k=1

pθ(xk−1|xk), pθ(xk−1|xk) = N (xk−1;µθ(xk, k),Σθ(xk, k)), (3)

where µθ and Σθ denote the mean and covariance of the predicted Gaussian distribution.

Building on diffusion probabilistic models, the offline decision-making task is framed as a goal-
conditional generative modeling problem [He et al., 2023, Li et al., 2023] by maximizing:

Eτ0∼Dπb
[log pθ(τ0|y(τ0))] , τ0 =

[
s0 s1 · · · sT
a0 a1 · · · aT

]
, (4)

where τ0 is a historical trajectory sampled from Dπb
, and y(τ0) is the conditional information (e.g.,

target cumulative reward or constraint satisfaction).

3.3 Structural Information Principles

In structural information principles [Li and Pan, 2016], the encoding tree T of an undirected graph
G = (V, E) satisfies the following properties: 1) Each node α in T uniquely corresponds to a subset
Vα ⊆ V . 2) The root node λ satisfies Vλ = V . 3) For each leaf node ν in T , Vν is a singleton {v} for
some v ∈ V . 4) For every non-leaf node α with lα children α1, · · · , αlα , the subsets {Vαi

}lαi=1 form
a partitioning of Vα, i.e., Vα =

⋃lα
i=1 Vαi and Vαi ∩ Vαj = ∅ for i ̸= j.

The K-dimensional structural entropy of G is defined over all encoding trees T of height hT ≤ K as:

HK(G) = min
hT ≤K

HT (G), HT (G) = −
∑

α∈T ,α̸=λ

[
gα

vol(λ)
· log vol(α)

vol(α−)

]
, (5)

4

𝜖𝜖𝜃𝜃ℎ
∗

offline
trajectories

multi-scale
hierarchy

trajectory
segmentation

community
partitioning

trajectory
planning

entropy
regularization

diffusion model
training

hierarchical
policy sampling

forward noising
process

multi-layer
diffusion

conditional
information

our proposed
framework

𝜏𝜏0 𝒯𝒯𝑠𝑠∗ 𝜏𝜏𝑠𝑠𝑠𝑠
ℎ,𝑖𝑖

𝜏𝜏𝑔𝑔
ℎ,𝑖𝑖

𝑦𝑦(𝜏𝜏𝑔𝑔
ℎ,𝑖𝑖) 𝜏𝜏𝑔𝑔,𝑘𝑘

ℎ,𝑖𝑖𝜖𝜖𝜃𝜃ℎ

𝑎𝑎𝑡𝑡 ℒ𝜃𝜃

𝒯𝒯𝑠𝑠∗

regularized explorationconditional diffusionhierarchy construction

Figure 2: The proposed SIHD framework comprising the hierarchy construction, conditional diffusion,
and regularized exploration modules.

where α− denotes the parent of a non-root node α, vol(α) =
∑

v∈Vα dv is the sum of degrees
(volume) of the vertex subset Vα, and gα is the total weight of edges that cross the cut between Vα
and its complement V \ Vα.

4 The SIHD Framework

In this section, we present the detailed design of the proposed SIHD framework, whose overall
architecture is illustrated in Figure 2. Superscripts h and i denote the diffusion layer and the temporal
index within the same layer, respectively, while subscripts g and sa indicate subgoal sequences and
state-action subtrajectories.

The hierarchy construction module models the topological structure of offline states based on feature
similarity and identifies hierarchical communities by optimizing structural entropy to construct an
adaptive multi-scale diffusion hierarchy (see Section 4.1). The conditional diffusion module feeds
temporally segmented trajectories into corresponding layers of a shared diffusion model, integrating
quantized rewards and structural signals to perform forward diffusion and reverse inference at multiple
time scales (see Section 4.2). The regularized exploration module employs structural entropy as
a measure of generative diversity and adds a regularization loss that encourages exploration of
underrepresented offline states during both training and inference (see Section 4.3).

4.1 Multi-Scale Diffusion Hierarchy

Instead of the rigid two-layer diffusion hierarchy operating at a single scale [Li et al., 2023, Chen
et al., 2024a], we leverage feature similarity to identify structural relationships among offline states
and derive a tree-structured partitioning of state communities to construct the trajectory-adaptive
multi-scale hierarchical diffusion framework.

Starting from historical trajectories Dπb
(Figure 3(a)), we extract all state elements s ∈ S to form

the vertex set S of observed states and establish weighted edges based on feature similarity (e.g.,
cosine similarity) between each vertex and its top-k nearest neighbors, thereby forming the k-nearest-
neighbor state graph Gs. We determine the parameter k by selecting the value that maximizes the
upper bound of dynamic uncertainty, H1(Gs), to promote structural expressiveness for encoding
trees over Gs. We then apply the HCSE optimization algorithm Pan et al. [2025] to derive the height-
K optimal encoding tree T ∗

s that minimizes the K-dimensional structural entropy HK(Gs). The
optimization procedure is detailed in Appendix A.2. As discussed in Section 3.3, the encoding tree
T ∗
s represents a tree-structured partitioning of Gs into communities (Figure 3(b)), where each node α

corresponds to a state community Vα ⊆ S at a particular level of granularity, and the parent-child
relationships reflect the hierarchical inclusion structure among communities.

Based on the community partitioning defined by T ∗
s , we perform adaptive hierarchical segmentation

for each trajectory τ0 in Dπb
(Figure 3(c)). Specifically, for each layer h, we obtain the set of nodes

Uh at height h from T ∗
s . We then segment the trajectory τ0 according to the community assignment

defined by Uh, ensuring each resulting segment τh,isa is a temporally continuous sequence of states
from the same community. Each trajectory segment τh,isa is formally defined as follows:

τh,isa =

[
s∑i−1

j=1 lh,j
sa +1 · · · s∑i

j=1 lh,j
sa

a∑i−1
j=1 lh,j

sa +1 · · · a∑i
j=1 lh,j

sa

]
, ghi = s∑i

j=1 lh,j
sa

, (6)

5

… …

…

𝛼𝛼
𝜆𝜆

𝛼𝛼𝑖𝑖

𝜈𝜈

b) community partitioning

𝜏𝜏𝑔𝑔
𝒦𝒦,1 = 𝑔𝑔𝑖𝑖𝒦𝒦−1 𝑖𝑖=1

𝑙𝑙𝑔𝑔
𝒦𝒦,1

𝜏𝜏𝑔𝑔
ℎ,𝑖𝑖 = [𝑔𝑔∑𝑘𝑘=1𝑖𝑖−1 𝑙𝑙𝑔𝑔

ℎ,𝑘𝑘+𝑗𝑗
ℎ−1]𝑗𝑗=1

𝑙𝑙𝑔𝑔
ℎ,𝑖𝑖

𝜏𝜏𝑔𝑔
1,𝑖𝑖 = 𝜏𝜏𝑠𝑠𝑠𝑠

1,𝑖𝑖

… …

… …

d) multi-layer subgoalsa) offline trajectories c) hierarchical segmentation

𝜏𝜏𝑠𝑠𝑠𝑠
𝒦𝒦,1 =

𝑠𝑠1 ⋯ 𝑠𝑠𝑇𝑇
𝑎𝑎1 ⋯ 𝑎𝑎𝑇𝑇

𝜏𝜏𝑠𝑠𝑠𝑠
ℎ,1 𝜏𝜏𝑠𝑠𝑠𝑠

ℎ,𝑖𝑖 𝜏𝜏𝑠𝑠𝑠𝑠
ℎ,𝑙𝑙𝑔𝑔ℎ

… …

… …

𝜏𝜏𝑠𝑠𝑠𝑠
0,1 = [

𝑠𝑠1
𝑎𝑎1] 𝜏𝜏𝑠𝑠𝑠𝑠

0,𝑖𝑖 = [
𝑠𝑠𝑖𝑖
𝑎𝑎𝑖𝑖] 𝜏𝜏𝑠𝑠𝑠𝑠

0,𝑇𝑇 = [
𝑠𝑠𝑇𝑇
𝑎𝑎𝑇𝑇]

Figure 3: Construction of the multi-scale hierarchical diffusion framework by minimizing the
structural entropy of offline trajectories, deriving tree-structured community partitioning, segmenting
trajectories hierarchically, and extracting multi-layer subgoal sequences.

where i represents the temporal index of the i-th segment at layer h, and the final state in τh,isa is
designated as the subgoal ghi . The variable lh,isa denotes the sequence length (i.e., temporal receptive
field) of the segment τh,isa . The complete segmentation procedure is detailed in Appendix A.4.

We integrate the K-layer subgoals, extracted from the segmentation hierarchy (Figure 3(d)), into
the control-as-inference framework [Levine, 2018] to define a hierarchical, multi-scale diffusion
framework. At each layer h, we define a subgoal sequence τhg of length lhg , where for each subgoal
ghi , the corresponding subgoal sequence τh,ig ⊆ τh−1

g at the next lower layer is defined recursively as:

τh,ig =

{[
gh−1∑i−1

j=1 lh,j
g +1

· · · gh−1∑i
j=1 lh,j

g

]
if h > 1,

τh,isa if h = 1.
(7)

The temporal scale lh,ig of subgoal ghi is not predefined but inferred from the hierarchical partitioning
in T ∗

s and the reference trajectory τ0. For the base case where h = 1, the lower-layer subgoal
sequence τh,ig corresponds to the state-action segment τh,isa .

Following the control-as-inference paradigm, we introduce a binary optimality variable Oi indicating
whether the trajectory segment τK−1,i

sa is optimal with respect to the subgoal gK−1
i . The posterior

probability of Oi is modeled using a Boltzmann distribution over the cumulative reward:

p(Oi = 1|gK−1
i , τK−1,i

sa) ∝ exp

lK−1,i
sa∑
k=1

R
(
s∑i−1

j=1 lK−1,j
sa +k, a

∑i−1
j=1 lK−1,j

sa +k

). (8)

The following theorem enables the decomposition of the conditional generation problem for offline
trajectories into a hierarchical diffusion process with dynamic temporal scales across multiple layers.
The detailed proof is provided in Appendix B.1.
Theorem 4.1. Given the K-layer subgoals for each offline trajectory τ0, constructed as described
above, the conditional probability in Equation 4 can be factorized as follows:

p(τ0|y(τ0)) ∝ p(τK,1
g)y(τK,1

g) ·
K−1∏
h=1

lhg∏
i=1

p(τh,ig)y(τh,ig), (9)

where y(τK,1
g) = exp

(∑T
t=0R(st, at)

)
captures the cumulative reward over the full trajectory

τ0, y(τh,ig) imposes subgoal satisfaction constraints via a Dirac delta function, ensuring exact
compliance, and lhg denotes the length of the subgoal sequence τhg at the h-th layer.

4.2 Conditional Diffusion Model

At the top of the hierarchy, the diffusion model generates a subgoal sequence conditioned on the
overall task reward. Subsequent layers generate subgoal sequences at intermediate levels of the
hierarchy or state-action sequences at the base level, with each generation process conditioned on
the parent subgoal. At each of these layers, we compute the structural information gain within
the associated state communities, integrating it into classifier-free guidance to enhance conditional
sequence generation.

For the h-th diffuser, we denote each target sequence τh,ig (a subgoal sequence if h > 1, or a state-
action sequence if h = 1) as the input τh,ig,0 to the diffusion process. We then iteratively construct a

6

sequence of progressively noised samples τh,ig,k via the forward diffusion process:

q(τh,ig,k|τ
h,i
g,k−1) = N (τh,ig,k;

√
1− βkτ

h,i
g,k−1, βkI), 1 ≤ i ≤ lhg . (10)

To reduce training overload, we adopt a shared diffusion model ϵθh for layer h. This model operates
with classifier-free guidance [Liu et al., 2023] to jointly predict the noise term ϵ ∼ N (0, I) and
estimate the reverse-step posterior distribution pθh(τ

h,i
g,k−1 | τ

h,i
g,k) at each diffusion step k:

pθh(τ
h,i
g,k−1|τ

h,i
g,k) = N (τh,ig,k−1;µθh ,Σθh), ϵ̂ = ϵθh(τ

h,i
g,k, (1− ω)y(τh,ig,k) + ω∅, k), (11)

where µθh and Σθh denote the mean vector and covariance matrix of the estimated noise ϵ̂. The
symbol ∅ represents the absence of conditional input and replaces y(τh,ig,k) during unconditional
generation with a guidance weight ω.

As specified in Theorem 4.2, the conditional input to the highest-level diffusion model, y(τK,1
g,k), is

defined as the exponential of the cumulative reward over the full trajectory τ0. At lower layers, we
use structural information-based values instead of cumulative rewards. For each sequence τh,ig , we
identify the tree node α at height h in the encoding tree T ∗

s such that all states in the corresponding
state-action segment τh,isa belong to the community Vα. We then define the conditional input y(τh,ig)
as the structural information gain of node α:

y(τh,ig) = HT ∗
s (Gs;α) = −

gα
vol(λ)

· log vol(α)

vol(α−)
. (12)

This gain term quantifies the additional information required to infer that a single-step random state
transition in Gs occurs within the lower-level segment τh,isa , given prior knowledge, provided by
the subgoal ghi , that the transition is contained within the higher-level segment τh+1,j

sa . To ensure
consistency with the hierarchical subgoal constraints defined in Theorem 4.2, we replace the terminal
state of each denoised trajectory τ̂h,ig,0 with its corresponding subgoal ghi .

4.3 Structural Entropy Regularizer

To mitigate overreliance on the limited state coverage of offline datasets, we introduce a structural
entropy-based exploration regularizer that encourages the hierarchical diffusion policy to explore un-
derrepresented regions of the state space while limiting extrapolation errors resulting from deviations
from the offline behavioral policy.

For each trajectory τ0, we extract the state transition (st, st+1) at each timestep t and estimate
the transition probability pθ1(st+1, st) using the base-layer diffusion model ϵθ1 . These estimated
transition probabilities are used in place of feature similarity metrics to construct a new topology
over the state set S, resulting in a complete weighted state graph G′s, where each edge weight reflects
diffusion-inferred transition likelihood. In G′s, the weighted degree of each state s ∈ S is defined
as its diffusion-based visitation probability pθ1(s), computed by summing the incoming transition
probabilities. We define the structural entropy of the graph G′s under the encoding tree T ∗

s as:

HT ∗
s (G′s) = −

∑
α∈T ∗

s ,α ̸=λ

[∑
si /∈Vα

∑
sj∈Vα

pθ1(si, sj)∑
s∈V pθ1(s)

· log
∑

s∈Vα
pθ1(s)∑

s∈Vα−
pθ1(s)

]
. (13)

The following theorem provides a variational lower bound onHT ∗
s (G′s) and establishes its theoretical

connection to the Shannon entropy of the state distribution pθ1 over S. A detailed proof is provided
in Appendix B.2.
Theorem 4.2. For the encoding tree T ∗

s and the complete weighted state graph G′s, the structural
entropyHT ∗

s (G′s) admits the variational lower bound related to the Shannon entropyH(S):

H(S)−
K−1∑
h=1

[ηh · H(Uh)] ≤ HT ∗
s (G′s) ≤ H(S), (14)

where each layer-specific weight ηh is defined as the maximum of
∑lα

i=1 gαi
−gα

vol(α) over all nodes α at
height h in T ∗

s for the state graph G′s.

7

Algorithm 1 The SIHD Planning Algorithm

1: Input: hierarchical diffusion probabilistic models {ϵθh}Kh=1, the initial state s0 ∈ S , the planning
horizon H , the maximal cumulative reward rmax in Dπb

2: Output: the action sequence {at}H−1
t=0

3: Initialize the hierarchical subgoal sequence τh,1g ← [s0] for 2 ≤ h ≤ K
4: Initialize the state-action sequence τ1,1g [0, :] = [s0] and τ1,1g [1, :] = [∅] at the 1-th layer
5: for t← 0 to H − 1 do
6: Sampling the starting noised sequence τ̂1,1g ∼ N (0, I)
7: τ̂1,1g,k [:, : l

1,1
g]← τ1,1g

8: if τ2,1g [−1] is satisfied then
9: τ2,1g ← fsu(2, {ϵθh}Kh=1, {τh,1g }Kh=1, rmax)

10: end if
11: for k ← K to 1 do
12: α← select the 1-layer node according to τ2,1g [−1]
13: Calculate the conditional information y(τ̂1,1g,k) via Equation 12
14: ϵ̂← ϵθ1(τ̂

1,1
g,k , (1− ω)y(τ̂1,1g,k) + ω∅, k)

15: (µθ1 ,Σθ1)← extract the mean vector and covariance matrix from ϵ̂

16: τ̂1,1g,k−1 ∼ N (µθ1 , βkΣθ1)
17: end for
18: τ1,1g [0, :]← τ1,1g [0, :] + τ̂1,1g,0 [0, l

1,1
g]

19: τ1,1g [1, :]← τ1,1g [1, : l1,1g − 1] + [τ̂1,1g,0 [1, l
1,1
g], ∅]

20: end for
21: Return the sequence τ1,1g [1, :] as the action sequence {at}H−1

t=0

To promote more balanced coverage of the state space, we maximize the Shannon entropy H(S)
over the state distribution, thereby improving exploration of underrepresented states and reducing
dependency on historical trajectories. Conversely, to preserve the decision-making hierarchy encoded
in T ∗

s , we minimize the structural entropyH(Uh) (structural entropy of the community partition at
each layer h), with appropriate weighting ηh. This regularization discourages large deviations from
the behavioral policy πb and mitigates extrapolation errors.

The regularized training objective for each diffusion model ϵθh is defined as:

L(θh) = E
lhg∑
i=1

||ϵθh(τh,ig,k, (1− ω)y(τh,ig,k) + ω∅, k)− ϵ||2 − ηIh=1

H(S)− K−1∑
j=1

[ηj · H(Uj)]

 ,

(15)
where Ih=1 is an indicator function equal to 1 if h = 1, and η is a weighting coefficient for the entropy
regularization term. The training procedure of the SIHD framework is summarized in Appendix A.5.

4.4 The SIHD Planning

During inference, our SIHD planner proceeds as follows: We first initialize each hierarchy’s subgoal
buffers and the one-layer state–action sequence (lines 3 and 4 in Algorithm 1). For each planning
step, we (i) sample an initial noisy latent sequence from the diffuser prior (lines 6 and 7 in Algorithm
1), (ii) invoke the subgoal proposer to revise the top-level goal if its terminal criterion is satisfied
(lines 8–10 in Algorithm 1), and (iii) execute a reverse-diffusion rollout across latent timesteps, where
at each diffuser step we sample the next latent sequence (lines 11–17 in Algorithm 1). Finally, we
decode and update the one-layer state–action sequence (lines 18 and 19 in Algorithm 1), and after H
iterations, we output the action trajectory (line 21 in Algorithm 1).

5 Experiment

In this section, we conduct comparative experiments on the D4RL benchmark [Fu et al., 2020], cover-
ing standardized offline and long-horizon planning tasks, to evaluate decision-making performance

8

Table 1: Performance comparison between SIHD and baseline methods on the Medium-Expert,
Medium, and Medium-Replay datasets from the D4RL Gym-MuJoCo benchmark tasks: “average
reward ± standard deviation". Bold: the best performance, underline: the second performance.

Gym-MuJoCo
Tasks

HalfCheetah Hopper Walker2D
Expert Medium Replay Expert Medium Replay Expert Medium Replay

CQL 91.6 44.0 45.5 105.4 58.5 95.0 108.8 72.5 77.2
IQL 86.7 47.4 44.2 91.5 66.3 94.7 109.6 78.3 73.9
DT 86.8 42.6 36.6 107.6 67.6 82.7 108.1 74.0 66.6

MoReL 53.3 42.1 40.2 108.7 95.4 93.6 95.6 77.8 49.8
TT 95.0 46.9 41.9 110.0 61.1 91.5 101.9 79.0 82.6

Diffuser 88.9± 0.3 42.8± 0.3 37.7± 0.5 103.3± 1.3 74.3± 1.4 93.6± 0.4 106.9± 0.2 79.6± 0.6 70.6± 1.6
HDMI 92.1± 1.4 48.0± 0.9 44.9± 2.0 113.5± 0.9 76.4± 2.6 99.6± 1.5 107.9± 1.2 79.9± 1.8 80.7± 2.1

HD 92.5± 0.3 46.7± 0.2 38.1± 0.7 115.3± 1.1 99.3± 0.3 94.7± 0.7 107.1± 0.1 84.0± 0.6 84.1± 2.2
SIHD 94.4± 0.5 48.7± 1.1 47.0± 0.4 117.7± 1.4 103.1± 0.8 101.5± 1.3 110.3± 0.9 88.3± 0.9 89.7± 1.9

Abs.(%) Avg. 1.9(2.1) 0.7(1.5) 1.5(3.3) 2.4(2.1) 3.8(3.8) 1.9(1.9) 0.7(0.6) 4.3(5.1) 5.6(6.7)

Table 2: Performance comparison between SIHD and baseline methods on the U-Maze, Medium,
and Large datasets from the Maze2D and AntMaze tasks: “average reward ± standard deviation".
Bold: the best performance, underline: the second performance.

Gym-MuJoCo
Tasks

Single-task Maze2D Multi-task Maze2D AntMaze
U-Maze Medium Large U-Maze Medium Large U-Maze Medium Large

IQL 47.4 34.9 58.6 24.8 12.1 13.9 62.2 70.0 47.5
MPPI 33.2 10.2 5.1 41.2 15.4 8.0 - - -

Diffuser 113.9± 3.1 121.5± 2.7 123.0± 6.4 128.9± 1.8 127.2± 3.4 132.1± 5.8 76.0± 7.6 31.9± 5.1 -
IRIS - - - - - - 89.4± 2.4 64.8± 2.6 43.7± 1.3

HiGoC - - - - - - 91.2± 1.9 79.3± 2.5 67.3± 3.1
HDMI 120.1± 2.5 121.8± 1.6 128.6± 2.9 131.3± 1.8 131.6± 1.9 135.4± 2.5 - - -

HD 128.4± 3.6 135.6± 3.0 155.8± 2.5 144.1± 1.2 140.2± 1.6 165.5± 0.6 94.0± 4.9 88.7± 8.1 83.6± 5.8
SIHD 144.6± 2.9 148.5± 2.6 161.7± 3.4 157.0± 0.6 156.8± 1.7 169.4± 2.7 96.5± 2.8 92.2± 5.0 89.4± 4.2

Abs.(%) Avg. 16.2(12.6) 12.9(9.5) 5.9(3.8) 12.9(9.0) 16.6(11.8) 3.9(2.4) 2.5(2.7) 3.5(3.9) 5.8(6.9)

and generalization capabilities of the SIHD framework. The source code is publicly available via
an anonymized link for peer review1. All experiments are run with five random seeds. Additional
analyses, including hyperparameter sensitivity and visualization of model behavior, are provided in
Appendix C.

5.1 Offline Reinforcement Learning

We begin by evaluating the SIHD framework, configured withK = 3 diffusion layers, on standardized
Gym-MuJoCo tasks, characterized by dense rewards and short horizons. This setup allows us to assess
SIHD’s offline decision-making capabilities across datasets of varying quality. For comparison, we
consider both non-hierarchical and hierarchical state-of-the-art baselines. These include model-free
methods such as CQL [Kumar et al., 2020], IQL [Kostrikov et al., 2022], and Decision Transformer
(DT) [Chen et al., 2023]; model-based methods such as MoReL [Kidambi et al., 2020] and Trajectory
Transformer (TT) [Janner et al., 2021]; and diffusion-based methods such as Diffuser [Janner et al.,
2022], HDMI [Li et al., 2023], and Hierarchical Diffuser (HD) [Chen et al., 2024a].

As shown in Table 1, SIHD consistently achieves the highest average reward on offline datasets of
varying quality for each task, demonstrating strong decision-making performance and generalization
ability. Although hierarchical diffusion baselines such as HDMI and HD perform competitively
on most datasets, they show degraded performance on others (e.g., Medium-Replay HalfCheetah
and Medium-Expert Walker2d), likely due to their simplistic two-layer hierarchies and fixed single
temporal scales. These results underscore the importance of incorporating an additional diffusion
layer and adaptively inferred temporal scales from offline trajectories to enhance hierarchical diffusion
performance. On the high-quality Medium-Expert dataset, SIHD achieves an average performance
improvement of 1.6% over the baselines. On the Medium and Medium-Replay datasets, which reflect
average data quality, the performance advantage of SIHD is more pronounced, achieving performance
improvements of 3.8% and 3.9%, respectively. These improvements demonstrate that SIHD alleviates
dependence on high-quality offline datasets by introducing structural entropy-regularized exploration,
thereby enabling more effective offline policy learning.

5.2 Long-Horizon Planning

We next evaluate the long-horizon decision-making performance of SIHD, configured with an
increased number of diffusion layers (K = 4), on two sparse-reward navigation tasks: Maze2D

1https://github.com/SELGroup/SIHD.git

9

https://github.com/SELGroup/SIHD.git

Expert Medium Replay
90

100

110

120

Ep
is

od
ic

 R
et

ur
n

Hopper

Expert Medium Replay

80

90

100

110

Walker2D

U-Maze Medium Large
120

140

160

Maze2D

U-Maze Medium Large

80

90

100

AntMaze
SIHD SIHD-DH SIHD-CG SIHD-ER

Figure 4: Ablation study on hierarchical construction, conditional diffusion, and regularized explo-
ration within the SIHD framework, evaluated in the D4RL benchmark.

and AntMaze. In these environments, the agent receives a positive reward only upon successfully
reaching a target location within an episode. The high-dimensional and noisy observations in these
environments further exacerbate the decision-making challenges. In addition to the baselines used for
Gym-MuJoCo, we include leading methods—MPPI [Williams et al., 2016], IRIS [Mandlekar et al.,
2020], and HiGoC [Li et al., 2022]—as additional baselines for Maze2D and AntMaze. Following
prior studies [Janner et al., 2022, Chen et al., 2024a], we introduce a multi-task variant of Maze2D in
which the target location is randomized in each episode.

As shown in Table 2, SIHD achieves superior decision-making performance across all datasets,
consistently attaining the highest task rewards among compared methods. Specifically, SIHD
achieves average improvements in reward of 8.3%, 7.4%, and 4.4% in the single-task Maze2D,
multi-task Maze2D, and AntMaze tasks, respectively. Compared to the results on Gym-MuJoCo
tasks, SIHD demonstrates a more pronounced performance advantage in navigation tasks, attributable
to its deeper diffusion hierarchy, which better supports the long-term decision-making demands
of these environments. Furthermore, SIHD demonstrates more stable performance across varying
data qualities. For example, while the second-best performing HD baseline suffers maximum
performance drops of 27.4, 25.3, and 10.4 in the three task settings, SIHD limits these drops to just
17.1, 12.6, and 7.1, respectively. This robustness stems from the structural entropy regularizer, which
encourages exploration of underrepresented states, reduces reliance on historical trajectories, and
thereby enhances generalization ability.

5.3 Ablation Study

To assess the contributions of key SIHD modules, we perform ablation studies on two Gym-MuJoCo
tasks (Hopper and Walker2d) and two single-task navigation environments (Maze2D and AntMaze).
Three model variants are constructed by selectively disabling core components: (1) replacing the
multi-scale hierarchy (see Section 4.1) with a rigid two-layer single-scale diffuser (SIHD-DH); (2)
removing the classifier-based guidance (see Section 4.2) (SIHD-CG); and (3) removing the structural
entropy regularizer (see Section 4.3) (SIHD-ER). As shown in Figure 4, the full SIHD framework
consistently outperforms all three ablated variants, highlighting the importance of each component.
Notably, SIHD-DH shows a larger performance drop than SIHD-CG and SIHD-ER, underscoring
the critical role of the multi-scale diffusion hierarchy. This effect becomes even more pronounced in
long-horizon decision-making tasks. Additional experiments on sensitivity analysis, computational
efficiency, extended ablation studies, and qualitative comparison are provided in Appendix C.

6 Conclusion

This work proposes SIHD, a novel hierarchical diffusion framework that leverages structural infor-
mation embedded in historical trajectories to construct an adaptive multi-scale diffusion hierarchy
and promote exploration of underrepresented states in offline datasets, thereby enabling effective
policy learning. Extensive evaluations on the challenging D4RL benchmark demonstrate the superior
decision-making performance and generalization capabilities of SIHD across diverse offline RL tasks.
In future work, we aim to refine the hierarchical diffusion framework by further exploring how to
more effectively represent and integrate subgoal constraints as conditional information. We also
plan to extend the SIHD framework to other offline RL environments and broader diffusion-based
generative modeling domains.

10

Acknowledgments

The corresponding author is Yicheng Pan. This work is partly supported by National Key R&D
Program of China through grant 2021YFB3500700, NSFC through grants 62322202, 62441612
and 62432006, Local Science and Technology Development Fund of Hebei Province Guided by the
Central Government of China through grants 246Z0102G and 254Z9902G, the Pioneer and Leading
Goose R&D Program of Zhejiang through grant 2025C02044, National Key Laboratory under grant
241-HF-D07-01, Beijing Natural Science Foundation through grant L253021, Hebei Natural Science
Foundation through grant F2024210008, and Major Science, Technology Special Projects of Yunnan
Province through grants 202502AD080012 and 202502AD080006, CCF-DiDi GAIA Collaborative
Research Fund through grant 202527, and partly supported by State Key Laboratory of Complex &
Critical Software Environment through grant CCSE-2024ZX-20.

References
Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline

primitive discovery for accelerating offline reinforcement learning. In International Conference on
Learning Representations, 2021.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? In NeurIPS 2022 Foundation
Models for Decision Making Workshop, 2022.

Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, pages
679–684, 1957.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion. In The Twelfth International Conference on Learning Representations,
2024a.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learn-
ing via high-fidelity generative behavior modeling. In International Conference on Learning
Representations, 2023.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. In International Conference on Learning Representations, 2024b.

Leandro M De Lima and Renato A Krohling. Discovering an aid policy to minimize student evasion
using offline reinforcement learning. In 2021 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2021.

Joshua B Evans and Özgür Şimşek. Creating multi-level skill hierarchies in reinforcement learning.
Advances in Neural Information Processing Systems, 36:48472–48484, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pages 2052–2062. PMLR, 2019.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. Advances in neural information processing systems, 36:64896–64917, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pages 9902–9915.
PMLR, 2022.

11

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pages 45–73. Springer, 2012.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Angsheng Li. Science of Artificial Intelligence: Mathematical Principles of Intelligence (In Chinese).
Science Press, Beijing, 2024.

Angsheng Li and Yicheng Pan. Structural information and dynamical complexity of networks. IEEE
Transactions on Information Theory, 62:3290–3339, 2016.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning through goal-
conditioned offline reinforcement learning. IEEE Robotics and Automation Letters, 7(4):10216–
10223, 2022.

Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision
making. In International Conference on Machine Learning, pages 20035–20064. PMLR, 2023.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. In International Conference on Machine
Learning, pages 20725–20745. PMLR, 2023.

Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan, Yuxiao Hu, Humphrey
Shi, Anna Rohrbach, and Trevor Darrell. More control for free! image synthesis with semantic
diffusion guidance. In Proceedings of the IEEE/CVF winter conference on applications of computer
vision, pages 289–299, 2023.

Jason Yecheng Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned
reinforcement learning via f -advantage regression. Advances in Neural Information Processing
Systems, 35:310–323, 2022.

Ajay Mandlekar, Fabio Ramos, Byron Boots, Silvio Savarese, Li Fei-Fei, Animesh Garg, and Dieter
Fox. Iris: Implicit reinforcement without interaction at scale for learning control from offline robot
manipulation data. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 4414–4420. IEEE, 2020.

Yicheng Pan, Bingchen Fan, Pengyu Long, and Feng Zheng. An information-theoretic perspective
of hierarchical clustering on graphs. In UAI, volume 286 of Proceedings of Machine Learning
Research, pages 3322–3345. PMLR, 2025.

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn,
and Sergey Levine. Long-horizon visual planning with goal-conditioned hierarchical predictors.
Advances in Neural Information Processing Systems, 33:17321–17333, 2020.

12

Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli,
Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas Heess, et al. Learning
transferable motor skills with hierarchical latent mixture policies. In International Conference on
Learning Representations, 2022.

Tongzheng Ren, Jialian Li, Bo Dai, Simon S Du, and Sujay Sanghavi. Nearly horizon-free offline
reinforcement learning. Advances in neural information processing systems, 34:15621–15634,
2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015.

Earl D Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial intelligence, 5(2):115–135,
1974.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3:
9–44, 1988.

Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, and Jenna Wiens. Leveraging
factored action spaces for efficient offline reinforcement learning in healthcare. Advances in neural
information processing systems, 35:34272–34286, 2022.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

Adam R Villaflor, Zhe Huang, Swapnil Pande, John M Dolan, and Jeff Schneider. Addressing
optimism bias in sequence modeling for reinforcement learning. In international conference on
machine learning, pages 22270–22283. PMLR, 2022.

Valentin Villecroze, Harry Braviner, Panteha Naderian, Chris Maddison, and Gabriel Loaiza-Ganem.
Bayesian nonparametrics for offline skill discovery. In International Conference on Machine
Learning, pages 22284–22299. PMLR, 2022.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In Deep Reinforcement Learning Workshop NeurIPS 2022,
2022.

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou. Aggres-
sive driving with model predictive path integral control. In 2016 IEEE international conference on
robotics and automation (ICRA), pages 1433–1440. IEEE, 2016.

Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchical
pooling. In ICML, pages 24017–24030. PMLR, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Xianghua Zeng, Hao Peng, and Angsheng Li. Effective and stable role-based multi-agent collab-
oration by structural information principles. Proceedings of the AAAI Conference on Artificial
Intelligence, (10):11772–11780, Jun. 2023a.

Xianghua Zeng, Hao Peng, Angsheng Li, Chunyang Liu, Lifang He, and Philip S Yu. Hierarchical
state abstraction based on structural information principles. In IJCAI, pages 4549–4557, 2023b.

Xianghua Zeng, Hao Peng, and Angsheng Li. Adversarial socialbots modeling based on structural
information principles. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pages 392–400, 2024.

13

A Framework Details

A.1 Primary Notations

Table 3: Glossary of Notations.
Notation Description
M Markov Decision Process
S;A State space; Action space
P;R Transition function; Reward function
s; a; r Single state, action, and reward
Q;π Value network; Policy Network
τ ;D Single trajectory; Offline dataset
N ; I Gaussian distribution; Diagonal matrix
ϵ;β Gaussian noise; Variance schedule
µ; Σ Mean vector; Covariance matrix
q; p Prior distribution; Posterior distribution
y; g Conditional information; Single sugboal
G; T Topology graph; Encoding tree
V; E Vertex set; Edge set
HK;HT ;H Structural entropy; Shannon entropy
λ; ν Root node; Leaf node
α;U Single node; Node set at specific layer

A.2 Tree Optimization.

The HCSE algorithm is executed iteratively through stretch and compress operations on α-triangle
subtrees, which are rooted at a node α whose children are leaf nodes, as illustrated in Figure 5(a).
In the stretch stage, the α-triangle subtree is transformed into a binary subtree (Figure 5(b)) by
inserting intermediate nodes that pair the children of α, ensuring that the binary branching constraint
is satisfied. In the compress stage, the resulting binary subtree is compressed into a subtree with
exactly three layers of nodes (Figure 5(c)), thereby increasing the height of the subtree by one level.

a) 𝛼𝛼-triangle subtree b) binary subtree c) compressed subtree

compressstretch

Figure 5: The stretch and compress optimization on each α-triangle subtree.

Algorithm 2 summarizes the optimization procedure applied to each graph G. It begins by initializing
a one-layer encoding tree T for G, and then iteratively selects the set of h-layer nodes Uh that yield
the largest structural entropy reduction ∆HT (G;Uh). This reduction is achieved by applying stretch
and compress operations to each α-triangle subtree, where α ∈ Uh. The process continues until the
desired tree height K is reached.

Algorithm 2 The HCSE Optimization

1: Input: a graph G, K ∈ Z+

2: Output: the optimal encoding tree T ∗

3: Initialize the one-layer encoding tree T for G
4: while hT ≤ K do
5: Select the Uh that maximizes ∆HT (G;Uh)
6: if ∆HT (G;Uh) = 0 then
7: Break
8: end if
9: for α ∈ Uh do

10: Execute stretch and compress optimization on the α-triangle subtree
11: end for
12: end while
13: Return the resulting encoding tree T as T ∗

14

A.3 Probability Calculation

To compute the joint probability pθ1(st, st+1) for any adjacent pair of states, we proceed as follows.
We begin by sampling initial Gaussian noise trajectories τ1,1g,K ∼ N (0, I). We then apply the
reverse process described in Equation 11 to iteratively denoise these trajectories, yielding n denoised
trajectories τ1,ig,0|

n

i=1
. From each denoised trajectory, we extract the states at time steps t and t+ 1,

constructing a sample set (sit, s
i
t+1)

n

i=1
. Finally, we apply a two-dimensional Gaussian kernel density

estimator to approximate the joint distribution pθ1(st, st+1).

A.4 Trajectory Segmentation

Algorithm 3 Hierarchical Trajectory Segmentation

1: Input: the K-layer encoding tree T ∗
s , each historical trajectory τ0

2: Output: hierarchical trajectory segments {τh,isa }Kh=1 with 1 ≤ i ≤ lhg
3: for h← K to 1 do
4: Initialize the first segment τh,1sa ← [[s1], [a1]] and the index variable i← 1
5: Extract the node set Uh at the h-th layer
6: for t← 2 to T do
7: for α ∈ Uh do
8: if st−1 ∈ Vα and st ∈ Vα then
9: τh,isa [0, :]← τh,isa [0, :] + [st]

10: τh,isa [1, :]← τh,isa [1, :] + [at]
11: Break
12: else if st−1 ∈ Vα or st ∈ Vα then
13: i← i+ 1
14: τh,isa ← [[st], [at]]
15: Break
16: end if
17: end for
18: end for
19: end for
20: Return the hierarchical segments {τh,isa }Kh=1

A.5 Model Training

Algorithm 4 The SIHD Training Algorithm

1: Input: the offline dataset Dπb
, the maximal tree height K

2: Output: hierarchical diffusion probabilistic models {ϵθh}Kh=1
3: Construct the topology graph Gs for offline states in Dπb

4: Derive the optimal encoding tree T ∗
s via Algorithm 2

5: for each trajectory τ0 in Dπb
do

6: {τh,isa }Kh=1 ← hierarchically segment τ0 via Algorithm 3
7: for h← K to 1 do
8: {τhg } ← extract the subgoal sequence from {τh,isa }

lhg
i=1

9: for i← 1 to lhg do
10: τh,ig ← extract the lower-layer subgoal sequence for ghi ∈ τhg
11: y(τh,ig)← calculate the conditional information of τh,ig

12: τ̂h,ig,0 ← estimate the denoised sequence based on ϵθh
13: Optimize the h-th diffuser ϵθh by minimizing the training loss L(θh) in Equation 15
14: end for
15: end for
16: end for

15

Algorithm 5 Subgoal Updating Function fsu

1: Input: the layer parameter h, hierarchical diffusion probabilistic models {ϵθh}Kh=1, hierarchical
subgoal sequences {τh,1g }Kh=1, the maximal cumulative reward rmax in Dπb

2: Output: the updated subgoal sequences τh,1g
3: if h = K then
4: Sampling the starting noised sequence τ̂K,1

g ∼ N (0, I)
5: Update the noised sequence τ̂K,1

g [: lK,1
g]← τK,1

g
6: for k ← K to 1 do
7: ϵ̂← ϵθK(τ̂

K,1
g,k , (1− ω)rmax + ω∅, k)

8: (µθK ,ΣθK)← extract the mean vector and covariance matrix from ϵ̂

9: τ̂K,1
g,k−1 ∼ N (µθK , βkΣθK)

10: Return the subgoal sequence τK,1
g ← τK,1

g + [τ̂K,1
g,0 [lK,1

g]]
11: end for
12: else
13: if τh+1,1

g [−1] is satisfied then
14: τh+1,1

g ← fsu(h+ 1, {ϵθh}Kh=1, {τh,1g }Kh=1, rmax)
15: end if
16: Sampling the starting noised sequence τ̂h,1g ∼ N (0, I)
17: Update the noised sequence τ̂h,1g [: lh,1g]← τh,1g
18: for k ← K to 1 do
19: α← select the h-layer node according to τh+1,1

g [−1]
20: Calculate the conditional information y(τ̂h,1g,k) via Equation 12
21: ϵ̂← ϵθh(τ̂

h,1
g,k , (1− ω)y(τ̂h,1g,k) + ω∅, k)

22: (µθh ,Σθh)← extract the mean vector and covariance matrix from ϵ̂

23: τ̂h,1g,k−1 ∼ N (µθh , βkΣθh)
24: end for
25: Update the subgoal sequence τh,1g ← τh,1g + [τ̂h,1g,0 [l

h,1
g]]

26: end if

16

A.6 Toy Example

To intuitively illustrate the hierarchical partitioning process, we present a toy example in which SIHD
partitions a trajectory of 1000 timesteps into sub-trajectories at different hierarchy levels h. In each
sub-trajectory, the final state is treated as that segment’s subgoal.

• Level h = K (top, coarsest): {1, 2, . . . , 1000}.
• Level h = K − 1: {1, 2, . . . , 90}, {91, 92, . . . , 200}, . . . , {901, 902, . . . , 1000}.
• Level h = 2 (fine): {1, 2, . . . , 30}, {31, 32, . . . , 47}, . . . , {968, 969, . . . , 1000}.
• Level h = 1 (finest): {1, 2, . . . , 8}, {9, 10, . . . , 15}, . . . , {995, 996, . . . , 1000}.

A.7 Implementation Details

Our SIHD framework is built upon the officially released Diffuser codebase2, leveraging a hierarchical
architecture in which each diffuser processes trajectory segments corresponding to state communities
from the optimal encoding tree. To ensure consistent training across variable-length sequences, we
pad subgoal and state-action segments to fixed sequence lengths—8 for Gym-MuJoCo tasks and 16
for long-horizon navigation tasks—by repeating terminal states. The diffusion backbone employs
a Temporal U-Net [Ronneberger et al., 2015, Ajay et al., 2022] with a Gaussian diffusion process,
configured with multiscale temporal convolutions of 32 dimensions. Optimization is performed using
the Adam optimizer with exponential moving average (EMA) decay of model weights for stable
updates. During training, diffusion models are trained with a batch size of 32, while planning phases
use a larger batch size of 64 to improve sample diversity during guided rollouts.

Horizon settings follow established benchmarks [Janner et al., 2022]: H = 32 for Gym-MuJoCo;
H ∈ {120, 255, 390} for Maze2D (scaling with task complexity); and H ∈ {225, 255, 450} for
AntMaze environments. Classifier-free guidance is applied uniformly across tasks with a fixed
weight of 0.1. The regularization coefficient η is selected from 0.01, 0.05, 0.1, 0.15, 0.2 based on
empirical analysis (see Appendix C). This configuration ensures adaptability across both short-horizon
locomotion and long-horizon navigation tasks while maintaining computational efficiency and stable
performance.

A.8 Limitations

This work proposes the first multi-layer diffusion framework with adaptive temporal scales, lever-
aging structural information embedded in historical trajectories. This design addresses the strict
structure and overreliance on offline datasets observed in existing hierarchical diffusion methods.
On large-scale offline datasets, structural entropy-guided state community partitioning introduces
significant computational overhead. To mitigate this, we precompute the optimal encoding tree
for each dataset and store the layer-wise community partitions in a dictionary-based data structure,
avoiding redundant computation and training-time overhead. Subgoal constraints in the diffusion
hierarchy are implemented using a straightforward ending-state replacement strategy. We leave more
comprehensive exploration of subgoal conditioning strategies to future work. Another important
future direction is extending SIHD to more complex offline RL tasks and broader diffusion-based
generative modeling domains.

2https://github.com/jannerm/diffuser

17

https://github.com/jannerm/diffuser

B Theorem Proofs

B.1 Proof of Theorem 4.1

Proof. We begin by recalling the offline RL objective of modeling the posterior distribution over full
trajectories τ0, conditioned on the optimality O1:lK−1

g
= 1, captured via y(τ0):

p(τ0|y(τ0)) = p(τ0 | O1:lK−1
g

= 1) ∝ p(τ0) · p(O1:lK−1
g

= 1 | τ0). (16)

Using the decomposition of τ0 into subgoal-conditioned segments at layer K − 1, we write:

p(τ0) = p(s0) ·
lK−1
g∏
i=1

p(gK−1
i) · p(τK−1,i

sa | gK−1
i), (17)

where each sub-trajectory τK−1,i
sa denotes the segment of τ0 aimed at achieving the subgoal gK−1

i .

Leveraging the posterior likelihood of optimal variable Oi from Equation 8, we have:

p(τ0|y(τ0)) ∝ p(s0) ·
lK−1
g∏
i=1

p(gK−1
i) exp

lK−1,i
sa∑
k=1

R(s∑i−1
j=1 lK−1,j

sa +k, a
∑i−1

j=1 lK−1,j
sa +k)

 p(τK−1,i
sa | gK−1

i)

= exp

(
T∑

t=0

R(st, at)

)
· p(s0) ·

lK−1
g∏
i=1

p(gK−1
i) · p(τK−1,i

sa | gK−1
i).

(18)

We define the cumulative reward term for the top-level hierarchy as:

y(τK,1
g) := exp

(
T∑

t=0

R(st, at)

)
. (19)

Thus:

p(τ0|y(τ0)) ∝ p(τK,1
g) · y(τK,1

g) ·
lK−1
g∏
i=1

p(τK−1,i
sa | gK−1

i). (20)

Each term p(τK−1,i
sa | gK−1

i) is further recursively decomposed into lower-level subgoal trajectories:

p(τK−1,i
sa | gK−1

i) = p(τK−1,i
g |gK−1

i)

lK−1,i
g∏
k=1

p(τ
K−2,

∑i−1
j=1 lK−1,j

g +k
sa |gK−2∑i−1

j=1 lK−1,j
g +k

). (21)

Here, y(τK−1,i
g) enforces the consistency of the lower-level subgoals with the higher-level goal gK−1

i
using a Dirac delta function:

y(τK−1,i
g) = δgK−1

i
(gK−2∑i−1

j=1 lK−1,j
g +1

, . . . , gK−2∑i
j=1 lK−1,j

g
) =

{
+∞ if gK−2∑i

j=1 lK−1,j
g

= gK−1
i ,

0 otherwise.
(22)

Thus we can write:
p(τK−1,i

g |gK−1
i) = p(τK−1,i

g)y(τK−1,i
g). (23)

Plugging this into our earlier expansion:

p(τ0|y(τ0)) ∝ p(τK,1
g) · y(τK,1

g) ·
lK−1
g∏
i=1

p(τK−1,i
g)y(τK−1,i

g) ·
lK−2
g∏
i=1

p(τK−2,i
sa |gK−2

i). (24)

By recursively applying this decomposition across all levels h = H down to h = 1, we obtain:

p(τ0|y(τ0)) ∝ p(τK,1
g)y(τK,1

g) ·
K−1∏
h=1

lhg∏
i=1

p(τh,ig)y(τh,ig). (25)

18

B.2 Proof of Theorem 4.2

Proof. Let α be an intermediate node (i.e., non-root and non-leaf) in the encoding tree T ∗
s , and let

{αi}lαi=1 denote its children. The structural entropy contribution of α and its children is given by:

HT ∗
s (G′s;α) +

lα∑
i=1

HT ∗
s (G′s;αi) = −

gα
vol(λ)

log
vol(α)

vol(α−)
−

lα∑
i=1

gαi

vol(λ)
log

vol(αi)

vol(α)

= −
gα −

∑lα
i=1 gαi

vol(λ)
log

vol(α)

vol(α−)
−

lα∑
i=1

gαi

vol(λ)
log

vol(αi)

vol(α−)
.

(26)
The total structural entropy of G′s under T ∗

s can be expressed as:

HT ∗
s (G′s) =

∑
α∈T ∗

s ,α ̸=λ

HT ∗
s (G′s;α) =

K−1∑
h=0

∑
α∈Uh

HT ∗
s (G′s;α)

=
∑

α∈UK−1

[
HT ∗

s (G′s;α) +
lα∑
i=1

HT ∗
s (G′s;αi)

]
+

K−3∑
h=0

∑
α∈Uh

HT ∗
s (G′s;α)

= −
∑

α∈UK−1

[
gα −

∑lα
i=1 gαi

vol(λ)
log

vol(α)

vol(λ)
+

lα∑
i=1

gαi

vol(λ)
log

vol(αi)

vol(λ)

]
+

K−3∑
h=0

∑
α∈Uh

HT ∗
s (G′s;α)

= −
K−1∑
h=1

∑
α∈Uh

gα −
∑lα

i=1 gαi

vol(λ)
log

vol(α)

vol(λ)
+
∑
α∈U0

gα
vol(λ)

· log vol(α)

vol(λ)

=
∑
s∈S

pθ1(s) log pθ1(s)−
K−1∑
h=1

∑
α∈Uh

gα −
∑lα

i=1 gαi

vol(λ)
log

vol(α)

vol(λ)

= H(S)−
K−1∑
h=1

∑
α∈Uh

gα −
∑lα

i=1 gαi

vol(λ)
log

vol(α)

vol(λ)
.

(27)
Since for each intermediate node α, the condition gα−

∑lα
i=1 gαi

≤ 0 holds, the upper bound follows:

HT ∗
s (G′s) ≤ H(S). (28)

The structural entropy can further be rewritten in terms of contributions from each layer:

HT ∗
s (G′s) = H(S)−

K−1∑
h=1

∑
α∈Uh

gα −
∑lα

i=1 gαi

vol(λ)
log

vol(α)

vol(λ)

= H(S) +
K−1∑
h=1

∑
α∈Uh

[∑lα
i=1 gαi

− gα
vol(α)

· vol(α)
vol(λ)

log
vol(α)

vol(λ)

]

≥ H(S) +
K−1∑
h=1

[
max
α∈Uh

∑lα
i=1 gαi

− gα
vol(α)

·
∑
α∈Uh

vol(α)

vol(λ)
log

vol(α)

vol(λ)

]

= H(S)−
K−1∑
h=1

[
max
α∈Uh

∑lα
i=1 gαi

− gα
vol(α)

· H(Uh)

]

= H(S)−
K−1∑
h=1

[ηh · H(Uh)] .

(29)

Therefore, the following lower bound holds:

HT ∗
s (G′s) ≥ H(S)−

K−1∑
h=1

[ηh · H(Uh)] . (30)

19

C Additional Experiments

C.1 Sensitivity Analysis

To investigate the effect of key parameters, such as the regularization weight η and maximum tree
height K, on SIHD performance, we conduct sensitivity analysis experiments on the HalfCheetah
and AntMaze tasks. As shown in Figure 6, the decision-making performance of SIHD initially
improves as parameter values increase, but plateaus beyond a certain threshold and may decline with
further increments. In the HalfCheetah task, smaller values of η for the Expert dataset yield better
average rewards, as the offline trajectories are generated by a well-trained behavioral policy, requiring
minimal additional regularization. Conversely, for the Medium dataset, larger values of η lead to
better performance due to the lower quality of the behavioral policy. In the AntMaze task, longer
planning horizons increase the decision-making challenge, and using more diffusion hierarchy layers
results in higher average rewards. However, excessively many diffusion layers shorten the length of
individual subgoal sequences, degrading the quality of sequence modeling. Based on these findings,
we selected K = 4 as a balanced and effective parameter setting.

0.01 0.05 0.1 0.15 0.2
Regularization Weight

93.0

93.5

94.0

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

HalfCheetah-Expert

0.01 0.05 0.1 0.15 0.2
Regularization Weight

47.5

48.0

48.5

HalfCheetah-Medium

2.0 3.0 4.0 5.0 6.0
Maximal Tree Height

90

91

92

AntMaze-Medium

2.0 3.0 4.0 5.0 6.0
Maximal Tree Height

87

88

89

AntMaze-Large

Figure 6: Sensitivity analysis of the regularization weight η and maximum tree height K on the
Expert and Medium datasets of the HalfCheetah task, and the Medium and Large datasets of the
AntMaze task.

C.2 Computational Efficiency

To evaluate computational efficiency and practicality, we compare the training and planning time of
SIHD with baseline methods, including Diffuser and HD, across different Maze2D datasets. To ensure
a fair comparison, we use the publicly available source code and hyperparameter configurations,
and conduct all experiments on an Nvidia A800 GPU. The experimental results are reported in
Table 4. Despite the addition of additional diffusion hierarchy layers, SIHD maintains training and
planning efficiency comparable to the 2-layer hierarchical diffusion (HD) baseline. Compared with
the flat Diffuser baseline, SIHD achieves 82.5% and 54.8% reductions in training and planning time,
respectively, while preserving the computational efficiency benefits of hierarchical diffusion.

Table 4: Comparison of wall-clock time between SIHD and baseline methods (Diffuser and HD) on
the U-Maze, Medium, and Large datasets of the Maze2D task.

Methods Training (s) Planning (s)
U-Maze Medium Large U-Maze Medium Large

Diffuser 11.7 48.3 42.2 0.8 4.7 4.9
HD 5.4 5.8 6.1 0.3 1.9 2.5

SIHD 5.9 6.0 6.0 0.5 1.6 2.6

To further examine the effect of planning horizon on computational cost, we conduct additional exper-
iments on the Medium-Expert Hopper task with horizon settings of 32, 48, and 64, as summarized in
Table 5. While SIHD incurs a slightly higher computational overhead than the HD baseline in most
cases, this additional cost remains modest and does not scale with longer horizons, demonstrating the
practicality and scalability of the approach.

Table 5: Comparison of wall-clock time between SIHD and baseline methods (Diffuser and HD) on
the Expert, Medium, and Replay datasets of the Hopper task under varying planning horizons.

Methods Training (s) Planning (s)
H = 32 H = 48 H = 64 H = 32 H = 48 H = 64

Diffuser 6.1 8.9 11.2 0.8 1.2 1.5
HD 4.4 5.2 5.9 0.5 0.7 0.8

SIHD 4.6 5.5 6.0 0.6 0.7 0.9

20

C.3 Ablation Study

Indeed, additional diffusion layers introduce more capacity or parameters, which may influence
the performance advantages of SIHD. To address concerns about model capacity, we perform an
additional ablation study on the single-task Maze2D benchmark, in which we reduce the parameter
count of each diffusion layer so that the total number of parameters across all layers matches that of the
two-layer HD model. As shown in Table 6, even without increasing overall model capacity, increasing
the number of hierarchical layers yields consistent, significant improvements in performance. This
demonstrates that the benefit of SIHD arises from its hierarchical structure rather than simply from
an increase in parameter count.

Table 6: Performance comparison between SIHD and baseline methods (HDMI and HD) with similar
parameter counts on the Maze2D-U, Maze2D-Medium, and Maze2D-Large datasets.

Methods U-Maze Medium Large
HDMI 120.1± 2.5 121.8± 1.6 128.6± 2.9

HD 128.4± 3.6 135.6± 3.0 155.8± 2.5
SIHD 140.7± 2.1 142.5± 2.9 157.3± 2.0

To assess the impact of community quality on performance, we introduce an ablation variant, SIHD-
FT, which replaces structural entropy-based partitioning with a fixed-interval temporal partitioning
strategy. As shown in Table 7, SIHD-FT yields a clear drop in average return compared to the full
SIHD model. This demonstrates that minimizing structural entropy improves partitioning accuracy
and plays a critical role in identifying key offline states and guiding the construction of effective
hierarchical diffusion hierarchies.
Table 7: Performance comparison between SIHD and the ablation variant, SIHD-FT on the Maze2D-
U, Maze2D-Medium, and Maze2D-Large datasets.

Methods U-Maze Medium Large
SIHD-FT 149.17± 1.7 146.8± 2.1 167.2± 4.8

SIHD 157.0± 0.6 156.8± 1.7 169.4± 2.7

21

C.4 Qualitative Comparison

First, we qualitatively analyze the subgoal sequences sampled by SIHD and the HDMI baseline in a
Maze2D navigation task, which requires navigating from a green starting point to a red goal point. For
visualization purposes, we display the lowest-level subgoals extracted by SIHD. As shown in Figure
7, the subgoals generated by the single time-scale diffusion hierarchy in HDMI are largely fixed and
may not correspond to task-relevant states. In contrast, the multi-scale trajectory segmentation and
adaptive subgoal extraction in SIHD effectively identify key states critical for task completion, such
as turning points along the navigation path, leading to superior decision-making performance.

HDMI Baseline SIHD Framework

Figure 7: Visualization of sampled subgoals comparing SIHD and the HDMI baseline in the Maze2D
navigation task from the starting state (green color) to the goal state (red color).

Second, we visualize the offline trajectories in the Maze2D navigation task, together with trajectories
sampled from SIHD and two classical baselines, Diffuser and HD. As shown in Figure 8, the offline
dataset includes diverse but suboptimal paths with substantial repeated and invalid state explorations.
The trajectory generated by Diffuser does not fully cover the offline dataset and displays relatively
simple behavior patterns. The HD baseline achieves full coverage; however, repeated and invalid
explorations persist and may even intensify due to overreliance on the offline dataset. In comparison,
SIHD generates diverse trajectories while substantially reducing repeated exploration of invalid states.
This improvement is attributed to the structural entropy regularizer, which mitigates overreliance on
the offline dataset and enhances long-horizon decision-making performance.

Offline Trajectories Diffuser HD SIHD

Figure 8: Trajectory visualizations comparing SIHD with classical baselines, Diffuser and HD, in the
Maze2D navigation task from the starting state (green color) to the goal state (red color).

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly outlined the contributions and scope of our paper in the
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have outlined the limitations of our paper in the conclusion and the details
are provided in our appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [Yes]
Justification: For each theoretical result, we have included the complete set of assumptions
and a correct proof in our appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The source codes are accessible via an anonymous link in the experiment
section, and specific experimental setups are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The main experimental results can be replicated using the source codes
accessible via an anonymous link provided in the evaluation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed experimental settings (hyperparameters and opti-
mizer) in our evaluation and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our evaluation section, we have conducted multiple trials with different
random seeds, and the charts reflect the average performance and standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources in our
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper strictly maintains anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is focused on fundamental research in reinforcement learning and is
not specifically tied to any particular applications. Furthermore, there is no direct path to
negative applications.

Guidelines:

26

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We appropriately cited the original papers for our experimental datasets and
models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

27

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

28

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Hierarchical Decision-Making
	Diffusion-based Offline RL
	Structural Information Principles

	Preliminaries
	Offline RL
	Diffusion Probabilistic Models
	Structural Information Principles

	The SIHD Framework
	Multi-Scale Diffusion Hierarchy
	Conditional Diffusion Model
	Structural Entropy Regularizer
	The SIHD Planning

	Experiment
	Offline Reinforcement Learning
	Long-Horizon Planning
	Ablation Study

	Conclusion
	Framework Details
	Primary Notations
	Tree Optimization.
	Probability Calculation
	Trajectory Segmentation
	Model Training
	Toy Example
	Implementation Details
	Limitations

	Theorem Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Additional Experiments
	Sensitivity Analysis
	Computational Efficiency
	Ablation Study
	Qualitative Comparison

