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Abstract
Although Graph Neural Networks (GNNs) have shown promising
potential in fake news detection, they remain highly vulnerable to
adversarial manipulations within social networks. Existing methods
primarily establish connections between malicious accounts and
individual target news to investigate the vulnerability of graph-based
detectors, while they neglect the structural relationships surrounding
targets, limiting their effectiveness in robustness evaluation. In this
work, we propose a novel Structural Information principles-guided
Adversarial Attack Framework, namely SI2AF, which effectively
challenges graph-based detectors and further probes their detection
robustness. Specifically, structural entropy is introduced to quantify
the dynamic uncertainty in social engagements and identify hier-
archical communities that encompass all user accounts and news
posts. An influence metric is presented to measure each account’s
probability of engaging in random interactions, facilitating the de-
sign of multiple agents that manage distinct malicious accounts.
For each target news, three attack strategies are developed through
multi-agent collaboration within the associated subgraph to optimize
evasion against black-box detectors. By incorporating the adversarial
manipulations generated by SI2AF, we enrich the original network
structure and refine graph-based detectors to improve their robust-
ness against adversarial attacks. Extensive evaluations demonstrate
that SI2AF significantly outperforms state-of-the-art baselines in
attack effectiveness with an average improvement of 16.71%, and
enhances GNN-based detection robustness by 41.54% on average.
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1 Introduction
Recent studies [3, 32] have highlighted that the widespread growth
of social media has accelerated the dissemination of misinformation
and fake news. This phenomenon not only undermines public trust
but also has detrimental effects on critical domains such as politics
[1, 5], economics [6], and public safety [34]. Unlike traditional news
articles, fake content on social platforms poses unique challenges
due to its intentionally misleading nature, rapid spread, and high
costs associated with expert verification [25], which necessitates
the development of automated detection mechanisms. Traditional
machine learning detectors [26, 30] employing natural language
processing techniques aim to identify fake content to curb the spread
of misinformation online. However, these approaches face efficiency
limitations, especially in their capacity to account for the unique
dispersion structures and complex spreading behaviors of misinfor-
mation [2]. To bridge this gap, Graph Neural Network (GNN)-based
detectors [18, 21] have emerged, providing a more precise analysis
of the intricate structural patterns in rumor dissemination, thereby
notably enhancing detection accuracy.

Despite advancements in GNN techniques, current graph-based
detectors remain susceptible to adversarial manipulations [4]. While
recent work has extensively explored the resilience of NLP-based
detectors [9, 10], the robustness of graph-based detectors remains
largely under-researched. The Malcom framework was developed
to systematically probe and exploit vulnerabilities in advanced fake
news detection systems through the generation of adversarial com-
ments [12]. Additionally, a reinforcement learning-based attack
strategy was designed to identify specific weaknesses in sophisti-
cated graph-based rumor detectors [19]. The gradient-based GAFSI
framework [41] was introduced to enable general adversarial attacks
against black-box detectors across various graph structures. Rec-
ognizing important social interactions and diverse fraudster types,
a multi-agent reinforcement learning adversarial attack framework
was proposed, employing three types of fraudsters to investigate
the vulnerabilities of graph-based detectors in adversarial scenar-
ios thoroughly [35]. Nevertheless, these methods primarily focus on
associating malicious accounts with individual target news, overlook-
ing the underlying structural relationships within the social network,
which play a pivotal role in the propagation of misinformation.

This work integrates the network’s structural information into
SI2AF, a comprehensive attack framework designed to enhance the
understanding of misinformation dynamics and assess the robust-
ness of graph-based detectors. Initially, we extract user accounts
and news posts from historical engagements to construct a bipar-
tite user-post graph, where interactions between users and posts are
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Figure 1: Comparative illustration between classical methods
and our framework. SI2AF minimizes dynamic uncertainty in so-
cial engagements and identifies an associated subgraph to strate-
gically establish connections with both target and non-target
posts, resulting in significantly enhanced attack effectiveness.
modeled as random walks among graph vertices, with their dynamic
uncertainties quantified through structural entropy. Subsequently, we
minimize the high-dimensional structural entropy of this graph to
identify a hierarchical community structure for all vertices, referred
to as the optimal encoding tree. Each tree node corresponds to a
vertex community, and an associated subgraph captures the frequent
engagements between user and post vertices within this community.
Furthermore, we present an influence metric derived from structural
entropy to measure the likelihood of each account’s participation
in random engagements within the bipartite graph, reflecting its po-
tential impact on the information flow. Building on this metric, we
categorize user accounts into genuine accounts and distinct malicious
groups with varying levels of influence, each managed by a separate
decision-making agent. For each target post, we develop three attack
strategies through multi-agent collaboration within the associated
user-post subgraph, aiming to maximize its evasion against black-
box detectors. Figure 1 illustrates a comparative analysis of attacks
against a graph-based fake news detector using traditional methods
and our SI2AF framework. By incorporating the generated manipu-
lations, we enrich the structural relationships within the user-post
graph and further refine graph-based models to improve detection
robustness against adversarial attacks. Comprehensive experiments
conducted on two real-world datasets demonstrate that SI2AF sig-
nificantly outperforms state-of-the-art baselines regarding attack
effectiveness and effectively enhances the robustness of graph-based
detection. Our contributions can be summarized as follows:
• A novel adversarial attack framework that leverages network

structural information is proposed to effectively obfuscate graph-
based news detectors and evaluate their robustness.
• An influence metric is presented to quantify the likelihood of

user accounts’ participation in random engagements, enabling the
design of multiple agents that manage distinct malicious accounts.
• Three attack strategies based on multi-agent coordination within

bipartite user-post subgraphs are developed to optimize evasion
against graph-based detectors.
• Comparative evaluations demonstrate that SI2AF significantly

improves attack effectiveness by 16.71% and enhances graph-based
detection robustness by 41.54% at average.

2 Related Work
2.1 Adversarial Attack on Graph Neural Networks
Various adversarial techniques have been developed to attack graph-
based detectors via edge perturbation, aiming to probe their ro-
bustness. Nettack [42] introduced the first targeted attack utilizing
incremental computation and greedy-based edge perturbations, opti-
mizing the attack strategy step by step. SGA [16] improved attack ef-
ficiency on large-scale graphs by incorporating a subgraph construc-
tion process to misclassify targeted nodes. The minimum-budget
topology attack strategy [40] was designed to determine the smallest
amount of perturbation necessary to compromise each node suc-
cessfully. EA-PGD [27] introduced transferable adversarial attacks
to perform edge perturbations on heterogeneous graph structures.
Despite their potential successes, these methods disrupt the propaga-
tion structure, resulting in insufficiency when attacking social news
detectors. Recent advances [35] have led to developing a multi-agent
coordination framework on three types of malicious accounts to
disrupt GNN-based fake news detection. The gradient-based GAFSI
method [41] has successfully executed general adversarial attacks
against detectors across various graph structures. However, these ap-
proaches typically use malicious accounts to engage with individual
target posts, neglecting to account for the structural relationships
between posts, which limits their attack strategies and reduces the
effectiveness of the attack. In contrast, our work novelly integrates
structural information principles to design a range of subgraph-based
attack strategies that are both more nuanced and effective than previ-
ous methods. The attack strategies outlined above are summarized
in Table 1, which evaluates whether they target social news detec-
tion, model distinct groups of malicious accounts, and consider the
structural relationships among target posts.

Table 1: Summary of attacks against GNN-based detectors.
Attack Method News Detection Distinct Group Structural Relationship

Nettack [42] × × ×
SGA [16] × × ✓

MiBTack [40] × × ×
EA-PGD [27] × × ×
MARL [35] ✓ ✓ ×
GAFSI [41] ✓ × ×

SIASF (Ours) ✓ ✓ ✓

2.2 Structural Information Principles
In 2016, a significant advancement was made by introducing struc-
tural information, including structural entropy and partitioning trees,
as proposed by [13]. This innovative concept facilitated the measure-
ment of network complexity, laying the foundation for identifying
hierarchical communities within complex systems. Building on these
principles, researchers minimize high-dimensional structure entropy
to classify cancer cell subtypes [14] and decode topologically asso-
ciating domains within Hi-C data [15]. With further advancements,
community-based structural entropy [17] emerged as a targeted mea-
sure to quantify community information aimed at solving deception-
related challenges. In 2022, structural entropy’s application was
extended to node classification [37], resulting in the creation of SEP,
which utilizes structural entropy to tackle challenges associated with
local structural damage. Recent research efforts [38, 39] have con-
centrated on developing efficient decision-making algorithms within
partitioning trees of state or action spaces.
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3 Preliminaries
In this section, we begin with a definition of GNN-based fake news
detection, followed by a description of adversarial attacks targeting
these detectors, and conclude with an introduction to the structural
information principles.

3.1 GNN-based Fake News Detection
A user-post graph, denoted as𝐺𝑢𝑝 , is a bipartite graph defined by the
tuple {𝑈 , 𝑃, 𝐸𝑢𝑝 , 𝑋𝑢 , 𝑋𝑝 , 𝑌 }, where 𝑈 = (𝑢0, . . . , 𝑢𝑚) represents the
set of users and 𝑃 = (𝑝0, . . . , 𝑝𝑛) denotes the set of news posts. The
feature matrices for users and posts are represented by 𝑋𝑢 and 𝑋𝑝 ,
respectively. The label set 𝑌 contains post labels, where 1 signifies
fake news and 0 indicates real news. An edge 𝑒𝑖 𝑗 = (𝑢𝑖 , 𝑝 𝑗 ) ∈ 𝐸𝑢𝑝
implies social engagement between user 𝑢𝑖 and post 𝑝 𝑗 .

Within a standard detection framework, a graph neural network
(GNN) 𝑓𝜃 processes 𝐺𝑢𝑝 by recursively aggregating information
from neighboring vertices to obtain a representation ℎ𝑝 for each post
𝑝. To classify a given news post 𝑝 ∈ 𝑃 , the GNN representation
ℎ𝑝 is input into a classifier 𝑓 , which maps ℎ𝑝 to a predicted label
𝑦 ∈ (0, 1). The cross-entropy loss for 𝑃 is formulated as follows:

L𝐺𝑁𝑁
(
𝐺𝑢𝑝 , 𝑓𝜃

)
=

∑︁
𝑝𝑖 ∈𝑃

[
− log

(
𝑦𝑖 · 𝜎

(
𝑓𝜃

(
𝑋𝑝 , 𝐸𝑢𝑝

)
𝑝𝑖

))]
, (1)

where 𝜎 denotes the sigmoid function used for the binary classifica-
tion of news posts.

3.2 Attacks against GNN-based News Detectors
An adversarial attack against GNN-based detectors aims to alter the
classification outcomes of target news posts 𝑃𝑡 ⊂ 𝑃 by leveraging
malicious accounts 𝑈𝑚 ⊂ 𝑈 that disseminate new posts. In this
study, the GNN model 𝑓𝜃 is initially trained on a clean dataset,
and it is assumed that the model’s parameters remain unknown
during the attack process. The attack objective is to maximize the
misclassification rate among 𝑃𝑡 , which is expressed as follows:

max
𝐸′𝑢𝑝

∑︁
𝑝𝑖 ∈𝑃𝑡

1
(
𝑓𝜃 ∗

(
𝑋𝑝 , 𝐸

′
𝑢𝑝

)
𝑝𝑖

≠ 𝑦𝑖

)
,

s.t. 𝜃∗ = argminL𝐺𝑁𝑁
(
𝐺𝑢𝑝 , 𝑓𝜃

)
, |𝑈𝑚 | ≤ Δ𝑢 ,

(2)

where 𝐸′𝑢𝑝 represents the manipulated edges, and Δ𝑢 denotes the
attack budget, defined as the maximum number of controlled users.

3.3 Structural Information Principles
In an undirected graph 𝐺 = (𝑉 , 𝐸), a disjoint partition of all ver-
tices is denoted as 𝑉0,𝑉1, . . ., with each subset 𝑉𝑖 representing as
a vertex community. These primary communities can be further
subdivided into smaller sub-communities, forming a hierarchical
community structure. The concept of structural entropy [13] quan-
tifies the dynamic uncertainty encountered during a random walk
between vertices within this hierarchical structure.

In the absence of a hierarchical community structure, the one-
dimensional structural entropy 𝐻1 (𝐺) of the graph 𝐺 is analogous
to Shannon entropy [28] and is calculated based on the distribution
of vertex degrees 𝑑𝑣 as follows:

𝐻1 (𝐺) = −
∑︁
𝑣∈𝑉

𝑑𝑣 · log𝑑𝑣 . (3)

In this work, we define the hierarchical community structure used
in SI2AF as an encoding tree with the following properties: 1) The
root node 𝜆 corresponds to the entire vertex set 𝑉 , such that 𝑉𝜆 = 𝑉 .
2) Each leaf node 𝜈 corresponds to an individual vertex 𝑣 ∈ 𝑉 ,
with 𝑉𝜈 = {𝑣}. 3) Each intermediate node 𝛼 (neither root nor leaf)
corresponds to a subset of vertices 𝑉𝛼 , and its parent node is marked
as 𝛼− . 4) For each non-leaf node 𝛼 , the number of its child nodes
is assumed as 𝑙𝛼 , and its 𝑖-th child is specified as 𝛼 ⟨𝑖 ⟩ . The subsets
𝑉𝛼 ⟨𝑖⟩ are mutually exclusive and collectively exhaustive, satisfying
𝑉𝛼 =

⋃𝑙𝛼
𝑖=1𝑉𝛼 ⟨𝑖⟩ and 𝑉𝛼 ⟨𝑖⟩ ∩𝑉𝛼 ⟨𝑗⟩ = ∅ for any 𝑖 ≠ 𝑗 .

The encoding tree 𝑇 significantly reduces the dynamical uncer-
tainty within the graph 𝐺 , and the high-dimensional structural en-
tropy quantifies the residual uncertainty. The entropy assigned to
a non-root node 𝛼 represents the uncertainty associated with a ran-
dom walk transitioning from the parent community 𝑉𝛼− to the child
community 𝑉𝛼 , as detailed as follows:

𝐻𝑇 (𝐺 ;𝛼) = − 𝑔𝛼V𝜆
log2

V𝛼
V𝛼−

, (4)

whereV𝛼 is the volume of𝑉𝛼 ,V𝛼 =
∑
𝑣∈𝑉𝛼 𝑑𝑣 . The item 𝑔𝛼 denotes

the cumulative weight of all edges connecting vertices within 𝑉𝛼 to
vertices outside 𝑉𝛼 . The 𝐾-dimensional structural entropy is defined
as follows:

𝐻𝑇 (𝐺) =
∑︁

𝛼∈𝑇,𝛼≠𝜆
𝐻𝑇 (𝐺 ;𝛼), 𝐻𝐾 (𝐺) = min

𝑇

{
𝐻𝑇 (𝐺)

}
, (5)

where 𝑇 ranges over all encoding trees with heights at most 𝐾 > 1.

4 Methodology
In this work, we leverage structural information in social networks
to identify the hierarchical community structure encompassing user
accounts and news posts and further utilize multi-agent coordination
to achieve effective attacks against GNN-based news detectors. As
illustrated in Figure 2, our SI2AF framework consists of three pri-
mary modules: hierarchical structure identification, multiple agent
design, and target subgraph attack. During the structure identifica-
tion module, we construct a bipartite user-post graph from historical
engagements and generate its optimal encoding tree, representing
the hierarchical community structure of all users and posts. In the
agent design module, we present an influence metric using structural
entropy to evaluate user accounts, categorizing them into distinct
types of malicious and genuine accounts. We coordinate multiple
agents for each target post to establish new connections with both
target and non-target posts within the associated subgraph, aiming
to optimize evasion under GNN-based detection models.

4.1 Hierarchical Structure Identification
In contrast to previous studies [35, 41], which independently analyze
individual target news, we minimize the dynamic uncertainty in
social engagements to identify a hierarchical community structure
of social accounts and news posts, thereby facilitating effective
subgraph attacks within the SI2AF framework.

To this end, we begin by extracting historical engagements be-
tween user accounts𝑈 and news posts 𝑃 to construct an undirected
bipartite user-post graph𝐺𝑢𝑝 = (𝑈 , 𝑃, 𝐸𝑢𝑝 ). Following the method-
ology described by [7], we employ a pre-trained language model
[24] to obtain user representations 𝑋𝑢 by embedding their historical
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Figure 2: Detailed design of our proposed SI2AF framework.

posts. Similarly, we create post representations 𝑋𝑝 by embedding
the content of each news post.

For each edge 𝑒𝑖 𝑗 = (𝑢𝑖 , 𝑝 𝑗 ) ∈ 𝐸𝑢𝑝 , we calculate the cosine
similarity between the representations ℎ𝑢𝑖 ∈ 𝑋𝑢 and ℎ𝑝 𝑗 ∈ 𝑋𝑝 , a
standard measure for capturing semantic similarity in embedding
spaces. The resulting similarity score is used to compute the edge
weight𝑤𝑖 𝑗 ∈ [0, 1] as follows:

𝑤𝑖 𝑗 =
1
2

(
cos

(
ℎ𝑢𝑖 , ℎ𝑝 𝑗

)
+ 1

)
. (6)

Intuitively, a higher weight𝑤𝑖 𝑗 indicates greater relevance between
user 𝑢𝑖 and post 𝑝 𝑗 , whereas a lower weight reflects dissimilarity.

In the bipartite graph 𝐺𝑢𝑝 , we then model social engagements
as random walks between user and post vertices, using structural
entropy to quantify the dynamic uncertainty of these interactions.
This entropy quantifies the minimum amount of information (in bits)
required to determine accessible users or posts during a random
social engagement. By minimizing the high-dimensional entropy
of 𝐺𝑢𝑝 , we generate its optimal encoding tree, which captures the
hierarchical community structure of user accounts𝑈 and news posts
𝑃 . We start by initializing a single-layer encoding tree 𝑇𝑢𝑝 for𝐺𝑢𝑝 ,
where each leaf node 𝜈 has the tree root 𝜆 as its parent, denoted as
𝜈− = 𝜆. Using the HCSE algorithm [23], we apply two operators,
stretch and compress, to iteratively and greedily optimize the encod-
ing tree 𝑇𝑢𝑝 from a single layer to 𝐾 layers, ultimately yielding the
optimal 𝐾-layer encoding tree 𝑇 ∗𝑢𝑝 . In the tree 𝑇 ∗𝑢𝑝 , the root node 𝜆
corresponds to the union of user and post sets,𝑉𝜆 = 𝑈 ∪𝑃 . Each leaf
node 𝜈 corresponds to a singleton containing an individual user or
post, while intermediate nodes correspond to communities at various
hierarchical levels.

Finally, for each target post 𝑝 ∈ 𝑃𝑡 , we extract its corresponding 𝑘-
layer community 𝑉𝛼 , compressing the user subset 𝑈𝛼 ⊂ 𝑈 and post
subset 𝑃𝛼 ⊂ 𝑃 at the 𝑘-th hierarchical level in 𝑇 ∗𝑢𝑝 . We extend the

user subset 𝑈𝛼 to include the entire set 𝑈 , and derive the associated
bipartite subgraph 𝐺𝛼 = (𝑈 , 𝑃𝛼 , 𝐸𝑢𝑝𝛼 ). The extended vertex subset
consists of two components: the entire account set 𝑈 and the post
subset 𝑃𝛼 ⊂ 𝑃 . The edge subset 𝐸𝑢𝑝𝛼 captures the local structural
relationships between the accounts in𝑈 and posts in 𝑃𝛼 , highlighting
their interactions within the subgraph.

In this work, we set the height parameter 𝑘 as 𝐾 − 1 by default,
enabling us to derive all targeted subgraphs from the vertex commu-
nities corresponding to the immediate children of the root node.

4.2 Multiple Agent Design
Building on this hierarchical community structure, we present a
metric to measure each user account’s network influence and design
multiple cooperative agents to manage malicious accounts, taking
into account their distinct influences and budgets.

In the encoding tree 𝑇 ∗𝑢𝑝 , the structural entropy assigned to each
non-root node 𝛼 in Equation 4 measures the uncertainty of a ran-
dom walk transitioning from the parent community 𝑉𝛼− to its child
community 𝑉𝛼 . For any user 𝑢 ∈ 𝑈 , the probability of a random en-
gagement reaching this user is determined by the cumulative entropy
of all nodes 𝛼 encountered along the path from the root node 𝜆 to the
leaf node 𝜈 , where 𝑉𝜈 = {𝑢}. Consequently, we define the influence
metric I as a measure of each user account’s likelihood of engaging
in random interactions within 𝐺𝑢𝑝 as detailed below:

I(𝐺𝑢𝑝 ;𝑢) =
∑︁

𝑉𝜈 ⊆𝑉𝛼 ⊂𝑉

[
− 𝑔𝛼V𝜆

log2
𝑐 · V𝛼
V𝛼−

]
, (7)

where 𝑐 serves as an adjusting parameter that modulates the distribu-
tion of influence across all user accounts.

Prior research [35] has categorized distinct malicious groups ac-
cording to the number of news shares per account, which indicates
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Algorithm 1: Malicious Accounts Categorization
Input: user account set𝑈 , bot budget Δ𝑏 , cyborg budget Δ𝑐 ,

worker budget Δ𝑤
Output: bot set𝑈𝑏 , cyborg set𝑈𝑐 , worker set𝑈𝑤

1 𝑈 ′ ← sort𝑈 by network influence using Equation 7
2 Δ← Δ𝑏 + Δ𝑐 + Δ𝑤
3 𝑈𝑙 ← 𝑈 ′ [: ⌊ Δ𝑏

Δ ⌋]
4 𝑈𝑚 ← 𝑈 ′ [⌊ Δ𝑏

Δ ⌋ : ⌊
Δ𝑏

Δ ⌋ + ⌊
Δ𝑐

Δ ⌋]
5 𝑈ℎ ← 𝑈 ′ [⌊ Δ𝑏

Δ ⌋ + ⌊
Δ𝑐

Δ ⌋ :]
6 𝑈𝑏 ← randomly sample Δ𝑏 accounts from𝑈𝑙

7 𝑈𝑐 ← randomly sample Δ𝑐 accounts from𝑈𝑚

8 𝑈𝑤 ← randomly sample Δ𝑤 accounts from𝑈ℎ

their network influence. However, due to the sparsity of social net-
works, where most users are linked to only a single news post, this
leads to a heavy-tailed sharing distribution, which can cause im-
balances in influence-based categorizations. By integrating content
relevance and hierarchical community structure into our metric, we
achieve a more nuanced differentiation between users who share the
same number of posts, enhancing the precision of influence mea-
surement compared to previous methods. The following theorem
demonstrates that, even in the context of an unweighted graph and a
single-layer network structure, adjusting the parameter 𝑐 within the
influence metric can reduce the occurrence of accounts with iden-
tical influence values, thus fostering a more balanced distribution
of user influence. In this particular scenario, the influence metric
I(𝐺𝑢𝑝 ;𝑢) for each user 𝑢 ∈ 𝑈 depends exclusively on the user’s
vertex degree, which represents the number of connections the user
has to different pieces of content. This influence metric is formally
defined as follows:

I(𝐺𝑢𝑝 ;𝑢) = −
𝑔𝜈

V𝜆
log2

𝑐 · V𝜈
V𝜆

= − 𝑑𝑢V𝜆
log2

𝑐 · 𝑑𝑢
V𝜆

. (8)

THEOREM 4.1. Let 𝑥 ∈ [1, 𝑏2 ] be a positive random variable
with a probability density function 𝑞0 (𝑥). Given the transformation

𝑥 ′ = −𝑥
𝑏
·
(
log2

𝑐
𝑏
𝑥

)
, under the condition 0 < 𝑐 ≤ 2

𝑒 , the variable
𝑥 ′ increases monotonically with the variable 𝑥 , and its probability
density function 𝑞1 (𝑥 ′) satisfies:

0 ≤ 𝑞1 (𝑥 ′) ≤
𝑏

1 − log2 𝑒𝑐
. (9)

A detailed proof of this theorem is provided in Appendix B. The
parameter 𝑏 denotes the sum of the total number of posts shared by
all users and the total number of times these posts have been shared.
As a result, each user’s individual sharing count 𝑥 is bounded by the
range of 1 ≤ 𝑥 ≤ 𝑏

2 .
Given the involvement of various malicious groups in misinforma-

tion campaigns [22, 29], we model three distinct types of malicious
accounts—bots, cyborgs, and crowd workers—characterized by vary-
ing influence levels and different budgets. Using the budgets for the
three malicious groups, denoted as Δ𝑏 , Δ𝑐 , and Δ𝑤 , we develop an
adaptive categorization algorithm that generates the bot group 𝑈𝑏
with low influence, the cyborg group𝑈𝑐 with medium influence, and
the worker group 𝑈𝑤 with high influence. Specifically, we first sort
all users in 𝑈 by the influence metric I in ascending order (line 1

in Algorithm 1). Next, we determine the sizes of the low, medium,
and high influence groups according to the specified budgets and
categorize all accounts into these groups (lines 2-5 in Algorithm 1).
Finally, we randomly sample accounts from each group to return
𝑈𝑏 ,𝑈𝑐 , and 𝑈𝑤 (lines 6-8 in Algorithm 1). The controlled malicious
accounts𝑈𝑚 are thus defined as follows:

𝑈𝑚 = 𝑈𝑏 ∪𝑈𝑐 ∪𝑈𝑤 . (10)

Finally, to simulate the coordinated behavior among the different
groups, we design three agents, each embodying a distinct level
of influence: agent N𝑏 for low-influence social bots, agent N𝑐 for
medium-influence cyborg accounts, and agentN𝑤 for high-influence
crowd workers.

4.3 Target Subgraph Attack
Each attack on a target post, primarily focusing on fake news (though
applicable to real news as well), is modeled as a collective effort
within the associated user-post subgraph, where all agents work
collaboratively to manipulate the classification outcome of a black-
box GNN-based detector.

For a target fake news post 𝑝 ∈ 𝑃𝑡 , its associated user-post sub-
graph 𝐺𝛼 includes the closely related posts 𝑃𝛼 , including both fake
news posts 𝑃 𝑓𝛼 = {𝑝 𝑓1 , 𝑝

𝑓

2 , . . . , 𝑝
𝑓

𝑙𝑓
} with 𝑝 = 𝑝

𝑓

1 and real news posts

𝑃𝑟𝛼 = {𝑝𝑟1, 𝑝
𝑟
2, . . . , 𝑝𝑙𝑟 }. Here, 𝑙𝑓 and 𝑙𝑟 denote the number of fake

and real news posts, respectively, within the post subset 𝑃𝛼 ⊂ 𝑃 .
The SI2AF framework models the attack on the target news post 𝑝

as a cooperative multi-agent Markov decision process, characterized
by the tuple (N ,S,A,P,R, 𝛾), where N = {N𝑏 ,N𝑐 ,N𝑤} is the
set of agents, S denotes the state space observed by all agents,
A is the joint action space, P represents the transition function,
R refer to the reward function, and 𝛾 is the discount factor. At
each timestep 𝑡 , the agent N𝑏 , responsible for managing malicious
accounts𝑈𝑏 = {𝑢𝑏1 , 𝑢

𝑏
2 , . . . , 𝑢

𝑏
Δ𝑏
}, observes the current environmental

state 𝑠𝑡 ∈ S and selects actions 𝒂𝒃𝒕 = (𝑎𝑏1 , 𝑎
𝑏
2 , . . . , 𝑎

𝑏
Δ𝑏
) according to

its policy network 𝜋𝑏 . The policy network 𝜋𝑏 determines which post
vertex each controlled account will interact with in the associated
user-post subgraph 𝐺𝛼 , expressed as 𝒂𝒃𝒕 = 𝜋𝑏 (𝑠𝑡 ,𝑈𝑏 ,𝐺𝛼 ). Similarly,
agents N𝑐 and N𝑤 select their respective actions 𝒂𝒄𝒕 and 𝒂𝒘𝒕 using
their own policy networks, following a decision-making process
analogous to that of N𝑏 .

For each malicious account 𝑢𝑏
𝑖
∈ 𝑈𝑏 , we define the sampled

probability 𝑝𝑏
𝑖

of its selected action 𝑎𝑏
𝑖

based on the cumulative
entropy of all common parent nodes shared by 𝑢𝑏

𝑖
and the target post

𝑝 ∈ 𝑃 as follows:

𝑝𝑏𝑖 =
∑︁

{𝑢𝑏
𝑖
,𝑝 }⊂𝑉𝛼

𝐻
𝑇 ∗𝑢𝑝 (𝐺𝑢𝑝 ;𝛼). (11)

If the only common parent node between 𝑢𝑏
𝑖

and 𝑝 is the root node,
we set the sampled probability 𝑝𝑏

𝑖
to a predefined random small value,

0.01, to reflect a low likelihood of action. Similarly, we define the
sampled probabilities for the accounts controlled by agents N𝑐 and
N𝑤 following the same approach. Based on these probabilities, we
perform a weighted sampling process on 𝒂𝒃𝒕 , 𝒂𝒄𝒕 , and 𝒂𝒘𝒕 , which leads
to the single-agent actions 𝑎𝑏𝑡 , 𝑎𝑐𝑡 , and 𝑎𝑤𝑡 at timestep 𝑡 . Moreover,
we centrally aggregate these actions, weighting them according to
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the sum of the network influences exerted by the malicious accounts
controlled by each agent. This aggregation yields the final action
𝑎𝑡 at timestep 𝑡 , which specifies the attacked post 𝑝𝑡 ∈ 𝑃𝛼 and the
selected malicious account 𝑢𝑡 ∈ 𝑈𝑚 . The collective action (𝑝𝑡 , 𝑢𝑡 )
modifies the structure of user-post graph 𝐺𝑢𝑝 by establishing a new
sharing between 𝑢𝑡 and 𝑝𝑡 , potentially affecting the classification
outcome of target news 𝑝 by the GNN-based detector 𝑓𝜃 ∗ . Depending
on the types of attacked post 𝑝𝑡 , our subgraph attack encompasses
three distinct attack strategies:
• Direct Attack: Directly interact with the target news, 𝑝𝑡 = 𝑝,

to affect its classification outcome by the GNN-based detector.
• Indirect Attack: Engage with real news within the associated

subgraph, 𝑝𝑡 ∈ 𝑃𝑟𝛼 , to indirectly affect the prediction of target 𝑝.
• Feedback Attack: Interact with other fake news in the asso-

ciated subgraph, 𝑝𝑡 ∈ 𝑃 𝑓𝛼 and 𝑝𝑡 ≠ 𝑝, with the aim to enrich the
environmental feedback and address the challenge of reward sparsity
in the decision process.

In its efforts to mount adversarial attacks against the GNN-based
detectors 𝑓𝜃 ∗ , the SI2AF framework considers the classification out-
comes of the target post and other related fake news posts. The
predictions 𝑦1, 𝑦2, . . . , 𝑦𝑙𝑓 for these posts act as reward signals, guid-
ing the training and refinement of the policy networks of all agents
inN . Specifically, 𝑦1 = 𝑓𝜃 ∗

(
𝑋𝑝 , 𝐸

′
𝑢𝑝

)
𝑝
𝑓

1
represents the classification

outcome for the target post 𝑝 = 𝑝
𝑓

1 , while 𝑦𝑖 = 𝑓𝜃 ∗
(
𝑋𝑝 , 𝐸

′
𝑢𝑝

)
𝑝
𝑓

𝑖

denotes the results for other fake posts 𝑝 𝑓
𝑖

where 𝑖 > 1. The reward
R(𝑠𝑡 , 𝑎𝑡 ) is defined as follows:

R(𝑠𝑡 , 𝑎𝑡 ) =


1 if 𝑓𝜃 ∗

(
𝑋𝑝 , 𝐸

′
𝑢𝑝

)
𝑝
𝑓

1
≠ 𝑦1,

∑𝑙𝑓
𝑖=2

1
(
𝑓𝜃∗

(
𝑋𝑝 ,𝐸

′
𝑢𝑝

)
𝑝
𝑓
𝑖

≠𝑦𝑖

)
𝑙𝑓 −1 otherwise,

(12)
where 𝐸′𝑢𝑝 denotes the updated structural relationships perturbed by
the action 𝑎𝑡 .

For the agentN𝑏 operating under policy 𝜋𝑏 , we employ Q-learning
to estimate its value function Q𝑏 and minimize the optimization loss
as follows:

LQ𝑏 = E(𝑠𝑡 ,𝑎𝑏𝑡 )

[
R(𝑠𝑡 , 𝑎𝑏𝑡 ) + 𝛾 max

𝑎𝑏
𝑡+1

Q−
𝑏
(𝑠𝑡+1, 𝑎𝑏𝑡+1) − Q𝑏 (𝑠𝑡 , 𝑎

𝑏
𝑡 )
]
,

(13)
where Q−

𝑏
denotes the target value network of agent N𝑏 , intro-

duced to stabilize the training process by reducing oscillations in the
learned Q-values. The optimal value function Q∗

𝑏
(𝑠𝑡 , 𝑎𝑏𝑡 ) is expressed

using the following Bellman Equation:

Q∗
𝑏
(𝑠𝑡 , 𝑎𝑏𝑡 ) = R(𝑠𝑡 , 𝑎𝑏𝑡 ) + 𝛾 max

𝑎𝑏
𝑡+1

Q∗
𝑏
(𝑠𝑡+1, 𝑎𝑏𝑡+1). (14)

This equation describes a greedy policy, where the agent N𝑏 selects
the action that maximizes the Q-value for the given state:

𝜋𝑏 (𝒂𝒃𝒕 |𝑠𝑡 ;Q
∗
𝑏
) = argmax

𝒂𝒃
𝒕

Q∗
𝑏
(𝑠𝑡 , 𝒂𝒃𝒕+1). (15)

The policy training for agents N𝑐 and N𝑤 follows the same Q-
learning methodology as that ofN𝑏 , with adaptations to their unique
action spaces.

Algorithm 2: Graph-based Detector Optimization
Input: target post set 𝑃𝑡 , trained policies 𝜋∗

𝑏
, 𝜋∗𝑐 , 𝜋

∗
𝑤

Output: optimized detector 𝑓𝜃 ∗
1 𝐸′𝑢𝑝 = 𝐸𝑢𝑝

2 for 𝑝 ∈ 𝑃𝑡 do
3 𝐺𝛼 = (𝑈 , 𝑃𝛼 , 𝐸𝑢𝑝𝛼 ) ← derive the associated subgraph

4 𝑃
𝑓
𝛼 and 𝑃𝑟𝛼 ← extract the fake and real news in 𝐺𝛼

5 while 𝑡 < 𝑡𝑚𝑎𝑥 do
6 𝒂𝒃𝒕 ← 𝜋∗

𝑏
(𝑠𝑡 ,𝑈𝑏 ,𝐺𝛼 )

7 𝒂𝒄𝒕 ← 𝜋∗𝑐 (𝑠𝑡 ,𝑈𝑐 ,𝐺𝛼 )
8 𝒂𝒘𝒕 ← 𝜋∗𝑤 (𝑠𝑡 ,𝑈𝑤 ,𝐺𝛼 )
9 𝑎𝑏𝑡 , 𝑎𝑐𝑡 , and 𝑎𝑤𝑡 ← individually sample 𝒂𝒃𝒕 , 𝒂𝒄𝒕 , and

𝒂𝒘𝒕 via Equation 11
10 𝑎𝑡 = (𝑢𝑡 , 𝑝𝑡 ) ← sample single-agent actions 𝑎𝑏𝑡 , 𝑎𝑐𝑡 ,

and 𝑎𝑤𝑡
11 𝐸′𝑢𝑝 = 𝐸′𝑢𝑝

⋃{(𝑢𝑡 , 𝑝𝑡 )}
12 𝑓𝜃 ∗ ← refine the graph-based detector on 𝐸′𝑢𝑝 by minimizing

the cross-entropy loss in Equation 1

4.4 Detection Optimization
By leveraging the trained SI2AF framework, we incorporate the gen-
erated manipulations within each subgraph to update the structural
relationships between users and posts, thereby optimizing graph-
based detectors to improve their robustness.

For each target post 𝑝 ∈ 𝑃𝑡 , we extract the fake news 𝑝 𝑓𝛼 and real
news 𝑝𝑟𝛼 from the associated subgraph𝐺𝛼 (lines 3 and 4 in Algorithm
2). According to the trained policies 𝜋∗

𝑏
, 𝜋∗𝑐 , and 𝜋∗𝑤 , we select

the multi-agent actions 𝒂𝒃𝒕 , 𝒂𝒄𝒕 , and 𝒂𝒘𝒕 , respectively, and employ
weighted sampling to determine the collective action 𝑎𝑡 = (𝑝𝑡 , 𝑢𝑡 )
at timestep 𝑡 (lines 6-10 in Algorithm 2). This action is then used to
update the structural relationships 𝐸𝑢𝑝 within the user-post graph
𝐺𝑢𝑝 (line 11 in Algorithm 2). After all attacks targeting posts in
𝑃𝑡 , we minimize the cross-entropy loss in Equation 1 to refine the
graph-based model 𝑓𝜃 ∗ , thereby enhancing its detection robustness.

5 Experiments
In this section, we conduct comprehensive comparative experiments
on various real-world datasets to evaluate the performance of our
proposed framework, SI2AF. To ensure a fair and robust assessment,
the experimental results are reported as average values with standard
deviations, calculated over five different random seeds.

5.1 Experimental Settings
Datasets. For our analysis, we adopt two well-established real-world
datasets, Politifact and Gossipcop, which originate from two fact-
checking platforms and include social interactions from Twitter
[31]. These datasets contain metadata such as user interactions, post
characteristics for fake and real news posts, and account information
involved in these engagements. In line with existing studies [7], we
utilize Glove embeddings [24] to encode both the semantic content
of posts and the historical posts of users. Following the experimental
settings [35], we adopt the same budget setting, randomly sampling
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Table 2: The success rates of the SI2AF and other baselines on both fake and real news within the Politifact and Gossipcop datasets:
“average value ± standard deviation". Bold: the best performance in each graph, underline: the second performance.

Method Politifact Fake News Politifact Real News
GAT GCN SAGE Bi-GCN GCAN GAT GCN SAGE Bi-GCN GCAN

Random 0.14 ± 0.01 0.09 ± 0.03 0.13 ± 0.01 0.10 ± 0.02 0.09 ± 0.01 0.11 ± 0.01 0.36 ± 0.04 0.15 ± 0.01 0.16 ± 0.03 0.05 ± 0.01
DICE 0.26 ± 0.02 0.16 ± 0.01 0.24 ± 0.03 0.15 ± 0.01 0.17 ± 0.03 0.22 ± 0.03 0.38 ± 0.02 0.21 ± 0.01 0.21 ± 0.02 0.10 ± 0.02
SGA 0.32 ± 0.04 0.24 ± 0.01 0.35 ± 0.03 0.21 ± 0.01 0.27 ± 0.01 0.18 ± 0.03 0.45 ± 0.04 0.29 ± 0.01 0.32 ± 0.03 0.15 ± 0.03

GAFSI 0.35 ± 0.03 0.28 ± 0.02 0.36 ± 0.02 0.19 ± 0.02 0.26 ± 0.04 0.37 ± 0.02 0.42 ± 0.02 0.37 ± 0.03 0.41 ± 0.02 0.13 ± 0.01
MARL 0.30 ± 0.01 0.21 ± 0.01 0.35 ± 0.03 0.12 ± 0.02 0.18 ± 0.02 0.47 ± 0.01 0.35 ± 0.02 0.18 ± 0.09 0.27 ± 0.03 0.16 ± 0.02

SI2AF(Ours) 0.41 ± 0.03 0.31 ± 0.04 0.41 ± 0.01 0.28 ± 0.05 0.34 ± 0.01 0.69 ± 0.04 0.56 ± 0.03 0.49 ± 0.02 0.45 ± 0.03 0.19 ± 0.01
Abs.(%) Avg.↑ 0.06(17.14%) 0.03(10.71%) 0.05(13.89%) 0.07(33.33%) 0.07(25.93%) 0.22(46.81%) 0.11(24.44%) 0.12(32.43%) 0.04(9.76%) 0.03(18.75%)

Method Gossipcop Fake News Gossipcop Real News
GAT GCN SAGE Bi-GCN GCAN GAT GCN SAGE Bi-GCN GCAN

Random 0.18 ± 0.01 0.25 ± 0.03 0.15 ± 0.01 0.17 ± 0.02 0.33 ± 0.02 0.08 ± 0.01 0.17 ± 0.03 0.14 ± 0.01 0.15 ± 0.02 0.26 ± 0.02
DICE 0.13 ± 0.02 0.10 ± 0.01 0.16 ± 0.02 0.24 ± 0.03 0.29 ± 0.02 0.11 ± 0.03 0.21 ± 0.02 0.18 ± 0.02 0.27 ± 0.01 0.23 ± 0.02
SGA 0.42 ± 0.02 0.72 ± 0.03 0.19 ± 0.03 0.33 ± 0.01 0.53 ± 0.02 0.28 ± 0.01 0.45 ± 0.06 0.37 ± 0.04 0.31 ± 0.03 0.29 ± 0.02

GAFSI 0.21 ± 0.01 0.67 ± 0.04 0.20 ± 0.04 0.49 ± 0.03 0.61 ± 0.03 0.29 ± 0.03 0.43 ± 0.04 0.39 ± 0.02 0.40 ± 0.03 0.37 ± 0.04
MARL 0.80 ± 0.04 0.78 ± 0.02 0.13 ± 0.01 0.28 ± 0.05 0.78 ± 0.09 0.25 ± 0.03 0.41 ± 0.01 0.29 ± 0.03 0.44 ± 0.02 0.43 ± 0.01

SI2AF(Ours) 0.90 ± 0.02 0.87 ± 0.01 0.21 ± 0.01 0.60 ± 0.01 0.88 ± 0.02 0.32 ± 0.01 0.52 ± 0.01 0.42 ± 0.01 0.47 ± 0.01 0.46 ± 0.01
Abs.(%) Avg.↑ 0.10(12.5%) 0.09(11.54%) 0.01(5.00%) 0.11(22.45%) 0.10(12.82%) 0.03(10.34%) 0.07(15.56%) 0.03(7.69%) 0.03(6.82%) 0.03(6.98%)
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Figure 3: Average predictive probabilities of fake and real news before and after adversarial attacks.

100 bots, 50 cyborgs, and 20 crowd workers from the Politifact
dataset, and 1000 bots, 500 cyborgs, and 100 crowd workers from
the Gossipcop dataset.
Detection Models. In this study, we evaluate the effectiveness of
SI2AF attack strategies against five different GNN-based detectors
on the Politifact and Gossipcop datasets. The GNN models employed
as detectors include Graph Convolution Network (GCN) [11], Graph
Attention Network (GAT) [33], Graph Sample and Aggregation
Network (GraphSAGE) [8], Graph-aware Co-Attention Network
(GCAN) [18], and Bi-Directional Graph Convolutional Network (Bi-
GCN) [2]. Their detection performances after training are provided
in Appendix C.2.
Baselines. We compare SI2AF with several state-of-the-art base-
lines, including random-based methods (Random and DICE [36]),
gradient-based methods (SGA [16] and GASFI [41]), and the multi-
agent cooperative method (MARL [35]), using their publicly avail-
able open-source implementations.

5.2 Evaluation
To evaluate attack performance, we use the success rate as our pri-
mary metric, defined as the proportion of target posts successfully
misclassified by the GNN-based detectors. We assess SI2AF and
other baselines on their abilities to misclassify fake and real news in
the Politifact and Gossipcop datasets, reporting the average success
rate and standard deviation in Table 2. Our experimental results show
that SI2AF consistently outperforms all baselines, achieving maxi-
mum success rate improvements of up to 33.33% for fake news and
46.81% for real news across various attack scenarios. For a deeper
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Figure 4: Success rates of different attack strategies on fake news
in the Gossipcop dataset.
understanding of attack performance, we present the average pre-
dictive probabilities of target news posts in Figure 3, illustrating the
likelihood of these posts being classified as fake before and after
attacks. The results indicate that SI2AF induces more significant
changes in predictive probabilities for fake and real posts, outper-
forming the best-performing baselines (SGA, GAFSI, and MARL)
across different detection models. Specifically, SI2AF achieves an
average reduction of 71.90% in the predictive probabilities of fake
posts and an increase of 72.90% for real posts.

As outlined in Section 4.3, the subgraph attack in SI2AF incor-
porates three distinct strategies, each targeting a specific category
of news posts. In Figure 4, we analyze the impact of selectively
applying different attack strategies within the Gossipcop dataset and
report the corresponding success rates. The combination of different
attack strategies consistently yields higher success rates than using
any single attack type alone, highlighting the strategic advantage



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xianghua Zeng, Hao Peng, and Angsheng Li

Table 3: The detection performance of graph-based detectors
against Gossipcop fake news before and after attacks.

Method GAT GCN SAGE Bi-GCN GCAN
Before 93.1 ± 0.5 90.4 ± 0.3 91.8 ± 0.3 83.9 ± 0.7 87.3 ± 0.4
SGA 76.3 ± 0.8 64.1 ± 0.5 75.4 ± 0.3 62.8 ± 0.3 71.6 ± 0.4

GAFSI 72.9 ± 1.0 68.3 ± 0.5 65.3 ± 0.6 65.1 ± 0.5 60.7 ± 0.4
MARL 63.0 ± 0.4 68.4 ± 0.7 70.9 ± 0.2 61.4 ± 0.6 58.2 ± 0.8
SI2AF 56.4 ± 0.6 60.5 ± 0.3 61.8 ± 0.2 53.7 ± 0.3 56.2 ± 0.5

Table 4: Efficiency comparison between SI2AF and MARL with
different attack budgets.

Methods
Attack Budgets (Δ𝑏 : Δ𝑐 : Δ𝑤)

100: 50: 20 150: 75: 30
Training Time Inference Time Training Time Inference Time

MARL 493.99 29.23 548.36 52.64
SI2AF 514.32 34.57 560.41 59.16

Methods
Attack Budgets (Δ𝑏 : Δ𝑐 : Δ𝑤)

200: 100: 40 250: 125: 50
Training Time Inference Time Training Time Inference Time

MARL 579.59 63.67 586.70 71.04
SI2AF 582.35 71.47 594.28 75.33

and adaptability of the subgraph attack mechanism within SI2AF.
By adaptively deriving the hierarchical community structure for all
accounts and posts, the SI2AF framework enables a more compre-
hensive and targeted subgraph attack on closely related news posts,
significantly enhancing the attack’s precision and effectiveness.

In summary, our SI2AF framework leverages the structural infor-
mation inherent in social networks to provide a more comprehensive
and effective evaluation of robustness across various graph-based
detectors. Meanwhile, as illustrated in Algorithm 2, we incorpo-
rate the generated manipulations from SI2AF to enrich the network
structure and refine all five detectors on the updated network. We
summarize their detection performance on the Gossipcop fake news
dataset, both before and after SI2AF attacks, alongside three best-
performing baselines, in Table 3. It is noted that, regardless of the
graph-based detector used, the drop in predictive probability for each
attack algorithm is significantly mitigated after optimization, with a
reduction of at average 41.54%. The average prediction probability
for fake news remains above 53.7%. This is due to the comprehensive
and strategic manipulations in SI2AF, which enable the detector to
anticipate structural changes in the network caused by the attack al-
gorithms, thereby significantly mitigating their impact on detection.

To intuitively reflect the efficiency and scalability of our frame-
work, we progressively increase the attack budget, that is, the number
of malicious accounts controlled by the three agents, and record the
time cost (ms) on single training or inference for both SI2AF and
MARL in Table 4. Although incorporating the local structure around
target news introduces additional computational overhead, the ac-
tual training and inference time of SI2AF remains comparable to
that of MARL and remains stable as the budget increases, further
demonstrating the practicality of our framework.

To further explore the attack performance on posts with different
engagements, we conduct additional analysis to evaluate the perfor-
mance of our attack framework on target fake posts with varying
levels of engagement. Specifically, we examine how the average
success rate of fake posts varied based on their engagement levels,
from newly posted, low-engagement content to high-engagement
posts that had already spread significantly, using the SAGE detector

Table 5: Attack performance of SI2AF and three best-
performing baselines on posts with different engagements.

Post Degree [0, 10) [10, 100) [100, )
SGA 0.39 0.33 0.21

GAFSI 0.38 0.35 0.17
MARL 0.38 0.32 0.24
SI2AF 0.44 0.40 0.35

on the Politifact dataset. As shown in Table 5, compared to the base-
lines (SGA, GAFSI, and MARL), our method consistently achieves
better attack performance across posts with different engagement
levels. Notably, the advantage of our approach is more pronounced
in high-degree posts, where attacking is more challenging due to
their widespread engagement. This improvement is attributed to the
richer and more diverse set of attack strategies we introduce, which
are better suited to handle posts with varying degrees of influence.

5.3 Case Study
In this subsection, we focus on a specific fake post from the Gos-
sipcop dataset and visualize the temporal changes in the associated
user-post subgraph. We examine these changes induced by two multi-
agent collaboration-based attack models: MARL and SI2AF. Finally,
we compare the performance of these models based on their impact
on the GNN-predicted probabilities.

To better visualize this process, we ensure that both attack models
control the same set of malicious accounts, which are confined
within their respective user-post communities. Figure 5 illustrates
that SI2AF initially selects malicious accounts in a manner similar to
MARL, establishing direct connections with the target post. At this
stage, SI2AF does not demonstrate a clear performance advantage
over MARL in terms of modifying the GNN-predicted probability.
Subsequently, SI2AF expands its attack by connecting to other false
and real posts, employing diverse strategies to influence the network.
This leads to significant modifications in the target post’s GNN-
based predicted probability, enhancing the overall effectiveness of
the attack.

Further, we conduct a qualitative analysis of the SI2AF attack
process, specifically focusing on how it influences the predicted
probabilities of fake news in the context of the GNN-based model.
We identify three primary mechanisms contributing to the increased
predicted probabilities of fake news:
• Establishing new connections with influential malicious ac-

counts, in accordance with our direct attack strategy.
• Amplifying the influence of malicious accounts already linked

to the target post by connecting them to additional real news, consis-
tent with our indirect attack strategy.
• Combining direct and indirect attacks to further increase the

predicted probabilities of other fake news related to the target post,
in line with our feedback strategy.

5.4 Ablation Studies
In this subsection, we conduct an ablation study on the Politifact
dataset for fake news detection to evaluate the impacts of various
agents and their account quantities (ranging from 50 to 300) on
the attack effectiveness within the SI2AF framework. We focus on
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𝑎𝑎3 = 𝑢𝑢𝑏𝑏

𝑎𝑎3 = (𝑢𝑢𝑏𝑏,𝑝𝑝𝑡𝑡)

𝑎𝑎5 = 𝑢𝑢𝑤𝑤

𝑎𝑎5 = (𝑢𝑢𝑤𝑤 ,𝑝𝑝𝑡𝑡)

𝑎𝑎8 = 𝑢𝑢𝑏𝑏

𝑎𝑎8 = (𝑢𝑢𝑏𝑏,𝑝𝑝𝑟𝑟)

Before MARL After MARL

Before SI2AF After SI2AF

Figure 5: Attack visualization of SI2AF and MARL against GNN-based fake news detectors.
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Figure 6: Attack performance of different agents on fake news
detectors (GAT, SAGE, and GCAN) in the Politifact dataset.
three of the most effective fake news detectors—GAT, SAGE, and
GCAN—and gradually increase the number of accounts under each
agent’s control to carry out the attack. Our results in Figure 6 suggest
that increasing the number of accounts enhances attack performance
for all agents up to a certain threshold, beyond which the improve-
ment rate levels off. Rather than improving performance, adding
more accounts introduces more potential actions that may not con-
tribute meaningfully to the attack strategy. Notably, the worker agent
consistently outperforms both the bot and cyborg agents across all
three GNN detectors when controlling an equal number of accounts.

5.5 Parameter Sensitivity
In this subsection, we examine the attack performance of SI2AF
with different height parameters, 𝐾 , which controls the size of the
subgraph considered in the targeted attack. As shown in Figure 7, in
both datasets, the attack success rate of SI2AF increases significantly
as the value of parameter 𝐾 increases. However, after reaching an
optimal value, further increases in 𝐾 result in a slight performance
decrease. This decline occurs because a larger subgraph is more
likely to include news posts unrelated to the target post, which
dilutes the focus of the attack and reduces the effectiveness of SI2AF.
Additionally, the optimal value of 𝐾 is closely related to the social

1 2 3 4 5
Height Parameter K

0.2

0.3

0.4

Su
cc

es
s R

at
e

(a) Politifact Fake News

1 2 3 4 5
Height Parameter K

0.2

0.4

0.6

(b) Politifact Real News

1 2 3 4 5
Height Parameter K

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

(c) Gossipcop Fake News

1 2 3 4 5
Height Parameter K

0.3

0.4

0.5

(d) Gossipcop Real News

GAT GCN SAGE Bi-GCN GCAN

Figure 7: The success rate of SI2AF when adopting different
height parameters 𝐾 .

network scale. For instance, in the smaller network Politifact, SI2AF
achieves its best performance when 𝐾 = 3, while in the larger-scale
network Gossipcop, peak performance occurs when 𝐾 = 4.

6 Conclusion
This paper proposes SI2AF, an adversarial attack framework that
leverages network structural information to identify the hierarchical
community structure among accounts and posts, thereby facilitating
effective attacks against various GNN-based detectors and evaluating
their robustness. We present an influence metric for categorizing ma-
licious accounts, combined with three subgraph strategies utilizing
multi-agent collaboration to maximize target news posts’ evasion.
Extensive experiments on two real-world datasets, Politifact and
Gossipcop, demonstrate that SI2AF consistently enhances the attack
effectiveness, outperforming state-of-the-art baselines, and signif-
icantly improves the robustness of graph-based detection. Future
research will focus on expanding the scope of graph-based detectors
and enhancing their robustness through a more comprehensive ex-
ploration of subgraph attacks. Additionally, we plan to extend the
categorization of malicious accounts and incorporate the dynamics
of genuine accounts as key areas of investigation.
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A Framework Details
A.1 Primary Notations

Table 6: Notation Glossary

Notation Description

𝐺 = (𝑉 , 𝐸) The undirected graph with vertex set and edge set.
𝑣, 𝑒 The single vertex and undirected edge.
𝐻,𝑇 The structural entropy and encoding tree.
𝑇 The one- or high-layer encoding tree.
𝜆, 𝜈, 𝛼 The root node, leaf nodes, and other nodes.
𝑔𝛼 ,V𝛼 The terms associated with the vertex subset 𝑉𝛼 .
𝐾 The maximal height of the encoding trees.
I, 𝑐 The influence metric and adjusting parameter.
𝑥, 𝑞 The random variable and probability density function.
𝑈 , 𝑃 The sets of users and posts.
𝑢, 𝑝 The single user account and single news post.
𝑚,𝑛 The respective numbers of users and posts.
𝑋,𝑌 The feature matrix and label set.
ℎ,𝑦 The hidden representation and single label.
𝑓𝜃 The GNN prediction function parameterized by 𝜃 .
𝜎,Δ The sigmoid function and attack budget.
N The set of multiple agents.
S,A The state and action spaces.
P,R The transition and reward functions.
𝑠, 𝑎, 𝑟 The single state, action, and reward.
𝜋,Q The policy network and value function.

A.2 Limitations
In our study, we focus on attacking graph-based news detectors by
manipulating the network structure and classify malicious accounts
based on their structural characteristics and the influence they exert
on the target post. We draw on prior research [32, 35] to define three
types of malicious accounts—bots, cyborgs, and crowd workers.
These account types represent varying levels of influence within the
network, with bots exerting low influence, cyborgs having medium
influence, and crowd workers having high influence. This classifica-
tion is rooted in the idea that different account types interact with
the network in distinct ways, and understanding their influence helps
us design more targeted and effective attack strategies. However,
we acknowledge that malicious behaviors also include other actions
such as spam, scams, and social engineering attacks. These forms of
maliciousness are important but are outside the scope of our current
work, which focuses specifically on structural manipulation of the
network. In future research, we plan to expand our framework to in-
clude content-based features to capture a broader range of malicious
accounts, including those engaged in spam or scam activities. By in-
corporating these features, we aim to improve the generalizability of
SI2AF and extend it to cover a wider variety of malicious behaviors.

On the other hand, we primarily simulate network dynamics
around malicious accounts during the attack process to model cer-
tain dynamic aspects. However, we have not yet accounted for the
dynamic behaviors of genuine users, which would further compli-
cate the network structure during an attack. We plan to extend our

framework in future journal versions to handle dynamic network
structures. This will include implementing mechanisms for real-time
adjustments to attack strategies, allowing the framework to better
align with the continuously evolving nature of social networks. By
incorporating dynamic changes into our model, we aim to make the
framework more applicable to real-world scenarios, where networks
are constantly changing.

A.3 Ethical Statement
Our proposed adversarial attack framework targets the evaluation
and enhancement of graph-based news detectors’ robustness. We ex-
plicitly disavow any unethical use of this framework and emphasize
that our research is focused on strengthening detection systems for
societal benefit. Our work aligns with the broader goal of promoting
the integrity and security of AI-driven systems, particularly in the
fight against misinformation and online manipulation.

A.4 Time Complexity
We outline SI2AF’s attacking process against a fake news detec-
tor in Algorithm 3. The proposed SI2AF operates through several
sequential stages: first, hierarchical structure identification for the
user-post graph 𝐺𝑢𝑝 = (𝑈 , 𝑃, 𝐸𝑢𝑝 ), which has a computational cost
of 𝑂 ( |𝐸𝑢𝑝 | + (|𝑈 | + |𝑃 |) · log2 ( |𝑈 | + |𝑃 |)); second, multiple agent
design with a time complexity of 𝑂 ( |𝑈 | · log |𝑈 |); and finally, a sub-
graph attack for each target, where agents coordinate their actions
in the joint action space of |𝑈𝑚 | · |𝑃𝛼 |, with |𝑃𝛼 | representing the
number of posts in the associated subgraph 𝐺𝛼 .

Algorithm 3: SI2AF Attacking against Fake News Detector
Input: maximal timesteps 𝑡𝑚𝑎𝑥 , update interval 𝑡𝑢𝑝
Output: agent policies 𝜋𝑏 , 𝜋𝑐 , 𝜋𝑤

1 𝐺𝑢𝑝 ← construct the user-post graph
2 𝑇 ∗𝑢𝑝 = argmin𝑇𝑢𝑝 {𝐻𝑇𝑢𝑝 (𝐺𝑢𝑝 )}
3 𝑈𝑚 = 𝑈𝑏 ∪𝑈𝑐 ∪𝑈𝑤 ← categorize malicious accounts via

Algorithm 1
4 for 𝑝 ∈ 𝑃𝑡 do
5 𝐸′𝑢𝑝 ← 𝐸𝑢𝑝

6 𝐺𝛼 = (𝑈 , 𝑃𝛼 , 𝐸𝑢𝑝𝛼 ) ← derive the associated subgraph

7 𝑃
𝑓
𝛼 and 𝑃𝑟𝛼 ← extract the fake and real news in 𝐺𝛼

8 while 𝑡 < 𝑡𝑚𝑎𝑥 do
9 𝒂𝒃𝒕 ← 𝜋𝑏 (𝑠𝑡 ,𝑈𝑏 ,𝐺𝛼 )

10 𝒂𝒄𝒕 ← 𝜋𝑐 (𝑠𝑡 ,𝑈𝑐 ,𝐺𝛼 )
11 𝒂𝒘𝒕 ← 𝜋𝑤 (𝑠𝑡 ,𝑈𝑤 ,𝐺𝛼 )
12 𝑎𝑏𝑡 , 𝑎𝑐𝑡 , and 𝑎𝑤𝑡 ← individually sample 𝒂𝒃𝒕 , 𝒂𝒄𝒕 , and

𝒂𝒘𝒕 via Equation 11
13 𝑎𝑡 = (𝑢𝑡 , 𝑝𝑡 ) ← sample single-agent actions 𝑎𝑏𝑡 , 𝑎𝑐𝑡 ,

and 𝑎𝑤𝑡
14 𝐸′𝑢𝑝 = 𝐸′𝑢𝑝

⋃{(𝑢𝑡 , 𝑝𝑡 )}
15 if 𝑡 mod 𝑡𝑢𝑝 == 0 then
16 𝜋𝑏 , 𝜋𝑐 , and 𝜋𝑤 ← update policies by minimizing

loss in Equation 13
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B Proof of Theorem 4.1
PROOF. Considering the transformation:

𝑥 ′ = −𝑥
𝑏
· log2

( 𝑐
𝑏
𝑥

)
, (16)

which consists of a linear term,−𝑥
𝑏

, and a logarithmic term, log2 ( 𝑐𝑏 𝑥).
For 𝑥 ∈ [1, 𝑏2 ] and given the condition 0 < 𝑐 ≤ 2

𝑒 , the argument
of the logarithm, 𝑐

𝑏
𝑥 , is strictly positive. Consequently, both −𝑥

𝑏

and log2 ( 𝑐𝑏 𝑥) are continuous functions on 𝑥 ∈ [1, 𝑏2 ]. Hence, their
product, 𝑦, is continuous over this interval.

To examine the differentiability of 𝑥 ′, we compute the derivative
of variable 𝑥 ′ with respect to 𝑥 using standard differentiation rules.
Applying the product rule yields:

d𝑥 ′

d𝑥
= − 1

𝑏
·
(
log2

𝑐

𝑏
+ log2 𝑥 + log2 𝑒

)
. (17)

Setting the derivative equal to zero to find critical points:

d𝑥 ′

d𝑥
= 0, (18)

we obtain:
log2

𝑐

𝑏
+ log2 𝑥 + log2 𝑒 = 0, (19)

which simplifies to:

𝑥 =
𝑏

𝑒𝑐
. (20)

Given the constraints 0 < 𝑐 ≤ 2
𝑒 and the fact that 1 ≤ 𝑥 ≤ 𝑏

2 , we
observe the following relationship:

𝑥 ≤ 𝑏
2
≤ 𝑏

𝑒𝑐
. (21)

Therefore, within the interval [1, 𝑏2 ], the variable 𝑥 ′ increases mono-
tonically with the variables 𝑥 , since the derivative d𝑥 ′

d𝑥 remains posi-
tive, ensuring its monotonic behavior.

Furthermore, the derivative d𝑥 ′
d𝑥 , as given by Equation 17, is a

monotonically decreasing function of 𝑥 . We now calculate its mini-
mum and maximum values over the interval 𝑥 ∈ [1, 𝑏2 ] as follows:(

d𝑥 ′

d𝑥

)
𝑚𝑖𝑛

=

(
d𝑥 ′

d𝑥

)
𝑥=𝑏

2

=
1
𝑏
· log2

2
𝑒𝑐
≥ 0, (22)

(
d𝑥 ′

d𝑥

)
𝑚𝑎𝑥

=

(
d𝑥 ′

d𝑥

)
𝑥=1

=
1
𝑏
· log2

𝑏

𝑒𝑐
≥ 0. (23)

To derive the probability density function 𝑞1 (𝑥 ′), we user the
relationship between the probability density functions of 𝑥 and 𝑥 ′:

𝑞1 (𝑥 ′) = 𝑞0 (𝑥)
���� d𝑥d𝑥 ′ ���� . (24)

Since d𝑥 ′
d𝑥 ≥ 0 over 𝑥 ∈ [1, 𝑏2 ], we have:

0 ≤ 𝑞0 (𝑥)𝑚𝑖𝑛 ·
���� d𝑥d𝑥 ′ ����𝑚𝑖𝑛 ≤ 𝑞1 (𝑦) ≤ 𝑞0 (𝑥)𝑚𝑎𝑥 ·

���� d𝑥d𝑥 ′ ����𝑚𝑎𝑥 . (25)

Substituting the bounds for 𝑞0 (𝑥) and
��� d𝑥 ′d𝑥

���, we obtain the inequality:

𝑞1 (𝑥 ′) ≤
𝑏

1 − log2 𝑒𝑐
. (26)

This completes the proof. □

C Evaluation Details
C.1 Datasets
The statistics of benchmark datasets, Politifact and Gossipcop, are
summarized in Table 7.

Table 7: Dataset statistics.

Datasets Nodes Users Posts Edges Targets
Politifact 276,858 276,277 581 1,074,890 62

Gossipcop 575,993 565,660 10,333 3,084,931 1547

C.2 Detectors.
We train all GNN-based detectors, GAT, GCN, SAGE, Bi-GCN, and
GCAN, to optimize their balanced and accurate detection capabilities
for fake and real news posts, using metrics accuracy and F1-score,
as detailed in Table 8.

Table 8: GNN-based detection performance.

Detection Model Politifact Dataset Gossipcop Dataset
Accuracy F1 Accuracy F1

GCN 0.8157 0.8024 0.9383 0.9348
GAT 0.8354 0.8340 0.9316 0.9266

GraphSAGE 0.8108 0.8102 0.9252 0.9206
GCAN 0.8475 0.8465 0.9142 0.9081

Bi-GCN 0.8084 0.8052 0.8916 0.8840

D Framework Scalability
To validate the scalability of our framework for large social networks,
we have developed a strategy to partition the network into local
subgraphs based on vertex connectivity. This approach facilitates
parallel processing of multiple local subgraphs, which reduces over-
all time complexity and improves scalability. We perform detailed
analyses of training and inference times (ms) using a larger-scale
Weibo dataset [20], as shown in the table 9. The results demonstrate
that, despite the additional overhead from hierarchical community
identification and subgraph targeting, the time costs introduced by
our framework remain comparable to those of the original attack al-
gorithms. Even for large social networks, the parallelized processing
ensures that computational overhead stays within acceptable limits.

Table 9: Time analysis of our SI2AF and MARL baseline in the
Weibo dataset.

Method Training Time Inference Time
MARL 537.29 32.65
SI2AF 542.35 36.17
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Table 10: Performance Comparison among single-agent variants of MARL and SI2AF within the Politifact and Gossipcop datasets.

Agent Method Politifact Fake News Politifact Real News
GAT GCN SAGE Bi-GCN GCAN GAT GCN SAGE Bi-GCN GCAN

Bot
MARL 0.34 ± 0.01 0.22 ± 0.01 0.36 ± 0.03 0.22 ± 0.04 0.26 ± 0.05 0.16 ± 0.01 0.50 ± 0.01 0.32 ± 0.08 0.36 ± 0.04 0.07 ± 0.01
SI2AF 0.37 ± 0.03 0.20 ± 0.01 0.39 ± 0.04 0.22 ± 0.03 0.31 ± 0.01 0.35 ± 0.07 0.51 ± 0.05 0.26 ± 0.02 0.41 ± 0.01 0.15 ± 0.03

Cyborg
MARL 0.33 ± 0.02 0.22 ± 0.01 0.33 ± 0.01 0.12 ± 0.01 0.16 ± 0.02 0.16 ± 0.01 0.50 ± 0.02 0.39 ± 0.02 0.27 ± 0.03 0.10 ± 0.01
SI2AF 0.20 ± 0.03 0.19 ± 0.01 0.38 ± 0.03 0.10 ± 0.01 0.23 ± 0.02 0.47 ± 0.15 0.50 ± 0.04 0.29 ± 0.02 0.33 ± 0.02 0.17 ± 0.02

Worker
MARL 0.34 ± 0.02 0.21 ± 0.01 0.33 ± 0.01 0.12 ± 0.02 0.16 ± 0.01 0.16 ± 0.01 0.48 ± 0.02 0.32 ± 0.08 0.27 ± 0.01 0.10 ± 0.01
SI2AF 0.31 ± 0.05 0.20 ± 0.06 0.37 ± 0.02 0.21 ± 0.01 0.30 ± 0.01 0.29 ± 0.03 0.49 ± 0.04 0.35 ± 0.08 0.43 ± 0.02 0.16 ± 0.03

Agent Method Gossipcop Fake News Gossipcop Real News
GAT GCN SAGE Bi-GCN GCAN GAT GCN SAGE Bi-GCN GCAN

Bot
MARL 0.82 ± 0.02 0.29 ± 0.03 0.14 ± 0.01 0.22 ± 0.02 0.73 ± 0.04 0.18 ± 0.05 0.40 ± 0.10 0.32 ± 0.01 0.43 ± 0.03 0.4 ± 0.01
SI2AF 0.73 ± 0.02 0.36 ± 0.02 0.19 ± 0.02 0.5 ± 0.01 0.49 ± 0.02 0.30 ± 0.01 0.47 ± 0.01 0.34 ± 0.01 0.41 ± 0.01 0.39 ± 0.03

Cyborg
MARL 0.81 ± 0.01 0.68 ± 0.02 0.13 ± 0.03 0.08 ± 0.01 0.69 ± 0.06 0.23 ± 0.03 0.45 ± 0.01 0.32 ± 0.01 0.42 ± 0.05 0.41 ± 0.02
SI2AF 0.71 ± 0.06 0.81 ± 0.03 0.10 ± 0.01 0.53 ± 0.03 0.70 ± 0.02 0.27 ± 0.04 0.37 ± 0.02 0.37 ± 0.03 0.35 ± 0.02 0.21 ± 0.09

Worker
MARL 0.82 ± 0.02 0.48 ± 0.03 0.13 ± 0.02 0.22 ± 0.01 0.71 ± 0.03 0.27 ± 0.03 0.45 ± 0.05 0.31 ± 0.01 0.12 ± 0.02 0.30 ± 0.02
SI2AF 0.76 ± 0.03 0.54 ± 0.02 0.16 ± 0.01 0.51 ± 0.03 0.73 ± 0.03 0.14 ± 0.02 0.48 ± 0.04 0.32 ± 0.09 0.39 ± 0.03 0.37 ± 0.02

E Single-agent Variant Comparison
We compare the single-agent variants of our SI2AF framework with
the multi-agent baseline, MARL [35]. Each variant controls a distinct
group of malicious accounts (bots, cyborgs, or crowd workers) to
execute attacks aimed at misclassifying fake and real news. Table 10
summarizes the average attack success rates and standard deviations
across all five GNN-based detectors.

In the Bot and Worker variants of SI2AF, we observed that SI2AF
outperforms MARL in nearly 80% of attack scenarios, demonstrat-
ing a clear performance advantage. However, in the Cyborg variant,
the performance difference between SI2AF and MARL is less pro-
nounced. This variation can be attributed to two key factors: the
classification of malicious accounts and the subgraph attack strategy
employed by SI2AF.

The MARL baseline relies on local degree features for account
classification, assuming that accounts with higher degrees have more
influence. However, due to the heavy-tailed degree distribution in
social networks, this approach results in a relatively fixed distribu-
tion of Worker accounts, which tend to have higher degrees. Con-
sequently, Worker accounts are less adaptable and struggle to ef-
fectively attack target accounts with fewer structural connections,
leading to weaker attack performance. In contrast, SI2AF uses global
structural information for account classification, resulting in a more
balanced distribution of Worker accounts and, consequently, better
attack performance.

In the Bot variant, SI2AF’s subgraph attack strategy, including in-
direct and feedback attacks, is particularly effective. These strategies
work well for Bot accounts, which have larger budgets and stronger
internal collaboration, providing more flexibility in influencing the
network. This is why the performance difference between SI2AF
and MARL is more pronounced in the Bot variant.

To clarify, although the performance of SI2AF varies across agent
types (Bots, Cyborgs, and Workers), the agents do not operate on
entirely disjoint sets of predictions. Instead, each agent performs
optimally based on its specific characteristics (such as account in-
fluence and budget). However, this does not imply that each agent
works with completely separate sets of predictions; rather, each agent
can influence predictions in different ways, depending on its unique
influence within the network.
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