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Abstract
Aspect Sentiment Triplet Extraction (ASTE) is an emerging
task to extract a given sentence’s triplets, which consist
of aspects, opinions, and sentiments. Recent studies tend
to address this task with a table-filling paradigm, wherein
word relations are encoded in a two-dimensional table, and
the process involves clarifying all the individual cells to
extract triples. However, these studies ignore the deep
interaction between neighbor cells, which we find quite
helpful for accurate extraction. To this end, we propose
a novel model for the ASTE task, called Prompt-based Tri-
Channel Graph Convolution Neural Network (PT-GCN),
which converts the relation table into a graph to explore
more comprehensive relational information. Specifically, we
treat the original table cells as nodes and utilize a prompt
attention score computation module to determine the edges’
weights. This enables us to construct a target-aware grid-
like graph to enhance the overall extraction process. After
that, a triple-channel convolution module is conducted to
extract precise sentiment knowledge. Extensive experiments
on the benchmark datasets show that our model achieves
state-of-the-art performance. The code is available at
https://github.com/KunPunCN/PT-GCN.

Keywords: Text Mining, Aspect Sentiment Triplet
Extraction, Prompt Learning

1 Introduction

Sentiment analysis is an important research direction
in natural language processing. It is used for opin-
ion mining of commentary texts such as social news
and user comments [1]. Recent studies have continu-
ously proposed tasks such as Aspect-based Sentiment
Analysis [2, 3] and Aspect-category Sentiment Detec-
tion [4], aiming to extract fine-grained sentiment ele-
ments. To further explore fine-grained extraction, the
Aspect Sentiment Triplet Extraction (ASTE) task re-
cently attracted more attention from researchers. As
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Opinion TermsAspect Terms: salmon sushi , noodles
Opinion Terms: ultra fresh , sticky

Sentiment Triplet: (salmon sushi , ultra fresh , Pos )
                (noodles, sticky, Neg )

The salmon sushi tastes ultra fresh but the noodles were sticky.
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Figure 1: An example of the ASTE task and table filling
scheme. In the relation table, “B” and “E” label the
vertex of the regions borderline, and then the restricted
regions are classified into sentiment categories.

shown in the upper part of Figure 1, the ASTE task
aims to extract the triplet: (aspect term, opinion term,
sentiment polarity). In this example, the aspect and
opinion terms are highlighted in blue and orange, re-
spectively. The phrase “ultra fresh” serves as an opin-
ion term for “salmon sushi”, expressing a positive senti-
ment. “sticky” is an opinion term for “noodles”, indicat-
ing a negative sentiment. This compound task requires
not only extracting the correct terms but also identi-
fying the sentiment relation between them, making it
more challenging.

There are two paradigms in existing research called
pipeline and joint extraction. The pipeline method [5–7]
decomposes the task into multiple subtasks and de-
vises different modules to address them step by step,
inevitably introducing cascading errors between mod-
ules. The joint extraction method exploits the associa-
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tion between subtasks, including Sequence Tagging [8],
Generative [9,10], Table Filling [11–14], and other meth-
ods. Table Filling performs significantly well among
the joint extraction methods due to its well-designed
framework. As shown in the lower part of Figure 1, it
first encodes word relations on a two-dimensional ta-
ble, one for aspect and another for opinion, and then
classifies all the table cells to extract triplets. Recent
table-filling methods focus on learning better word-level
representations for cells. GTS [12] encodes word repre-
sentations with typical neural networks, i.e., BERT [15],
and simply concatenates them together to form a table.
EM-GCN [13] enhances word representations through
syntactic dependency parsing. Dual-Encoder [16] uses
a sequence encoder with a pair encoder to fully learn
word representation.

Although these efforts are valuable, they simply ex-
ploit independent word-level information in each cell
and ignore interactions between neighboring cells. For
example, the cellij represents the relations between the
i-th and j-th words. Without a vision of its surround-
ing cells’ semantics, cellij lacks span-level and boundary
information, which leads to errors in the table decoding
process. To this end, we propose an effective end-to-
end model called Prompt-based Triple-Channel Graph
Convolution Neural Network (PT-GCN). Instead of
encoding word relations in a two-dimensional table, we
further transform the table into a target-aware relation
graph to contain more contextual neighbor information.
Specifically, first, we view the table as a tensor map,
treating each cell as a node, its vector as the initial
node representation. To obtain the weight of each edge
in the graph, we propose a prompt attention score com-
putation module that calculates the attention score for
each word and automatically learns edge weights. This
table-to-graph transformation introduces more contex-
tual information. Then, to learn precise relation infor-
mation from different sentiment perspectives, we pro-
pose a triple-channel parallel convolution module based
on multiplex sentiment prompts. Finally, The learned
representations are integrated for table decoding.

Our contributions are summarized as follows:
1) We propose an effective PT-GCN model for the

ASTE task. It can fully learn the relations of both word-
level and span-level.

2) We propose a prompt-based table-to-graph trans-
formation method. With the edge weights learned from
a prompt attention module, the model will better per-
ceive node relations. The relation graph is ingeniously
constructed through prompt learning without relying on
external knowledge.

3) We propose a novel parallel convolution module,
which fully learns word relations from different senti-

ment perspectives.
4) Extensive experiments conducted on benchmark

datasets have demonstrated that our model achieves the
best publicly available results on the ASTE task.

2 Related Work

ASTE. The ASTE task has gained traction in recent
years. ASTE has two research lines, including pipeline
and joint extraction. As an emerging compound task,
it can be decomposed into a series of subtasks, such as
Aspect Term Extraction (ATE), Opinion Term Extrac-
tion (OTE) and Aspect Sentiment Classification (ASC)
[17]. Most recently, Peng [5] first proposed the ASTE
task and addressed it with a two-stage pipeline method.
They solved these three subtasks separately in the first
stage and paired the triplets using a classifier in the sec-
ond stage. Both Chen [18] and Mao [7] constructed the
ASTE task as a multi-step machine reading comprehen-
sion (MRC) problem. However, these pipeline methods
are limited by error propagation and its cumbersome
process.

Another research line is joint extraction. Xu [8]
designed a position-aware sequence tagging approach
to capture the rich relations among the sentiment el-
ements. Yan [9] used the generative model BART
and a pointer network to indicate the target’s location.
Zhang [10] designed two types of paradigms, named
annotation-style and extraction-style modeling, tackling
several sentiment analysis tasks in a unified generative
framework. Xu [6] proposed a span-level approach that
explicitly considers the interaction between the whole
spans of aspects and opinions. Among these joint ex-
traction methods, Table Filling is an attractive ap-
proach. Wu [12] first transformed ASTE into a unified
table-filling task and proposed the Grid Tagging Scheme
(GTS) to address it. To further explore this method,
Jing [16] introduced a dual-encoder to learn subtasks’
differences. Chen [13] proposed a multi-channel GCN
model, which fully utilizes word relations based on se-
mantic dependency trees and the multi-channel graph.
Zhang [14] proposed a boundary detection model, which
can fully exploit both word-to-word and relation-to-
relation interactions.
Prompt-tuning. Prompt-tuning is a fine-tuning
paradigm proposed in GPT-3 [19] and it gets amaz-
ing results in few-shot or zero-shot scenarios. It de-
signs a template indicating task information for input,
which makes the downstream tasks more suitable for
the model training process. Prompt-tuning helps pre-
trained language models better mine knowledge [20],
and make progress on many NLP tasks, such as Text
Classification [21], Natural Language Inference [22] and
Sentiment Analysis [23]. Unlike these tasks, the ASTE
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Figure 2: The overview of PT-GCN. Merge Operation means merging the relation table and prompt scores to
construct the sentiment graph.

task is composite and more complex. Applying prompt
learning on ASTE is worth exploring. Li [24] explored
using prompt learning in the ASTE task with a gener-
ative architecture.

3 Approach

The model’s architecture is shown in Figure 2. It con-
sists of four parts: Prompt Attention Score Compu-
tation, Table-to-Graph Transformation, Triple Channel
GCN, and Table Decoding. We will discuss each part
according to the model process in the rest of this section.

3.1 Task Formulation. Given a sentence of n words
X = {x1, x2...xn}, the ASTE task aims at extracting
a set of triplets T = {ti}Ii=1 from X, where the i-th
triplet ti = (ai, oi, li). ai and oi denote the aspect
term and opinion term in X, respectively. li is the
sentiment label in {Pos,Neg,Neu}. As shown in the
lower part of Figure 1, we encode the word-pair relation
representations in a two-dimensional table and extract
the triplets in a region detection paradigm. Two entity
labels {B,E} on the non-diagonal are used for tagging
the beginning and end positions of the aspect-opinion
pair, respectively. After that, we extract all detected
regions that are restricted by the entity labels, and use
three sentiment labels {Pos,Neg,Neu} to classify the
sentiment polarities of the candidate triplets.

3.2 Prompt Attention Score Computation. As
shown in the bottom of Figure 2, given a sentence
X = {x1, x2, ..., xn}, we concatenate it with a manually
designed template T . For each sentiment polarity, there
are two mask slots for aspect and opinion. Then we
choose BERT [15] as the language encoder to obtain
the representations of the input sentence. The encoding
process is formulated as,

[H|HT ] = BERT ([X|T ]),(3.1)

where [H|HT ] ∈ Rn×d is the last hidden layer of the en-
coder output. d is the vector dimension. HT contains
six representations corresponding to the “[MASK]”
slots: [τapos, τ

o
pos, τ

a
neg, τ

o
neg, τ

a
neu, τ

o
neu], where τ ∈ R6×d

contains information about aspects and opinions that
correspond to different sentiments: positive (pos), neg-
ative (neg), and neutral (neu). To indicate the positions
of aspects and opinions in the sentence, we calculate the
attention score P ∈ R6×n using τ and H:

P = softmax(τWHT ),(3.2)

where W ∈ Rd×d is a learnable parameter. As an
example shown in Figure 3, when considering positive
sentiment, PA

pos has the highest probability at salmon

sushi, and PO
pos has the highest probability at ultra fresh.

3.3 Table-to-Graph Transformation. To capture
the word-level relations, we constructed a relation table
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Figure 3: An example of attention score for positive
sentiment.

C using H. For a cell cij ∈ C, it represents the relation
between the i-th and j-th words of the given sentence.
Inspired by BDTF [14], we use a maxpooling operation
on the sequence between hi ∈ Rd and hj ∈ Rd, which
helps to capture more contextual information. In addi-
tion, a tensor-based operation [25] is used to capture the
word interactions, which has proven effective. By con-
catenating various forms of computation, cij can fully
learn relations information. The calculation process is
as follows:

ĥij = hi ⊕ hj ⊕ pooling(hi:j)⊕ (hi)
TW1hj ,(3.3)

cij = σ(W2ĥij),(3.4)

where W1 ∈ Rd×t×d and W2 ∈ Rd×(3d+t) are trainable
parameters. σ is an activation function (e.g., ReLU).
⊕ denotes the concatenation operation. hi:j(i ≤ j) is
a sequence of [hi, hi+1, ..., hj ]. (hi)

TW1hj is the tensor-
based operation.

As we can observe, the relation table C lacks suf-
ficient sentiment relation information between adjacent
nodes. For example, in Figure 1, the relation between
nodes “noodles-were” and “noodles-sticky”, has a huge
difference with the relation between nodes “were-were”
and “were-sticky”. Therefore, we wish to add more sen-
timent information between nodes in the relation table.
To transform the relation table into a graph, we treat
each cell cij in the table as a node in the graph, and

define riji(j+1) as the relation arc connecting node cij to

node ci(j+1). As depicted in the upper right corner of
Figure 2, each node in the table (excluding edge nodes)
has four outgoing arcs and four incoming arcs. The
higher the probability of a node being a term word-
pair, the stronger its impact on surrounding nodes. For
example, in the positive relation graph, we can define
the weights of the outgoing arcs as follows:

riji(j+1) = riji(j−1) = pposaj ,(3.5)

rij(i+1)j = rij(i−1)j = pposoi ,(3.6)

where pposaj , pposoi ∈ P are prompt scores for the positive
aspect slot and positive opinion slot. With table nodes
C and arcs Rpos = {r11, r12..., rnn}, we define a directed
positive graph Gpos = {C,Rpos}. In the same way,
we can define the negative graph Gneg and the neutral
graph Gneg.

3.4 Triple Channel GCN. To model varied rela-
tions between word-pair nodes, we apply a Graph Con-
volutional Neural Network (GCN) [26] to aggregate rel-
evant information from adjacent nodes. Because the
grid-like graph has local structural consistency, we can
simplify the convolution process and accelerate calcula-
tions. Specifically, given the (l−1)-th layer inputG(l−1),
the l-th layer GCN produces Gl ∈ Rn×n×d by:

glij = σ(W l
g(g

l−1
ij +

∑
k∈{(i±1)j,i(j±1)}

rkijg
l−1
k )),(3.7)

where W l
g ∈ Rd×d is a trainable parameter. The first

layer g0ij is initialized to cij . After the multi-layer GCN,
we input the last hidden layer representation into a
linear layer to obtain the final node representation C̃.

There exist three sentiment graphs with the same
nodes but have significant differences in edge weights,
each capturing different sentiment relations. We con-
duct parallel graph convolution operations on the three
sentiment graphs, each channel focuses on learning sin-
gle precise sentiment relation. The final table C ′ is pro-
duced by:

C ′ = C̃pos ⊕ C̃neg ⊕ C̃neu,(3.8)

where C̃pos, C̃neg, C̃neu are representations correspond-
ing to graphs Gpos, Gneg and Gneu, respectively.

3.5 Table Decoding. Similar to BDTF [14], our
decoding process contains two steps: detection and
classification.

Detection: To detect the target regions, we input
C ′ into two parallel linear layers, followed by a sigmoid
function, to obtain two entity score tables SS ∈ Rn×n

and SE ∈ Rn×n. Each sSij in SS represents the score

of the upper left corner of the target region. sEij in SE

represents the score of the lower right corner. After
that, we use a top-k strategy to get the candidate
entities. Given a score table S and a span pruning
threshold k, we first sort the scores and then take the
top k% scores’ position (a tuple like (i, j)) as candidates.
Corresponding to SS and SE , the two candidate sets are
S and E.

Classification: Firstly, we traverse the two
candidate sets S and E to form the candidate regions.
For two position tuples (a, b) in S and (c, d) in E, the
candidate region is the restricted rectangle Ca:c,b:d ∈
C ′(a ≤ c, b ≤ d). The representation of the candidate
region is produced by:

R = Ca,b ⊕ Cc,d ⊕maxpooling(Ca:c,b:d).(3.9)

It is concatenated by the two vertices and a maxpooling
of the region Ca:c,b:d. Finally, we input R into a linear
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layer, followed by a softmax function, to obtain the
region’s sentiment classification result s∗abcd. The value
of s∗abcd ∈ {0, 1, 2, 3} corresponds to label in {Padding,
Pos, Neg, Neu}. We drop the Padding region and finally
obtain a sentiment triplet: t = ((a, c), (b, d),F(s∗abcd)),
where F is a label mapping function.

3.6 Training Loss. Given the ground truth entity
label ySij , y

E
ij ∈ {0, 1}, the entity loss is formulated as a

sum of two cross-entropy losses: L1 = Ls + Le, where

Ls = −
n∑

i=1

n∑
j=1

∑
k∈[0,1]

I(ySij = k)log(sSij),(3.10)

Le = −
n∑

i=1

n∑
j=1

∑
k∈[0,1]

I(yEij = k)log(sEij).(3.11)

I(·) is the indicator function. Given the sentiment label
y∗ ∈ {0, 1, 2, 3}, the sentiment loss is calculated by:

L2 = −
m∑
i=1

∑
k∈[0,1,2]

I(y∗i = k)log(s∗abcd),(3.12)

where m is the number of candidate regions. Our final
training goal is to minimize L:

L = αL1 + (1− α)L2,(3.13)

where α > 0 is a hyperparameter.

4 Experiments

4.1 Datasets. Following previous studies [13], we
evaluate our model on two public datasets1 that are
derived from the SemEval ABSA Challenges [2]. The
first datasetD1 is released by [5]. The second datasetD2

is a revised version of D1, which comes from [8]. These
two datasets both include three restaurant datasets and
one laptop dataset. The detailed statistics are shown
in Table 1, where #S denotes the number of sentences,
and #T denotes the number of triplets.

Table 1: Statistics of datasets.

Dataset
14res 14lap 15res 16res

#S #T #S #T #S #T #S #T

D1

train 1,259 2,356 899 1,452 603 1,038 863 1,421
dev 315 580 225 383 151 239 216 348
test 493 1,008 332 547 325 493 328 525

D2

train 1,266 2,338 219 346 605 1,013 857 1,394
dev 310 577 219 346 148 249 210 339
test 492 994 328 543 322 485 326 514

1https://github.com/xuuuluuu/SemEval-Triplet-data

4.2 Baselines. 1) Pipeline methods decompose the
ASTE task: Peng-two-stage [5], Peng+IOG [12] and
IMN+IOG [12]; or treat it as a multi-step machine
reading comprehension task: BMRC [18], Dual-MRC [7]
and COM-MRC [27]. 2) End-to-End methods address
the task with an encoder-docoder architecture: JET-
BERT [8], Joint-Decoder [28], BART-ABSA [9], Span-
ASTE [6] and RLI [29]. 3) Table-filling methods
encoder the word relations into a two-dimensional table:
S3E2 [30], GTS-BERT [12], EMC-GCN [13], Dual-
Encoder [16] and BDTF [14].

4.3 Implementation. We use Bert-base-uncased2

[15] as our encoder. We train the model for 20 epochs
with a batch size of 4, and the learning rate is set to
3×10−5. In each epoch, we evaluate the training model
on the development set and save the best one. We set
d = 768 and l = 2. Without special instructions, the
default settings for k and α are 0.3 and 0.5, respec-
tively. All results (F1-score) are the average across five
runs with different random seeds. We perform all ex-
periments on an NVIDIA GeForce RTX 3090.

4.4 Main Results. The main results are shown in
Table 2 and Table 3, where the best results are high-
lighted in bold. α is set to 0.4 on D1-14lap and 0.6 on
D1-16res. It can be observed that our PT-GCN out-
performs all the baselines. Table 2 shows the result on
D1. Compared with the best baseline Join-decoder, the
improvements in F1-score of our PT-GCN are 0.50%,
3.94%, and 0.41% on 14lap, 15res, and 16res, respec-
tively. But drop by 0.31% on 14res. The average im-
provement is 1.14%. Table 3 shows the result on D2.
Compared with the best baseline BDTF, the improve-
ments in F1-score of our PT-GCN are 0.53%, 0.32%,
1.26%, and 0.49% on four datasets, respectively. The
average improvement is 0.65%. The BDTF focuses on
learning relation interactions but ignores the sentiment
features, while our model can automatically learn the
relation interactions of different sentiment polarities at
the instance level. The results demonstrate that our
model achieves state-of-the-art performance.

Compared with other table-filling models, our
model outperforms the best baseline EMC-GCN by an
average of 4.06% in F1-score. Although EMC-GCN in-
troduced additional syntactic information (such as part-
of-speech and syntactic dependency) through a multi-
channel GCN module, our model performs better with-
out external knowledge. The reason is that rather than
using external linguistic knowledge, prompt learning
can utilize the rich knowledge contained in the language

2https://huggingface.co/bert-base-uncased
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Table 2: Results on D1. All baseline results are from the original papers.

Model
14res 14lap(α = 0.4) 15res 16res(α = 0.6)

Avg-F1
P. R. F1 P. R. F1 P. R. F1 P. R. F1

Peng+IOG 58.89 60.41 59.64 48.62 45.52 47.02 51.70 46.04 48.71 59.25 58.09 58.67 53.51
IMN+IOG 59.57 63.88 61.65 49.21 46.23 47.68 55.24 52.33 53.75 - - - -
BMRC - - 70.01 - - 57.83 - - 58.74 - - 67.49 63.52
Dual-MRC 71.55 69.14 70.30 57.39 53.88 55.58 63.78 51.87 57.21 68.60 66.24 67.40 62.62
BART-ABSA - - 72.46 - - 57.59 - - 60.11 - - 69.98 65.04
Joint-decoder - - 74.53 - - 62.30 - - 63.10 - - 74.27 68.55
S3E2 69.08 64.55 66.74 59.43 46.23 52.01 61.06 56.44 58.66 71.08 63.13 66.87 61.07
GTS-BERT 70.92 69.49 70.20 57.52 51.92 54.58 59.29 58.07 58.67 68.58 66.60 67.58 62.76
EMC-GCN 71.85 72.12 71.98 61.46 55.56 58.32 59.89 61.05 60.38 65.08 71.66 68.18 64.72
PT-GCN(Ours) 76.62 71.96 74.22 71.36 56.08 62.80 71.29 63.26 67.04 74.03 75.35 74.68 69.69
∆ ↑ 4.77 - - ↑ 9.90 ↑ 0.52 ↑ 0.50 ↑ 10.23 ↑ 2.21 ↑ 3.94 ↑ 2.95 ↑ 3.69 ↑ 0.41 ↑ 1.14

Table 3: Results on D2. † and ‡ denote that results are retrieved from [8] and [13].

Model
14res 14lap 15res 16res

Avg-F1
P. R. F1 P. R. F1 P. R. F1 P. R. F1

Peng-two-stage† 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21 50.22
BMRC‡ 75.61 61.77 67.99 70.55 48.98 57.82 68.51 53.40 60.02 71.20 61.08 65.75 62.90
COM-MRC 75.46 68.91 72.01 62.35 58.16 60.17 68.35 61.24 64.53 71.55 71.59 71.57 67.07
JET-BERT† 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83 58.70
BART-ABSA 65.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.60 68.68 67.62 62.71
Span-ASTE 72.89 70.89 71.85 63.44 55.84 59.38 62.18 64.45 63.27 69.45 71.17 70.26 66.19
RLI 77.46 71.97 74.34 63.32 57.43 60.96 60.08 70.66 65.41 70.50 74.28 72.34 68.26
GTS-BERT‡ 68.09 69.54 68.81 59.40 51.94 55.42 59.28 57.93 58.60 68.32 66.86 67.58 62.60
Dual-Encoder 67.95 71.23 69.55 62.12 56.38 59.11 58.55 60.00 59.27 70.65 70.23 70.44 64.59
EMC-GCN 71.21 72.39 71.78 61.70 56.26 58.81 61.54 62.47 61.93 65.62 71.30 68.33 65.21
BDTF 75.53 73.24 74.35 68.94 55.97 61.74 68.76 63.71 66.12 71.44 73.13 72.27 68.62
PT-GCN(Ours) 77.85 72.13 74.88 67.69 57.30 62.06 69.76 65.15 67.38 74.39 71.21 72.76 69.27
∆ ↑ 0.39 - ↑ 0.53 - - ↑ 0.32 ↑ 1.00 - ↑ 1.26 ↑ 2.84 - ↑ 0.49 ↑ 0.65

Table 4: Analysis of wrong predictions on D2.

Model
14res 14lap 15res 16res

E. S. E. S. E. S. E. S.

GTS 10.16 8.37 11.75 13.15 14.37 8.54 9.21 8.66
BDTF 6.77 5.52 6.03 12.06 10.50 7.22 5.34 7.71
Ours 6.46 5.11 6.27 11.51 10.44 7.04 4.93 7.20
∆ ↓ 0.31 ↓ 0.41 - ↓ 1.09 ↓ 0.06 ↓ 0.18 ↓ 0.41 ↓ 0.51

model. Compared with GTS-BERT, which simply uses
the BERT representation for table filling, the improve-
ment of our model is 6.67% in F1-score.

To reveal the improvements in our model, we con-
duct an experiment to analyze the wrong predictions.
As shown in Table 4, where E. denotes entity errors
and S. denotes sentiment errors. Entity error means
a triplet with a correct sentiment term and wrong as-
pect terms or opinion terms. By contrast, sentiment er-

rors are caused by the wrong sentiment, while the other
two entities are correct. Compared with the best base-
line BDTF on D2, our model’s entity error rate has de-
creased by an average of 0.14%, and the sentiment error
rate has decreased by an average of 0.56%. It can be ob-
served that our model shows a more significant decrease
in sentiment error rate. This proves that our model has
a stronger learning ability for sentiment relations.

4.5 Ablation Study. To further reveal the effective-
ness of the tri-channel GCN module, we conduct an ab-
lation study on D2. The results are shown in F1-score in
Table 5. In the No-Senti setting, we remove the senti-
ment polarity description (the words “positive”, “nega-
tive”, and “neutral”) from the prompt template in Fig-
ure 2. The results show that the performance will drop
by an average of 1.59%. This is because the triple chan-
nel GCN benefits from the ability to learn from multiple
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Table 5: Ablation study on D2. The evaluation metrics are F1-score and single sentence inference time cost (ms).

Models #Params
14res 14lap 15res 16res Avg. Avg.∆

F1 ms. F1 ms. F1 ms. F1 ms. F1 ms. F1 ms.(%)
PT-GCN 237.6M 74.88 36.23 62.06 37.79 67.38 38.50 72.76 38.76 69.27 37.82 - ↑ 87.88%
No-senti 237.6M 72.11 36.49 61.63 37.44 64.96 38.23 72.00 38.82 67.68 37.75 ↓ 1.59 ↑ 87.53%
Single 152.2M 71.85 32.11 60.35 26.28 64.40 26.08 71.41 34.84 67.00 29.83 ↓ 2.27 ↑ 48.17%
None 110.8M 68.49 17.79 55.23 20.31 61.32 22.02 66.42 20.41 62.87 20.13 ↓ 6.40 -

sentiment perspectives.
In the Single setting, instead of using a template

with six sentiment mask slots, we use a template with
only two mask slots, like “aspect [MASK], opinion
[MASK].”. The triple channel graph is modified to only
a single graph without sentiment perception. The model
performance decreases by 2.27%. Compared to the No-
Senti setting, the Single setting only slightly decreased
more by 0.31%. This reveals that it is the sentiment
indication in the template, not the number of slots, that
plays an important role in the model’s performance.

In the None setting, we remove the Section 3.3
Table-to-Graph Transformation step and use the table
C directly as inputs to the table-decoding module. The
results show that the performance will drop by an
average of 6.40%. This reveals that the Table-to-Graph
step is beneficial for learning word relations.

4.6 Computing Efficiency. As shown in Table 5,
we evaluate our model’s computing efficiency by the
number of parameters and single sentence inference time
cost. In the None setting, the model retains the back-
bone and has the lowest inference time cost, but the
performance of the model decreases significantly. Com-
paring Singe with None, the model performance has
improved and the time cost has slightly increased. In
the No-senti setting, compared to the full parameter,
there is no change in parameter quantity and time cost,
as they only have different inputs. Our full model has
an average inference time of 37.82 ms, which is close
to that of Single, while being less than double that of
None. Thus balance between performance and time cost
is achieved.

4.7 Analysis of Coefficient. To further investigate
the effect of α and k, we conduct two experiments on
D1 and D2. We use the average F1-score on the four
subdatasets as metrics. We first set k = 0.3 and study
the coefficient α from value 0.2 to 0.8. As shown in
Figure 4(a), the best value of α is 0.5 for both D1

and D2. We also study the span pruning threshold k
from value 0.1 to 0.7 while set α = 0.5. The value
of k controls the number of candidate entities in the
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Figure 4: Effects of α and k.

3.5 Table Decoding step, and the larger the value, the
greater the number of entities to classify. An excessive
k value can cause noise, while smaller values may cause
candidates missing. As shown in Figure 4(b), the best
value of k is 0.3.

4.8 Performance on Subtasks. There are several
subtasks of the ASTE task. In this paper, we evaluate
two typical of them: Aspect Term Extraction and
Sentiment Classification (AESC) and Aspect-Opinion
Pair Extraction (AOPE). AESC aims at extracting all
the aspect terms as well as the corresponding sentiment
polarities simultaneously. ASOE aims at extracting
all the correct pairs of aspect-opinion terms from a
sentence. In the AESC setting, we directly extract
the pair (aspect, sentiment) from the triplets. In the
ASOE setting, we remove the sentiment classification
step. Following previous studies, we evaluate our model
on D1 in F1-score. The comparison results are shown in
Table 6, where the best results are highlighted in bold.
Our model outperforms the best pipeline model BART-
ABSA by an average of 2.18% and 1.25% on the AESC
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Table 6: Comparison results for AESC and ASOE tasks. † denotes that results are retrieved from [7].

Model
14res 14lap 15res 16res Avg-F1

AESC ASOE AESC ASOE AESC ASOE AESC ASOE AESC ASOE
CMLA+† 70.62 48.95 56.90 44.10 53.60 44.60 61.20 50.00 60.58 46.91

Peng-two-stage† 74.19 56.10 62.34 53.85 65.79 56.23 71.73 60.04 68.51 56.56
Dual-MRC† 76.57 74.93 64.59 63.37 65.14 64.97 70.84 75.71 69.29 69.75
BART-ABSA 78.47 77.68 68.17 66.11 69.95 67.98 75.69 77.38 73.07 72.29
PT-GCN 81.43 78.90 70.33 69.95 71.97 69.31 81.26 79.99 76.25 74.54

and ASOE tasks, respectively. The overall improvement
indicates that PT-GCN is effective not only for the
ASTE task but also for AESC and ASOE tasks.

4.9 Prompt Score Visualization. We use the case
in Figure 1 as an example input. To further investigate
the role of prompt attention in the framework, we
visualize the similarity heat maps of the three polarities,
which are shown in Figure 5. It is worth noting that
what we show here is the product of probabilities, not
the visualization of the final result. For each map, the
vertical axis represents aspect probability PA and the
horizontal axis represents opinion probability PO, which
are calculated in Eq. 3.2. For each node nij in the map,

it is calculated by: nij =
√

pai (p
o
j)

T . We believe that

nij can somewhat indicate the aspect-opinion pairs. For
example, in the heat map (a), it can be easily observed
that the darkest grids correspond to “salmon sushi” on
the column and the “ultra fresh” on the horizontal. By
comparing (a) with ground truth (d), we find that gij
can indeed indicate the positions of golden pairs. This
conclusion can also be drawn in (b) and (c). This proves
that prompt attention plays a positive role in the entire
model’s performance.

5 Conclusion

In this paper, we propose a novel PT-GCN approach to
address the ASTE task. Previous table-filling models
simply clarify word-level relations in each individual
cell but ignore the deep interaction between neighbor
cells. To accurately learn word relations, we propose
a table-to-graph transformation method that does not
need to rely on external knowledge. Specifically, we
propose a prompt attention mechanism to highlight
the term words. By treating the prompt attention
score as edge weight and table cells as nodes, we
transform the table into a grid-like target-aware graph.
Furthermore, we propose a parallel GCN module to
fully utilize the information from different sentiment
perspectives. Extensive experiments show that our
approach outperforms all baseline methods not only
on the ASTE task but also on two subtasks. The

The
salmon

sushi
tastes

ultra fresh but the
noodles

were
stic

ky

The

salmon

sushi

tastes

ultra

fresh

but

the

noodles

were

sticky
0.0

0.2

0.4

0.6

0.8

1.0

(a) Positive

The
salmon

sushi
tastes

ultra fresh but the
noodles

were
stic

ky

The

salmon

sushi

tastes

ultra

fresh

but

the

noodles

were

sticky
0.0

0.2

0.4

0.6

0.8

1.0

(b) Negative

The
salmon

sushi
tastes

ultra fresh but the
noodles

were
stic

ky

The

salmon

sushi

tastes

ultra

fresh

but

the

noodles

were

sticky
0.0

0.2

0.4

0.6

0.8

1.0

(c) Neutral

A A

A A

O

O

A

O
The  salmon sushi  tastes  ultra   fresh    but      the  noodles were  sticky

The

salmon

sushi 

tastes

ultra

fresh

but

the

noodles

were

sticky

Pos Pos

Pos Pos

Neg

(d) Ground truth

Figure 5: Heatmaps for different sentiment polarities
and the corresponding ground truth.

advantage of our model comes from a more potent
ability to mine sentiment knowledge. Detailed analysis
demonstrates the effectiveness of each module within
the overall framework. In future work, we will delve into
the different roles of the three channels in the parallel
convolution module.
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