
Emergence of Cooperation in Multi-Agent Reinforcement Learning via
Coalition Labeling and Structural Entropy

Dingli Su∗ Hao Peng† Guangjie Zeng∗ Pu Li‡ Angsheng Li∗ Yicheng Pan∗ B

Abstract
Multi-agent cooperation is essential for tasks that require
collaboration to achieve optimal performance or cannot be
completed by individual agents alone. These tasks of-
ten necessitate a divide-and-conquer strategy, where sub-
goals are allocated to individual agents or groups. By
integrating coalition formation concepts from cooperative
game theory, we demonstrate the implicit learning of coali-
tion formation and task assignments, resulting in emer-
gent cooperative behavior. We propose a novel COaLition
LABeling technique for Multi-Agent Reinforcement Learn-
ing (COLLAB-MARL) to encourage coalition formation
and introduce a structural entropy measure to detect the
emergence of coalitions and cooperative behavior. Com-
pared to classical MARL methods, COLLAB-MARL is more
effective, explainable, and easier to implement. Experiments
on state-of-the-art cooperative MARL benchmarks show
that our method’s mean return outperforms the strongest
baselines by 8.4% on average. Additionally, visualization
and structural entropy analysis reveal that COLLAB-MARL
effectively learns meaningful cooperative behavior. The
source code is available at https://github.com/SELGroup/
collab.

Keywords: Cooperative AI, Multi-Agent Reinforce-

ment Learning, Coalition Formation, Structural Entropy,

Drone Swarm

1 Introduction

The emergence and evolution of cooperation among in-
telligent agents is a fundamental question that has in-
trigued researchers across various fields, from biology
to artificial intelligence. Key questions remain unan-
swered: Why do agents cooperate rather than act in-
dividually? What environmental factors encourage or
hinder collaboration? What mechanisms ensure the
balance between personal gain and collective success?
[15] These challenges in understanding cooperation have
prompted spirited debates, reminiscent of Charles Dar-
win’s own struggles to explain selflessness in social in-
sects, which he once admitted posed a serious chal-
lenge to his theory of natural selection. Recent research
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(a) Initial [3]. (b) MAPPO. (c) COLLAB.

Figure 1: Comparison of agent behaviors in the discov-
ery task: (a) Initial random movement, (b) MAPPO-
trained agents exhibit homogeneous behavior, and (c)
COLLAB-trained (ours) agents exhibiting cooperative
behavior through coalition formation.

suggests that rather than cooperation simply emerg-
ing from intelligent agents, intelligence itself is shaped
within environments characterized by these dynamics.
In such settings, competition fosters innovation, while
social interaction and cooperation are crucial for the
emergence of intelligence [2, 6].

The rapid advancements in artificial intelligence,
particularly in multi-agent reinforcement learning
(MARL), offer fresh perspectives on the long-standing
debate surrounding cooperation. Existing MARL ap-
proaches focus on improving reward assignment [7],
value function approximation [16], and policy optimiza-
tion [11, 14]. Despite the progress made in multi-agent
reinforcement learning, current state-of-the-art meth-
ods, such as QMIX [16] and MADDPG [14], have several
limitations when applied to cooperative tasks. These
methods often exhibit only marginal improvements over
basic approaches like MAPPO [24] and suffer from poor
performance, as shown in the (b) of figure 1. Although
they enhance policy optimization or value function ap-
proximation techniques, they do not effectively differen-
tiate between agents’ membership in cooperative sub-
groups, which is crucial for modeling collaborative be-
havior. Another significant drawback is the lack of a
subjective method to detect the presence of coopera-
tive actions within learned policies, making it difficult
to interpret the emerging cooperative strategies.

In this paper, we take initial steps toward address-
ing these limitations using the COaLition LABeling
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(COLLAB) technique, which augments MAPPO and
improves their performance in cooperative tasks, as
shown in figure 1(c). Our approach is systematic: first,
we select a set of multi-agent benchmark tasks that
necessitate cooperation; next, we design a framework
to improve the cooperative learning algorithms applied
to these tasks; and finally, we analyze whether the
agents successfully learn cooperative behavior by ap-
plying structural entropy measurements, which help us
detect the emergence of coalition structures.

We focus on fully cooperative, partially observable,
multi-agent tasks with shared rewards, requiring agents
to coordinate under communication constraints. These
tasks often follow a divide-and-conquer approach, neces-
sitating altruistic strategies for a common objective that
individual agents can’t achieve alone. Our approach
involves centralized training with decentralized execu-
tion (CTDE), where communication is unrestricted dur-
ing training but limited during execution, as commonly
used in multi-agent planning [7].

Inspired by graph representation learning, particu-
larly the Labeling Trick [31], we propose the COLLAB
technique to enhance the representation of agent coali-
tions. COLLAB assigns labels to agents’ observations,
transforming them into enriched inputs for policy learn-
ing. Our experiments show that simple aggregation of
observations fails to capture complex structures, echo-
ing findings from recent graph representation studies
like GLASS [21]. To the best of our knowledge, this is
the first application of coalition labeling in MARL.

Structural entropy is a measure that quantifies the
complexity of dynamic interactions in networks and
has been successfully applied in community detection
[13, 18]. Since cooperation is a type of dynamic behav-
ior in social systems and multi-agent systems (MAS),
structural entropy is well-suited for identifying emergent
cooperation and coalition structures. By measuring the
uncertainty in agents’ interactions, structural entropy
reveals how well agents coordinate to achieve shared
goals. This approach builds a graph from agents’ inter-
actions across environment frames, offering a dynamic
representation of cooperation and capturing the com-
plexity of these coordinated behaviors.

Our experimental results demonstrate the effective-
ness of COLLAB-MARL on a well-established bench-
mark task, underscoring the novelty of utilizing the
COLLAB technique in reinforcement learning to facil-
itate the learning of cooperative behaviors in a more
explainable and expressive manner. Furthermore, we
introduce the innovative use of structural entropy as
a tool to detect and quantify cooperative behaviors.
COLLAB-MARL achieves either the best or near-best
scores across multiple tasks, demonstrating an 8.4% av-

erage improvement over the strongest competing base-
line in terms of mean return. Additionally, our approach
exhibits greater training efficiency when compared to
existing methods. The experimental outcomes also val-
idate the utility of structural entropy as a robust metric
for evaluating the emergence of coalitions and coopera-
tion in multi-agent systems, providing a systematic and
reliable framework for understanding cooperative dy-
namics.

2 Related Work

Our work builds upon key research areas, including
MARL, and coalition formation. Below, we provide
an overview of relevant literature and identify gaps our
approach addresses.

2.1 Multi-Agent Reinforcement Learning.
MARL has become a robust framework for coordina-
tion in multi-agent systems [29]. MARL algorithms
are often categorized as centralized training with
decentralized execution (CTDE) or fully decentralized
approaches. CTDE approaches like MAPPO [24],
MADDPG [14], and QMIX [16] use a central controller
during training, while execution is decentralized.
In contrast, fully decentralized approaches, such
as Independent Q-Learning [20] and Decentralized
Actor-Critic [30], rely solely on local observations.

2.2 Coalition Formation with Structural En-
tropy. Coalition formation is a key aspect of multi-
agent coordination that enables agents to form tem-
porary teams to tackle specific objectives more effec-
tively [10]. Research in multi-agent systems has focused
on developing algorithms for forming stable coalitions,
often relying on game-theoretic concepts like the core or
the Shapley value [5]. However, in swarm robotics and
multi-agent reinforcement learning (MARL), the ex-
plicit integration of coalition formation has been largely
unexplored.

Jiang and Lu [11] introduced attentional communi-
cation mechanisms for multi-agent cooperation, implic-
itly allowing sub-group formation within a swarm. How-
ever, these approaches do not explicitly address task al-
location or leverage structural entropy to enhance coali-
tion formation.

Structural entropy, derived from structural infor-
mation theory [12], measures the complexity of a sys-
tem by quantifying uncertainty in its structure [13]. In
multi-agent systems, structural entropy can be used to
optimize coalition formation by minimizing structural
uncertainty [26] and maximizing task efficiency [27,28].
Despite its success in other areas, the use of structural
entropy in swarm robotics is less explored.
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I.COLLAB II. Structural 

Entropy
III. Down-

stream

b) Coalition Labeling c) Stacked Observation d) Policy Network

COLLB Module

a) Multi-agent System (e.g. Drone Swarm)

Figure 2: Overview of the proposed method. Step I. COLLAB: Apply coalition labeling. II. Structural
Entropy captures interaction complexity. III. Down-stream tasks use coalition labels to optimize cooperative
performance. The COLLAB Module includes: (a)Multi-agent System with drone swarms as an example
(b)Coalition Labeling, (c) Stacked Observation, and (d) Policy Network mapping observations to actions.

Our approach aims to bridge these gaps by combin-
ing MARL with coalition formation for task assignment
in multi-agent systems like drone swarms, leveraging
structural entropy. This enables the swarm to adapt
coalition structures and task allocation strategies in a
decentralized manner, balancing structural uncertainty
and coalition efficiency. This integration addresses the
limitations of existing approaches, providing a novel
framework for coalition formation and task allocation
based on structural entropy principles.

3 Methodology

This section presents two complementary components
of our approach (Figure2). First, the COLLAB-MARL
framework enhances the baseline MARL algorithm by
incorporating coalition labeling, enriching agents’ obser-
vation space with coalition-specific meta-information,
and allowing strategy adjustments. Second, structural
entropy quantifies coordination among agents by ana-
lyzing interaction graphs over time, providing a clear
measure of collaboration effectiveness.

3.1 COLLAB-MARL Framework. The
COLLAB-MARL framework extends the existing
Multi-Agent Proximal Policy Optimization (MAPPO)
algorithm by augmenting agent observations with coali-
tion information. The primary aim of this framework is
to enhance coordination and cooperation among agents
belonging to the same coalition in environments. By
incorporating coalition-specific information into each
agent’s state representation, COLLAB-MARL enables
more sophisticated intra-coalition collaboration, leading
to improved collective performance.

3.1.1 Coalition Labeling Technique. In a multi-
agent system (MAS), agents operate within the same en-
vironment, sharing a common policy network in scenar-
ios where cooperation between subsets of agents (coali-
tions) is necessary for optimizing heterogeneous reward
functions. However, agents cannot inherently perceive
their coalition membership from their environmental ob-
servations, as coalition structure is typically not embed-
ded in the environment itself. To address this issue,
we introduce the coalition labeling technique, which ap-
pends a coalition-specific identifier to each agent’s ob-
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servation vector.
Definition 1. Given a multi-agent system S =

(V,E), where V = {v1, v2, ..., vn} represents the set of
agents and E denotes the set of agent interactions, let
C = {C1, C2, ..., Ck} be the set of coalitions within S.
Each agent v ∈ V belongs to one coalition Ci ∈ C. The
integer coalition label of agent v is defined as:

(3.1) l(C)
v =

{
i if v ∈ Ci.

The scalar label l
(C)
v indicates the coalition to

which agent v belongs and is appended directly to the
agent’s observation vector ov, transforming it into an

augmented observation ôv = [ov, l
(C)
v ]. By including

l
(C)
v in the agent’s observation, the policy network
can recognize coalition membership as part of the
agent’s state representation, enabling the shared policy
to learn behaviors specific to each coalition and improve
coordination among agents within the same coalition.
This approach eliminates the need for agents to perceive
coalition membership through environmental cues, thus
avoiding modifications to the environment or sensor
model. Mathematically, the policy πv(av|ôv, θ) for each
agent v is conditioned on the augmented observation ôv,
where av represents the action taken by agent v, and θ
represents the shared policy parameters.

The coalition labeling technique is simple to imple-
ment, requiring only a scalar label to be appended to the
observation vector, without necessitating any changes
to the policy architecture. Since it integrates easily into
most MARL frameworks, especially those using shared
policies like MAPPO, it is highly compatible with ex-
isting setups. Additionally, the label provides a form
of status awareness, allowing agents to differentiate
coalition membership, which would otherwise be diffi-
cult for the policy network to infer directly from raw
environmental data. This awareness fosters more strate-
gic and cooperative behavior, enhancing coordination
within the coalition.

3.2 Policy Framework. Our policy framework is
compatible with various baseline methods, such as
MAPPO, MADDPG, QMIX, VDN, and MASAC. De-
pending on the specific algorithm, different architec-
tures (e.g., shared or individual policies) may be used
to suit each method. The shared network processes an
augmented observation ôv, which combines the original
observation ov with coalition information. The policy
maps ôv to a distribution over actions, parameterized
by mean µv and variance σv:

(3.2) πv(av|ôv, θ) = N (µv(ôv), σv(ôv)),

where θ represents the shared parameters. The policy
network is implemented as a multi-layer perceptron
(MLP) with L hidden layers:

(3.3) h(l)
v = ϕ(W (l)h(l−1)

v + b(l)).

The value function is modeled by a critic network,
which can be centralized or decentralized. For actor-
critic methods (e.g., MAPPO, MADDPG), a centralized
critic is used, while value-based methods (e.g., QMIX,
VDN) use decentralized critics:

(3.4) V (ôv) = f(Wc, ôv).

The Training uses collected batches of observations,
actions and rewards. For actor-critic methods, Proxi-
mal Policy Optimization (PPO) is applied, with Gen-
eralized Advantage Estimation (GAE) used for advan-
tage calculation. Value-based methods like QMIX and
VDN minimize tailored loss functions to improve value
predictions. This framework enables coordinated learn-
ing through shared parameters and supports multiple
multi-agent reinforcement learning algorithms, enhanc-
ing scalability and generalizability in cooperative tasks.

3.3 Cooperation Detection Using Structural
Entropy

3.3.1 Graph Building. To detect cooperation
among agents in a multi-agent system, we construct a
dynamic graph G = (V,E,W ), where V represents the
set of agents, E denotes the cooperative interactions,
and W quantifies the strength of these interactions.
Each agent vi ∈ V is represented as a node, and an
edge (vi, vj) ∈ E exists between agents vi and vj if they
demonstrate cooperative behavior.

We consider a scenario where agents’ full dynamics
are described by their positions xi, velocities ẋi, and
accelerations ẍi. The cooperation weight W (vi, vj) is
defined based on the spatial distance |xi − xj |, velocity
difference |ẋi− ẋj |, and acceleration difference |ẍi− ẍj |
between agents vi and vj . The cooperation weight
W (vi, vj) is given by:

(3.5) W (vi, vj) = e−α(|xi−xj |2+β|ẋi−ẋj |2+γ|ẍi−ẍj |2),

where α, β, and γ are hyper-parameters controlling
the influence of each factor. Alternatively, it can be
expressed as:

(3.6) W (vi, vj) =
1

|xi − xj |+β |ẋi − ẋj |+ γ |ẍi − ẍj |+ ϵ
,
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where ϵ is a small constant to avoid division by zero.
To avoid constructing a dense and potentially noisy

graph Gt at each time step, we sparsify the graph us-
ing a threshold hyperparameter τ . Specifically, an edge
(vi, vj , t) is included in the graph Gt if the coopera-
tion weight W (vi, vj , t), computed based on the agents’
positions xi, velocities ẋi, and accelerations ẍi, ex-
ceeds this threshold. Formally, the edge is included if
W (vi, vj , t) > τ .

3.3.2 Structural Entropy and Encoding Tree
Enumeration. To analyze the complexity and regular-
ity of cooperation patterns within the dynamic graph G
constructed in the previous section, we introduce the
concept of structural entropy. The structural entropy
quantifies the information content of the agent inter-
action network, providing insights into the underlying
community structure. To minimize this entropy, we
construct an encoding tree that hierarchically organizes
agents based on their interactions, optimizing the tree
to reduce the description length of the interaction pat-
terns.

Enumerating possible encoding tree structures for
the dynamic graph G is closely related to Schröder’s
Fourth Problem [17], which enumerates series-
reduced rooted trees, also known as number of total par-
titions. In our context, each partitioning corresponds to
a recursive clustering of agents, equivalent to the encod-
ing tree structure. The total number of hierarchical par-
titionings follows a recurrence relation from Schrder’s
Fourth Problem:

(3.7) a(n+1) = (n+2)·a(n)+2·
n−1∑
k=2

(
n

k

)
·a(k)·a(n−k+1).

The recurrence relation from Schröder’s Fourth Prob-
lem, with a(n) denoting the number of hierarchical par-
titionings for n agents, captures the recursive subdivi-
sion of subsets. For multi-agent systems with up to 6
agents, we enumerate all possible encoding trees, each
representing a distinct hierarchical clustering based on
the cooperation weights W (i, j, t) at time step t. The
structural entropy, calculated by summing the local en-
tropy at each tree node determined by the interaction
weights, is minimized to obtain the optimal tree, reveal-
ing the most compact and informative representation of
the interaction dynamics.

4 Experiments

In this section, we compare COLLAB with state-of-
the-art multi-agent reinforcement learning methods,
specifically IPPO, MAPPO, MADDPG, IDDPG, VDN,
QMIX, and MASAC, across 2D physical environments
and additional demonstration tasks. The aim is to

(a) Wheel. (b) Passage. (c) Discovery.

(d) OmniDrones. (e) Football.

Figure 3: Images illustrating different experimental
tasks. The first row shows (a) the Wheel task, (b) the
Passage task, and (c) the Discovery task. The second
row presents (d) the OmniDrones platform and (e) the
Football task.

demonstrate that COLLAB achieves superior perfor-
mance and fosters a higher degree of cooperation, while
showcasing its adaptability to various cooperative sce-
narios.

4.1 Experimental Settings.

4.1.1 Testbeds. We use four 2D physics-based tasks
(Balance, Discovery, Passage, and Wheel) from the
VMAS benchmark suite [3] as shown in figure3. These
tasks evaluate various cooperative behaviors, including
target coverage, obstacle navigation, and synchronized
control. Additionally, we use two other tasks for
demonstration purposes: a competitive Football task
and a 3D drone navigation task in the OmniDrones
platform [22]. The Football task is used to showcase
competitive behaviors, while the OmniDrones platform
demonstrates the adaptability of our methods in a
realistic simulation environment.

4.1.2 Baselines. We compare our approach against
seven multi-agent reinforcement learning baselines:
IPPO, MAPPO [25], MADDPG [14], IDDPG, VDN
[19], QMIX [16], and MASAC [9]. IPPO and MAPPO
utilize centralized value functions for cooperative task
optimization, with MAPPO having additional central-
ized components. MADDPG and IDDPG are designed
for continuous action spaces, with decentralized crit-
ics. VDN and QMIX factorize joint action-value func-
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tions to facilitate coordinated task assignment, with
QMIX employing a more complex factorization struc-
ture. MASAC handles exploration-exploitation in con-
tinuous action settings effectively with a centralized
critic during training.

4.1.3 Evaluation Metric. We evaluate using met-
rics from MARL-eval [8] and rliable [1] for cooper-
ative multi-agent reinforcement learning (MARL): S1
(Median): The middle value of performance, show-
ing typical task results. S2 (IQM): The Interquartile
Mean, calculating the average of the middle 50% of data
to reduce outlier impact and reflect typical performance.
S3 (Mean): The arithmetic mean, representing overall
average performance. S4 (Optimality Gap): The gap
between optimal return and observed return, measuring
how close a policy is to ideal performance.

Sample Efficiency is also plotted to illustrate how
efficiently each algorithm learns over the training data,
with curves plotted against the number of timesteps to
provide insights into the learning progress over time.
Additionally, we employ Structural Entropy to mea-
sure the cooperative dynamics of the complex multi-
agent system, where entropy progression over steps in-
dicates the system’s global dynamics. This suite of met-
rics ensures a robust and standardized comparison of the
evaluated MARL algorithms.

4.2 Main Result: Overall Performance Analy-
sis. Our COLLAB approach leads to significant perfor-
mance improvements across all evaluated reinforcement
learning (RL) methods, as reflected in both Table1 and
the sample efficiency curves depicted in Figure4. The
evaluated methods include IPPO, MAPPO, MADDPG,
IDDPG, VDN, QMIX, and MASAC, and their respec-
tive COLLAB-enhanced versions.

As shown in Table1, the COLLAB-enhanced ver-
sions of QMIX (C-QMIX), MAPPO (C-MAPPO), and
IPPO (C-IPPO) achieved either the best or near-best
scores across multiple tasks. Specifically, the COLLAB
variations consistently exhibited high median (S1), in-
terquartile mean (IQM, S2), and mean (S3) scores, as
well as lower Optimality Gap (S4) across the four bench-
mark tasks: BALANCE, DISCOVERY, PASSAGE, and
WHEEL. For instance, C-QMIX attained the highest
performance in the WHEEL task, with a perfect score
across S1, S2, and S3, while also minimizing the Op-
timality Gap to zero, thus demonstrating its superior
convergence. Similarly, C-IPPO and C-MAPPO per-
formed notably well, achieving competitive results, with
consistently highlighted improvements over their origi-
nal versions.

Figure4 provides further insight into the sample ef-

ficiency of these algorithms. The COLLAB-enhanced
versions, particularly C-QMIX, C-MAPPO, and C-
IPPO, consistently showed superior learning progress,
with their curves positioned significantly above those
of the other algorithms. This indicates that these
COLLAB-enhanced methods achieved faster conver-
gence, requiring fewer samples to reach high perfor-
mance levels. The significant separation of the COL-
LAB curves from the baseline suggests that our ap-
proach facilitates quicker learning and a more efficient
use of resources, which is crucial for complex multi-
agent tasks.

The consistent reduction in Optimality Gap (S4)
across all tasks demonstrates that the COLLAB method
not only improves performance metrics but also reduces
variability, leading to more reliable outcomes. Overall,
our COLLAB method enhances subgroup cooperation
and improves the robustness of the system in solving
cooperative tasks effectively.

4.3 Visualizing Cooperation with Structural
Entropy. Figure5 illustrates the utility of our Struc-
tural Entropy metric in visualizing and interpreting the
dynamics of cooperation within multi-agent systems.
The entropy progression over time captures the systems
global evolution, reflecting key stages of agent organi-
zation and community formation. Initially, the rapid
increase in entropy indicates a phase of exploratory in-
teractions among agents as they begin to form coali-
tions. As time progresses, the plateau in entropy sig-
nifies a stabilization in the system, where distinct and
persistent subgroups or communities emerge.

The snapshots in the figure provide additional clar-
ity by visually depicting the agent community structures
at different time steps. Early in the process, agents ex-
hibit sparse and weakly defined connections, whereas
later stages reveal well-established, tightly connected
communities. These visualizations not only validate our
Structural Entropy metric as an effective tool for cap-
turing the emergence of cooperative subgroups but also
demonstrate the successful implementation of our label-
ing method, which facilitates both interpretability and
the identification of stable agent coalitions.

These results underscore the dual advantages of our
approach: optimizing agent performance through effi-
cient subgroup formation, while simultaneously offering
an interpretable understanding of how cooperation and
community dynamics evolve in complex environments.

4.4 Ablation Study: Impact of Observation
Labeling and Aggregation on Reward Perfor-
mance. Observation labeling (Lbl.) and observation
aggregation (Aggr.) play a significant role in influenc-
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Table 1: Performance comparison of different RL methods across various tasks. The table combines overall
performance comparisons between baseline and their variations. The best results are highlighted in bold, and
the second-best results are underlined. Metrics include S1 (Median), S2 (IQM), S3 (Mean), and S4 (Optimality
Gap) over all tasks.

RL Method
BALANCE DISCOVERY PASSAGE WHEEL

COMBINED
S1 (↑) S2 (↑) S3 (↑) S4 (↓) S1 (↑) S2 (↑) S3 (↑) S4 (↓) S1 (↑) S2 (↑) S3 (↑) S4 (↓) S1 (↑) S2 (↑) S3 (↑) S4 (↓)

IPPO 0.88 0.88 0.88 0.12 0.45 0.45 0.45 0.55 0.99 0.99 0.99 0.01 1.00 1.00 1.00 0.00 0.94 / 0.94 / 0.83 / 0.17
MAPPO 0.93 0.93 0.93 0.07 0.47 0.47 0.47 0.53 0.99 0.99 0.99 0.01 0.76 0.76 0.76 0.24 0.84 / 0.84 / 0.79 / 0.21
MADDPG 0.91 0.91 0.91 0.09 0.35 0.35 0.35 0.65 0.99 0.99 0.99 0.01 0.73 0.73 0.73 0.27 0.82 / 0.82 / 0.75 / 0.25
IDDPG 0.83 0.83 0.83 0.17 0.80 0.80 0.80 0.20 0.98 0.98 0.98 0.02 0.74 0.74 0.74 0.26 0.82 / 0.84 / 0.84 / 0.16
VDN 0.86 0.86 0.86 0.14 0.77 0.77 0.77 0.23 1.00 1.00 1.00 0.00 0.74 0.74 0.74 0.26 0.82 / 0.84 / 0.84 / 0.16
QMIX 0.56 0.56 0.56 0.44 0.85 0.85 0.85 0.15 0.99 0.99 0.99 0.01 0.92 0.92 0.92 0.08 0.89 / 0.96 / 0.83 / 0.17
MASAC 0.89 0.89 0.89 0.11 0.45 0.45 0.45 0.55 1.00 1.00 1.00 0.00 0.70 0.70 0.70 0.30 0.80 / 0.80 / 0.76 / 0.24

C-MADDPG 0.96 0.96 0.96 0.04 0.40 0.40 0.40 0.60 0.99 0.99 0.99 0.01 0.75 0.75 0.75 0.25 0.86 / 0.86 / 0.78 / 0.22
C-IDDPG 0.83 0.83 0.83 0.17 0.55 0.55 0.55 0.45 0.99 0.99 0.99 0.01 0.78 0.78 0.78 0.22 0.80 / 0.80 / 0.79 / 0.21
C-VDN 0.83 0.83 0.83 0.17 0.75 0.75 0.75 0.25 1.00 1.00 1.00 0.00 0.72 0.72 0.72 0.28 0.79 / 0.80 / 0.82 / 0.18
C-QMIX 0.87 0.87 0.87 0.13 0.72 0.72 0.72 0.28 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.93 / 0.93 / 0.90 / 0.10
C-MASAC 0.94 0.94 0.94 0.06 0.32 0.32 0.32 0.68 1.00 1.00 1.00 0.00 0.81 0.81 0.81 0.19 0.87 / 0.87 / 0.77 / 0.23

Figure 4: Sample Efficiency curves for all algorithms across all tasks. Algorithm names with the prefixCOLLAB-
indicate enhancements by our COLLAB technique. Note that COLLAB-QMIX, COLLAB-MAPPO, and
COLLAB-IPPO are among the top four curves.

Table 2: Impact of Observation Labeling and Aggre-
gation on Evaluation Performance. Abbreviations: Lbl
- Observation Labeling, Aggr. - Observation Aggrega-
tion.

Lbl Aggr. MR (x1000) Iter T (s)

✓ ✓ 3.09 5.22
× ✓ 3.09 7.88
✓ × 3.14 7.82
× × 2.97 6.91

ing reward performance and computational efficiency
in multi-agent systems. Observation labeling involves
adding a common label for agents within the same coali-
tion, allowing them to identify their coalition member-
ship, while observation aggregation extends each agent’s
observation by appending an aggregated observation
vector derived from all members within the same coali-
tion.

Our results align with previous findings that aggre-
gating node representations alone to capture high-order
structures may not be expressive enough, and that us-
ing labeling can effectively address this limitation [21].
Specifically, the combination of observation labeling and
aggregation yielded the highest performance improve-
ment in terms of reward, as indicated in Table2. More-
over, observation labeling also demonstrated improve-
ments in the interpretability of agent behaviors, as it
provided a clearer indication of coalition membership
and dynamics. The results further suggest that labeling
is a critical factor in enhancing both performance and
explainability in cooperative multi-agent systems.

4.5 Computational Efficiency Analysis. Figure 4
presents iteration time comparisons for various algo-
rithms, broken down into collection, evaluation, and
training phases. Algorithms with observation labels are
positioned alongside unlabeled variants for direct com-
parison. In general, labeled versions have higher iter-
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Figure 5: Experiment results demonstrating the evolution of agent communities over time. The top plot shows
the entropy progression over steps, indicating the system’s global dynamics. Below, four snapshots capture the
community structure of agents at different steps, with node colors representing community memberships. Each
snapshot corresponds to a key stage in the evolution process, illustrating how agent communities form and evolve.

ation times, primarily due to increased training time,
while collection and evaluation differences are mini-
mal. The bar chart highlights computational bottle-
necks, providing insights for algorithmic efficiency.

Figure 6: Breakdown of Iteration Time by Algorithm
with Collection, Evaluation, and Training Components

The structural entropy and encoding tree enumer-
ation phase is the most computationally intensive as-
pect of the algorithm. Enumerating all possible encod-
ing tree structures for a dynamic graph with n agents
involves generating all hierarchical partitions, corre-
sponding to series-reduced rooted trees. The number
of such encoding trees grows super-exponentially, ap-
proximately as:

(4.8) a(n) ∼ nn−1

√
2 · e · (2 ln 2− 1)n−1/2

This growth follows an order of O(nn), making

enumeration feasible only for small n (e.g., n ≤ 10).
The overall time complexity, dominated by O(nn),
underscores the necessity of limiting the number of
agents to maintain computational feasibility.

5 Conclusion

We introduce COLLAB, an innovative and effective
model for multi-agent cooperation learning. Our study
demonstrates the superiority of the coalition labeling
technique over traditional MARL algorithms and high-
lights the efficacy of structural entropy as a metric
for detecting cooperative behavior. COLLAB consis-
tently achieves either the best or near-best performance
across multiple tasks, surpassing previous state-of-the-
art methods by an average of 8.4%. Our analysis reveals
that structural entropy strongly correlates with overall
cooperation performance, and we validate its effective-
ness as a cooperation indicator. While our coalition
labeling technique has proven successful, it currently
relies on manually set labels, which may not be feasi-
ble in real-world cooperative learning scenarios. Future
research could explore more advanced techniques , like
dynamic graph modeling [23] or multi-relational coop-
erative interaction [4], to enable the adaptive learning
of these labels.
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