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ABSTRACT
Aspect-based sentiment analysis (ABSA) is dedicated to forecasting
the sentiment polarity of aspect terms within sentences. Employing
graph neural networks to capture structural patterns from syntactic
dependency parsing has been confirmed as an effective approach for
boosting ABSA. In most works, the topology of dependency trees or
dependency-based attention coefficients is often loosely regarded as
edges between aspects and opinions, which can result in insufficient
and ambiguous syntactic utilization. To address these problems, we
propose a new reinforced dependency graph convolutional network
(RDGCN) that improves the importance calculation of dependencies
in both distance and type views. Initially, we propose an importance
calculation criterion for the minimum distances over dependency
trees. Under the criterion, we design a distance-importance function
that leverages reinforcement learning for weight distribution search
and dissimilarity control. Since dependency types often do not have
explicit syntax like tree distances, we use global attention and mask
mechanisms to design type-importance functions. Finally, wemerge
these weights and implement feature aggregation and classification.
Comprehensive experiments on three popular datasets demonstrate
the effectiveness of the criterion and importance functions. RDGCN
outperforms state-of-the-art GNN-based baselines in all validations.
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1 INTRODUCTION
Aspect-based sentiment analysis (ABSA) is a fine-grained task that
focuses on predicting the sentiment polarity of aspect terms within
sentences [38]. The sentence “Great food but the service was dreadful”
in Figure 1 serves as an example, with the aspects “food” and “service”
exhibiting positive and negative sentiments, respectively.

Early ABSA research [21] primarily relied on manually designed
syntactic features. A large number of neural network methods have
recently emerged [5], which are non-labor-intensive and bring huge
performance improvements. Since context words in a sentence may
have different importance for a given aspect, attention mechanisms
are widely integrated in recurrent neural networks [15, 31], memory
networks [23], gated networks [33, 37], and convolutional networks
[33], etc. However, there may be multiple aspect terms and different
opinions in a sentence. Attention-based weighting can make aspect
representations susceptible to interference from irrelevant opinions.
Taking Figure 1 as an example, for the aspect “service”, both opinion
words “dreadful” and “Great”may be assigned large attention scores,
with the latter potentially hindering sentiment assessment.

Thanks to advances in syntactic parsing with neural networks,
the dependency trees of sentences are becoming more accurate [4],
prompting studies, such as [35, 38, 43], tomodel explicit connections
between aspects and their associated opinion words. As a paradigm
good at learning topological data, graph neural network (GNN) [32]
is widely applied in ABSAmethods to utilize dependency structures.
Based on the syntax within dependency trees, GNN-based methods
are typically divided into three streams. The first branch exploits the
discrete (or probabilistic) topology of trees [8, 9, 12, 14, 22, 24, 34].
The second branch focuses on the diversity of dependency types in
trees [25, 26, 30, 36]. The third branch utilizes tree-based minimum
distances, that is, the number of edges on the shortest path between
two words [30, 39, 42]. Regularly, type- and distance-based methods
involve using the raw topology of dependency trees. This is because
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Figure 1: An example sentence and its dependency tree, with
aspect terms shown in bold red. “ROOT” is a virtual word, and
the symbols below each real word represent parts of speech.

types are attached to the topology, which in turn is the special case
of minimum distances all equal to 1 [2]. Despite the success of these
studies, issues of underutilization of syntax still persist.

First, because the syntax of types and distances is fundamentally
different, intuitively applying the same processing strategy to them
may be insufficient [2, 30]. For example, for dependency types, since
their weights are implicit without experts, it is workable to calculate
the importance based on the attentionmechanism [26, 30]. However,
the attention coefficients may obscure the original explicit syntactic
importance of the minimum tree distances, resulting in meaningless
calculations from scratch [30]. Second, how to effectively implement
calculations for explicit distance weights is underexplored, which is
not limited to GNN-based research.Most studies, such as [19, 35, 42],
equidistantly down weights for induced dependencies in ascending
order of tree-based distances. Even though this strategy is proven to
be effective in preserving and distinguishing distance syntax, it still
suffers from an unreasonable equidistant setting. For example, for
sentences with a large distance range, usually, only a small number
of dependencies with small distances need to be distinguished by
importance. In contrast, the importance of dependencies with too
large distances may all be close to 0 rather than equidistant.

To address these problems, we propose a reinforced dependency
graph convolutional network (RDGCN) using different importance
calculations for dependency types and distances. Specifically, at first,
we propose a new importance calculation criterion for theminimum
distances over dependency trees, which imposes constraints on both
importance discriminability and distribution. Second, according to
this criterion, we propose a distance-importance function consisting
of two sub-functions. More specifically, to increase discriminability,
a power-based sub-function sets the [0, 1]-weights of dependencies
with the minimum and maximum distances to 1 and 0, respectively.
To avoid unreasonable arithmetic distribution, an exponential-based
sub-function is designed. It disproportionately reduces the weights
of induced dependencies, whose gradients gradually tend to parallel
along the direction of increasing distance. Given the absence of prior
knowledge on the range of valuable distances, we use reinforcement
learning (RL) [29] to search for the exponential curvature to control
the concave arc distribution of the dependency weights. In this way,
the tree-based distance importance weights fall off smoothly rather
than abruptly, preserving the possibility of exploiting dependencies
with large distances. Besides, RL-based automatic search for the best
curvature avoids tedious manual parameter adjustment, rendering
RDGCN highly portable across different ABSA tasks. Third, because
dependency types do not provide explicit syntactic importance such
as minimum distances, we introduce a global attention mechanism
to differentiate type weights. Finally, we combine distance and type

weights, and perform feature aggregation and sentiment prediction
based on GCN. The major contributions are summarized as follows:

•We propose a novel ABSA model that effectively captures both
distance and type syntax through different strategies.

• This work is an important attempt on how to calculate the
non-equidistant importance for explicit distance syntax.

•We evaluate the proposed RDGCN on three popular datasets
whose experimental results and analysis verify the rationality of the
criterion and functions as well as the superiority of the performance.

2 PRELIMINARIES
In this section, we describe aspect-based sentiment analysis (ABSA)
as well as graph neural network (GNN)-based ABSA.

2.1 ABSA
Given a sentence-aspect pair𝑋 −𝑌 , where𝑌 =<𝑦1, 𝑦2, ..., 𝑦𝑀> is an
aspect and sub-sequence of the sentence𝑋 =<𝑥1, 𝑥2, ..., 𝑥𝑁 >, 𝑥𝑖 and
𝑦 𝑗 are the 𝑖-th and 𝑗-th words (tokens) in 𝑋 and 𝑌 , 𝑁 and𝑀 are the
lengths of the sentence and aspect, respectively. For ABSA, it needs
to predict the sentiment polarity of 𝑌 by drawing information from
𝑋 , i.e.,𝑋 −𝑌 → 𝐶 , where𝐶 is the polarity category like positive and
negative. The current dominant approach is to derive the contextual
representations of sentences based on encoders such as Transformer
[27] and BERT [10]. The sequence 𝑋 can be transformed into a low-
dimensional embedding matrix E ∈ R𝑁×𝐷 , where the 𝑖-th row of E
represents the feature vector 𝑒𝑖 with dimension 𝐷 of the 𝑖-th token.
Afterwards, aspect-specific features F ∈ R𝑀×𝐷 are derived from E.

2.2 GNN-based ABSA
GNN-based ABSA typically needs to introduce additional syntactic
structures, which often come from dependency tree-based topology,
type, and distance views. For example, given a sentence-aspect pair
𝑋−𝑌 , the dependency tree𝐺 corresponding to the sentence𝑋 can be
yielded by an existing syntactic dependency parser. Then, the graph
𝐺 can be abstracted as an adjacencymatrixA ∈ R𝑁×𝑁 , whose entry
from the 𝑖-th row and 𝑗-th column indicates the dependency weight
between the 𝑖-th and 𝑗-th tokens of𝑋 . The dependency weights ofA
in different GNN-based models are usually obtained from different
computational strategies. Combined with the token feature matrix E
output by the sentence encoder, GNN learns the syntactic structure
patterns of sentences through feature aggregation. The aggregation
operation at the 𝑙-th layer can be formulated as the following form:

𝑒𝑙𝑖 = 𝜎 (𝑒
(𝑙−1)
𝑖

⊕ AGG𝑙 ({𝑒 (𝑙−1)
𝑗

: A[𝑖, 𝑗] > 0})), (1)

where 𝑒 (𝑙−1)
𝑖

and 𝑒𝑙
𝑖
are the input and output feature vectors of the 𝑖-

th token (node) 𝑥𝑖 . A[𝑖, 𝑗] > 0 represents that there is a dependency
(edge) between tokens 𝑥𝑖 and 𝑥 𝑗 , and 𝑒 (𝑙−1)𝑗

is the neighbor features
of𝑥𝑖 to be aggregated. AGG𝑙 (·) denotes an aggregation function like
attention [28] and convolutional [11] operations, whose superscript
𝑙 usually denotes a specific in-layer feature transformation module.
Moreover, ⊕ is an operation to combine the features of 𝑥𝑖 and that
of its neighbors, such as averaging and concatenation, and 𝜎 (·) is an
activation function, such as Tanh and ReLU. After the aggregation
is completed at the final layer 𝐿 of GNN, the sentence feature matrix
E𝐿 ∈ R𝑁×𝐷 will be obtained and used for follow-up aspect-specific
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Figure 2: The overview of RDGCN, which comprises five steps: 1) Criterion Construction for importance calculation of minimum
distance syntax, 2) Distance-importance Function designed according to the novel criterion, 3) Type-importance Function designed
for dependency type syntax, 4) Feature Aggregation on the induced syntactic graph to optimize token representations, 5) Pooling
and Classification to obtain aspect-specific representations and sentiment polarities.

feature pooling and classification. Overall, GNN-based ABSA has an
additional sentence-graph conversion process, i.e.,𝑋 → 𝐺−𝑌 → 𝐶 .

3 METHODOLOGY
In this section, we formulate the novel reinforced dependency graph
convolutional network (RDGCN). Its overview is shown in Figure 2.

3.1 Criterion Construction
Previous studies like [19, 35, 39, 42] introducing minimum distance
syntax based on dependency trees, typically abide by the calculation
criterion that the larger the distance, the less important the induced
dependencies (edges) are. Specifically, they usually decreaseweights
equidistantly from small to large distances based on reciprocals and
differences. Although such strategies are confirmed to preserve and
differentiate distance syntax efficiently, the equidistant settings are
often unrefined and unreasonable. Considering that there is nowork
to explore how to effectively implement importance calculations for
explicit distance syntax, we pioneer a universal calculation criterion.
More specifically, we argue that an excellent importance calculation
criterion forminimum tree distances should impose requirements in
terms of discriminability as well as distribution: Discriminability
requires that the importance weights acquired from different distance
values should be as discriminable as the distances themselves. Because
the importance gap between adjacent distance values is determined
by the distribution, in this case, we only constrain the extreme of the
weights. In other words, the importance weights with the minimum
tree distances of 0 (lower bound) and𝑇 (upper bound) should be far
apart, leaving space for differences in intermediate values. Hence,
for weights scaled to [0, 1], the maximum andminimumweights are
best fixed at 1 and 0.Distributionmeans that the weight distribution
should be feasible and reasonable while ensuring discriminability. For
example, given a sentence with a very large upper bound 𝑇 of the
minimum distances, since the syntax gradually blurs as the distance

increases, the weight discrepancy between two adjacency distances
with a larger value should be smaller than that with a smaller value.
In other words, the degree of discriminability of the importance of
different distance intervals should not be the same. Thus equidistant
decreases that gives little attention on important distance intervals
are sub-optimal.

Even though this criterion specifies the above two requirements,
following it to design distance-importance functions still introduces
three challenges. Firstly, unlike the arithmetic sequence distribution
of weights that requires only one linear function, there is no natural
function that fulfills the criterion. Secondly, due to insufficient prior
knowledge, it is challenging to determine the key distance intervals
requiring greater discriminability. Thirdly, because the importance
calculation covers all input sentences, the computational complexity
of the designed function should be acceptable. We will explore how
to address these challenges in the next section.

3.2 Distance-importance Function
As shown in Figure 2, given a sentence-aspect pair 𝑋 −𝑌 , we utilize
the Stanza parser1 developed by the Stanford NLP Group to perform
syntactic analysis on𝑋 and generate its dependency tree𝐺 . The tree
𝐺 is a special kind of graph whose initial topology encodes different
types of directed dependencies across token nodes. In particular,
we regard dependencies as undirected edges, so any two tokens in a
sentence are reachable and theminimum tree distance is the number
of edges on the shortest path. Furthermore, the dependency tree𝐺 is
converted into a settled induced syntactic graph𝐺𝑑𝑖𝑠 , which is fully
connected and can be represented as a symmetric adjacency matrix
A𝑑𝑖𝑠 ∈ R𝑁×𝑁 , whose entry A𝑑𝑖𝑠 [𝑖, 𝑗] represents the distance value
between the 𝑖-th and 𝑗-th tokens. Because edge weights are usually
inversely proportional to their corresponding distance values, we
need a distance-importance calculation function to transform A𝑑𝑖𝑠 .
1https://stanfordnlp.github.io/stanza/
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Following the criterion set forth in Section 3.1, here we design the
function IMP𝑑𝑖𝑠 (·), which can address three challenges step-by-step.
Specifically, inspired by previous linear functions, a straightforward
solution to meet both requirements is to append a constant function
to a linear one, which can be expressed as:

IMP𝑑𝑖𝑠 (𝑡) =
{
1 − 𝑡/𝐾, 0 ⩽ 𝑡 < 𝐾
0, 𝐾 ⩽ 𝑡 ⩽ 𝑇

, (2)

where 𝑡 represents the minimum distance value to be calculated, 𝑇
represents the predefined distance boundary, and 𝐾 represents the
slope of the linear function. The function approximately satisfies the
criterion, whose importance weight distribution is shown in Figure
3. However, such a way of placing different functions in different
distance intervals and splicing them is too imprecise, leading to too
steep weight changes near the 𝐾 value. It is unreasonable that the
edge with a distance value of (𝐾 − 1) has importance, but the next
edge with a value of 𝐾 suddenly has no effect. In addition, it is hard
to determine the optimal 𝐾 for deciding the key interval.

In order to further enhance IMP𝑑𝑖𝑠 (·), here we redesign it from
the two requirements of the criterion and replace the above strategy
of concatenating functions by intervals. In particular, we design two
sub-functions spanning the entire distance interval [1,𝑇 ] to satisfy
the discriminability and distribution. To increase discriminability, a
power-based sub-function is proposed to maximize the gap of the
edge weights of the minimum and maximum distances, which can
be expressed as follows:

IMP𝑑−1 (𝑡) = 1 − (𝑡/𝑇 )𝑇 . (3)

To avoid arithmetic and non-smooth distributions, we introduce an-
other exponential-based sub-function to disproportionately reduce
the importance of induced dependencies, which can be defined as:

IMP𝑑−2 (𝑡) = 𝐸 (−𝐾𝑡 ) , (4)

where 𝐸 denotes the natural constant (a.k.a. Euler number), and𝐾 is
the exponential curvature. Then, we combine the two sub-functions
by a multiplication operation ⊕, which can be expressed as follows:

IMP𝑑𝑖𝑠 (𝑡) = IMP𝑑−1 (𝑡) ⊕ IMP𝑑−2 (𝑡) = (1 − (𝑡/𝑇 )𝑇 )𝐸 (−𝐾𝑡 ) . (5)

The functions corresponding to Equations (2-5) are shown in Figure
3. Since the function IMP𝑑−2 (·) (in blue) controlling the distribution
has amaximumweight of 1 while theminimumweight (when 𝑡 = 𝑇 )
is not necessarily very small, the IMP𝑑−1 (·) (in orange) guiding the
range of weights simply scales theminimumweight to 0. In addition,
the weight distribution of IMP𝑑−1 (·) is close to 1 in a broad distance
interval, protecting the concave arc distribution of IMP𝑑−2 (·). This
is why the non-equidistant distributions of IMP𝑑𝑖𝑠 (·) (in green) and
IMP𝑑−2 (·) are close to fit. Compared with the strategy (in purple) of
concatenating functions by intervals, the new IMP𝑑𝑖𝑠 (·) promotes a
smoother distribution while satisfying the criterion, preserving the
possibility of exploiting induced dependencies with large distances.

As shown in Figure 3, different curvatures contribute to different
weight distributions and key distance intervals of IMP𝑑𝑖𝑠 (·) (red &
green). Therefore, the selection of the optimal curvature𝐾 is crucial,
which directly affects the performance of GNN-based ABSA. From
an application point of view, due to insufficient prior knowledge, it
is laborious and inefficient to find the optimal 𝐾 by manual tuning,
especially when the candidate set is large. From an implementation

Figure 3: Weight distributions for distance-importance func-
tions with different slopes or curvatures. The boundary value
𝑇 of the minimum tree distances is 10.

perspective, since the curvature 𝐾 does not directly participate in
model training, it is infeasible to optimize 𝐾 using backpropagation.
Hence, we use reinforcement learning (RL) [16, 17, 40, 41] to search
for optimal curvatures for different tasks. Concretely, we define the
problem of finding optimal curvatures as a Two-Armed Bandit [29]
{{𝑎+, 𝑎−}, REW(·),TER(·)}. 𝑎+ and 𝑎− denote two actions, REW(·)
is the reward function, and TER(·) is the termination function:

•Action: The action space represents how the RL-based module
updates the curvature𝐾 according to the reward. Here, we designate
𝑎+ and 𝑎− as increasing and decreasing a fixed value 𝑆 to the current
𝐾 according to the polarity of the reward.

• Reward: Since we aim to improve ABSA, the gap in validation
accuracy by adjacent time intervals is considered a reward indicator.
The reward function can be expressed as follows:

REW(𝑏) =
{
+1, ACC({𝑋 }𝑣𝑎𝑙 , 𝑏) > ACC({𝑋 }𝑣𝑎𝑙 , 𝑏 − 1)
−1, ACC({𝑋 }𝑣𝑎𝑙 , 𝑏) ⩽ ACC({𝑋 }𝑣𝑎𝑙 , 𝑏 − 1)

, (6)

where 𝑏 represents the index of the time interval containing the pre-
defined number of batches, which also implies the update frequency
of𝐾 . In addition, {𝑋 }𝑣𝑎𝑙 represents the validation set, ACC(·) is the
function applied to acquire the accuracy of sentiment classification.
Since the key distance interval will gradually shrink as 𝐾 increases,
we perform action 𝑎+ when the reward is +1 (or 𝑎− on the contrary),
thereby gradually condensing the syntactic information.

• Termination: 𝐾 will be updated continuously until it satisfies:

TER(𝑏) =
���∑𝑏
𝑏−𝑅REW(𝑏)

��� ⩽ 1, (7)

where𝑅 is the number of historical rewards. The inequality suggests
that the reward has converged, and𝐾 continues constant. Therefore,
the discriminative degree of critical distance intervals is determined
dynamically, making RDGCN highly portable across different tasks.

The computational complexity mainly comes from the functions
themselves and RL. The functions cost𝑂 (1+log(𝑇 )), the RL module
costs𝑂 (𝑅+1). Comparedwith those linear functions, the complexity
of the presented IMP𝑑𝑖𝑠 (·) changes from a constant level to a linear
level, which is still relatively excellent.

3.3 Type-importance Function
Unlike distances, the importance of dependency types is less explicit
in the absence of expert knowledge. Hence, we use a global attention
mechanism to calculate the importance weights of type edges. More
specifically, we first number the types and transform the tree𝐺 into
another induced syntactic graph,𝐺𝑡𝑦𝑝𝑒 , whose adjacency matrix is
A𝑡𝑦𝑝𝑒 ∈ R𝑁×𝑁 . Since token nodes usually do not have type-labeled
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self-loops, we then use custom “root” and “none” type numbers to fill
the diagonal and meaningless induced edges of A𝑡𝑦𝑝𝑒 , respectively.
Finally, we initialize the type feature matrix H ∈ R𝑈 ×𝐷 , where𝑈 is
the total number of all dependency types. Thus the type-importance
function IMP𝑡𝑦𝑝𝑒 can be expressed as follows:

IMP𝑡𝑦𝑝𝑒 (𝑢) =
{
𝑝 [𝑢], A[𝑖, 𝑗] > 0
0, A[𝑖, 𝑗] = 0

,

𝑠 .𝑡 . 𝑝 = softmax(H𝑞) & A𝑡𝑦𝑝𝑒 [𝑖, 𝑗] = 𝑢,
(8)

where𝑞 ∈ R𝐷×1 is the transposed query vector, and 𝑝 ∈ R1×𝑈 is the
weight vector normalized by softmax. In particular, to preserve the
raw topology of the dependency tree𝐺 , we use its initial adjacency
matrixA as the mask mechanism to remove the induced “none” type
edges. In this way, the three syntactic dependency views mentioned
in Section 1 are all introduced into RDGCN.

Furthermore, we merge the induced graphs 𝐺𝑑𝑖𝑠 and 𝐺𝑡𝑦𝑝𝑒 into
one graph𝐺∗ with an addition operation ⊕, which can be abstracted
into a matrix form as follows:

A∗ = A∗
𝑑𝑖𝑠

⊕ A∗
𝑡𝑦𝑝𝑒 ,

𝑠 .𝑡 . A∗
𝑑𝑖𝑠

= IMP𝑑𝑖𝑠 (A𝑑𝑖𝑠 ) & A∗
𝑡𝑦𝑝𝑒 = IMP𝑡𝑦𝑝𝑒 (A𝑡𝑦𝑝𝑒 ),

(9)

where A∗ symbolizes the adjacency matrix of the induced syntactic
graph 𝐺∗. Each entry A∗ [𝑖, 𝑗] encodes an induced edge weight and
belongs to [0, 2].

3.4 Feature Aggregation
In this part, we perform feature aggregation on the adjacencymatrix
A∗ ∈ R𝑁×𝑁 and the initial feature matrix E = E0 ∈ R𝑁×𝐷 obtained
by the sentence encoder to enhance the token representations. Since
A∗ already has the weights, we implement the aggregation function
AGG(·) by convolution aggregation, whose aggregation process of
the 𝑙-th layer can be expressed as:

E𝑙 = 𝜎 (A∗E(𝑙−1)W𝑙 ), (10)

where W𝑙 represents the feature transformation matrix of the 𝑙-th
layer. After iterating 𝐿 times, we obtain the final feature represen-
tation matrix E𝐿 ∈ R𝑁×𝐷 of the sentence 𝑋 .

3.5 Pooling and Classification
Since the aspect𝑌 =<𝑦1, 𝑦2, ..., 𝑦𝑀> is a sub-sequence of𝑋 , we first
filter out the non-aspect features of E𝐿 to obtain the aspect-specific
feature matrix F ∈ R𝑀×𝐷 , and then perform mean pooling on F to
obtain the aspect-specific vector, which can be expressed as follows:

𝑓 = (𝑓1 + · · · + 𝑓𝑀 )/𝑀, 𝑠.𝑡 . 𝑓𝑖 = F[𝑖] ∈ R1×𝐷 & F = E𝐿 [𝑌 ] . (11)
Then, we feed 𝑓 into a classifier consisting of a linear function and a
softmax to yield a probability distribution over the polarity decision.
Finally, we optimize the parameters based on the cross-entropy loss:

L = −
∑︁

{𝑋 }𝑡𝑟𝑎𝑖𝑛
log(softmax(𝑓 ∗Z + 𝑏))𝑐∗, (12)

where {𝑋 }𝑡𝑟𝑎𝑖𝑛 is a set containing all training𝑋−𝑌 pair samples, 𝑓 ∗
is the 𝐷-dimensional vector of each training aspect, Z ∈ R𝐷×𝐶 and
𝑏 ∈ R1×𝐶 indicate the trainable parameters and bias of the classifier.
𝑐∗ ∈ R𝐶×1 is the transposed polarity label vector corresponding to
𝑓 ∗, and 𝐶 denotes the total number of polarity categories.

4 EXPERIMENTS
In this section, we present the experimental settings consisting of
datasets and evaluation, baselines, and implementation details. We
then perform classification tasks, case study, ablation study, etc., to
address three research questions (RQs):
• RQ1: How does RDGCN perform on the ABSA dataset compared
to state-of-the-art (SOTA) baselines?

• RQ2: How much do the syntactic importance functions included
in RDGCN improve performance?

• RQ3: How much does changing important hyperparameters of
RDGCN affect ABSA?

4.1 Datasets and Evaluation
Following previous ABSAworks, we evaluate the proposed RDGCN
on three popular fine-grained datasets, namely Restaurant, Laptop,
and Twitter. Among them, Restaurant and Laptop are from SemEval-
2014 task 4 [20], which comprise sentiment reviews from restaurant
and laptop domains, respectively. Moreover, Twitter is collected and
processed by [6] from tweets. Following most studies like [3, 4, 12],
we remove these samples with conflicting polarities or with “NULL”
aspects in all datasets, where each aspect is annotated with one of
three polarities: positive, negative, and neutral. In order to measure
the effectiveness of all methods, we utilize twometrics, i.e., accuracy
(Acc.) and macro-F1 (F1), to expose their classification performance.

4.2 Baselines
To comprehensively evaluate the performance of RDGCN, we com-
pare it with SOTA baselines, which are briefly described as follows:
1)ATAE-LSTM [31] is an attention-based LSTMmodel that focuses
on aspect-specific key parts of sentences.
2) IAN [15] interactively calculates attention scores for aspects and
contexts, yielding aspect and context representations, respectively.
3) RAM [3] leverages a recurrent attention mechanism on sentence
memory to extract aspect-specific importance information.
4)MGAN [7] applies a fine-grained attention mechanism to capture
token-level interactions between aspects and contexts.
5) TNet [13] transforms token representations from a BiLSTM into
target-specific representations and then uses the CNN layer instead
of attention to generate salient features for sentiment classification.
6)PWCN [35] calculates the proximity weights of context words for
the aspect according to theminimum distances over the dependency
tree, and applies these weights to enhance the output of BiLSTM to
obtain aspect-specific syntax-aware representations.
7)ASGCN [34] applies GCN on the raw topology of the dependency
tree to introduce syntactic information.
8) TD-GAT [9] leverages a graph attention network (GAT) [28] to
capture syntactic dependency structures.
9) BiGCN [36] performs convolutions over hierarchical lexical and
syntactic graphs to integrate token co-occurrence information and
dependency type information.
10) kumaGCN [1] associates dependency trees with aspect-specific
induced graphs, and applies gating mechanisms to obtain syntactic
features with latent semantic information.
11) DGEDT [24] jointly considers the representations learned from
a Transformer and graph-based representations learned from the
corresponding dependency graph in an iterative interactive manner.
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Table 1: Classification results (%). The best results for all models are in bold, while the second-best results are in italics.

Model Type Syntactic View Restaurant Laptop Twitter
Acc. F1 Acc. F1 Acc. F1

ATAE-LSTM [31] RNN+Attention - 77.20 - 68.70 - - -
IAN [15] RNN+Attention - 78.60 - 72.10 - - -
RAM [3] RNN+Attention - 80.23 70.80 74.49 71.35 69.36 67.30
MGAN [7] RNN+Attention - 81.25 71.94 75.39 72.47 72.54 70.81
TNet [13] RNN+CNN - 80.69 71.27 76.54 71.75 74.90 73.60
PWCN [35] RNN+Syntax Distance 80.96 72.21 76.12 72.12 - -
ASGCN [34] RNN+GCN+Syntax Topology 80.77 72.02 75.55 71.05 72.15 70.40
TD-GAT [9] RNN+GAT+Syntax Topology 81.20 - 74.00 - - -
BiGCN [36] RNN+GCN+Syntax Topology & Type 81.97 73.48 74.59 71.84 74.16 73.35
kumaGCN [1] RNN+GCN+Syntax+Semantics Topology 81.43 73.64 76.12 72.42 72.45 70.77
DGEDT [24] RNN+GCN+Syntax Topology 83.90 75.10 76.80 72.30 74.80 73.40
R-GAT [30] RNN+GAT+Syntax Topology & Type & Distance 83.30 76.08 77.42 73.76 75.57 73.82

DualGCN [12] RNN+GCN+Syntax+Semantics Topology 84.27 78.08 78.48 74.74 75.92 74.29
SSEGCN [39] RNN+GCN+Syntax+Semantics Topology & Distance 84.72 77.51 79.43 76.49 76.51 75.32
RDGCN∗ RNN+GCN+Syntax Topology & Type & Distance 84.36 78.06 79.59 76.75 76.66 75.37
BERT [10] PLM - 85.97 80.09 79.91 76.00 75.92 75.18

DGEDT+BERT [24] PLM+GCN+Syntax Topology 86.30 80.00 79.80 75.60 77.90 75.40
R-GAT+BERT [30] PLM+GAT+Syntax Topology & Type & Distance 86.60 81.35 78.21 74.07 76.15 74.88
T-GCN+BERT [26] PLM+GCN+Syntax Topology & Type 86.16 79.95 80.88 77.03 76.45 75.25

DualGCN+BERT [12] PLM+GCN+Syntax+Semantics Topology 87.13 81.16 81.80 78.10 77.40 76.02
SSEGCN+BERT [39] PLM+GCN+Syntax+Semantics Topology & Distance 87.31 81.09 81.01 77.96 77.40 76.02
RDGCN+BERT∗ PLM+GCN+Syntax Topology & Type & Distance 87.49 81.16 82.12 78.34 78.29 77.14

12)R-GAT [30] transforms the dependency tree into a star-induced
graph with edges consisting of minimum distances and dependency
types, and introduces a relational GAT for aggregation via attention.
13) T-GCN [26] distinguishes relation types via attention, and uses
an attentive layer ensemble to learn features frommany GCN layers.
14)DualGCN [12] simultaneously introduces syntactic information
and semantic information through SynGCN and SemGCN modules.
15) SSEGCN [39] acquires semantic information through attention,
and equips it with syntactic information of minimum tree distances.
16) BERT &Model+BERT [10] represent the pre-trained language
model (PLM) BERT and the model with BERT as a sentence encoder.

4.3 Implementation Details
For all experiments, we employ pre-trained 300-dimensional Glove
vectors [18] to initialize token embeddings. Following the common
settings of previous studies such as [12, 39], we vectorize the part-of-
speech (POS) information of tokens and their relative position with
respect to the boundary tokens of the aspect. Then, we concatenate
the 30-dimensional POS and position vectors with the Glove vectors,
and input them into a BiLSTM model to get the initial token feature
representations. In addition, we set the hidden dimension of BiLSTM
and GCN to 𝐷 = 50, the number of model layers to 𝐿 = 2. To ensure
the optimization space, we leverage the dropout of 0.7 and 0.1 to the
input of BiLSTM and the output of the framework (BiLSTM&GCN),
respectively. We optimize RDGCN2 using the Adam optimizer with
a learning rate of 0.002, where the total number of training epochs is
20 and the batch size is 32. For the introduction of syntax, we utilize
an off-the-shelf Stanza parser to get syntactic dependency trees, and
compute theminimum tree distances among tokens (including inner
tokens of the aspect term). The upper bound of the distance values
is set to𝑇 = 10. Since the datasets do not contain the validation set,
the test accuracy is used to implement the reward function ACC(·).
In addition, we set the predefined range of curvature to 𝐾 ∈ [0.1, 2],
2https://github.com/RDGCN/RDGCN

Table 2: Case study results. Different aspects within the same
sentence are colored differently. The P, N, and O are positive,
negative, and neutral, respectively. The Label columnmerges
the sameRDGCN column as it, which displays the true labels.

Sentence R-GAT SSEGCN
RDGCN
(Label)

Great food but the service was dreadful! N-N P-N P-N
Can you buy any laptop that

matches the quality of a MacBook?
P O P

Biggest complaint isWindows 8. O N N
Try the rose roll (not onmenu). P-N P-O P-O

the update value for𝐾 of RL actions is 𝑆 = 0.1, the update frequency
is 2 (i.e.,𝑏 contains 2 batches), the size is𝑅 = 10,𝐾 is initialized to 0.1
because the initial rewards are all +1 as performance increases. For
Model+BERT, we utilize the bert-base-uncased3 English version.

4.4 Classification Results
To answerRQ1, we compare our RDGCNwith all baselines on three
ABSA datasets, and the classification results are depicted in Table 1.
The classification results justify that the proposed RDGCN (+BERT)
exhibits overall better sentiment performance than SOTA baselines.
However, RDGCN lags behind DualGCN as well as SSEGCN on the
Restaurant dataset. A possible explanation is that the two baselines
additionally capture the semantic information of sentences based on
self-attention, which refines the aspect representations. Because the
features encoded by BERT already contain rich semantics, RDGCN-
BERT remedies this deficiency in the accuracy metric. Moreover, we
can observe that the performance of RNN+attention-based baselines
is generally weaker than that of RNN+GNN-based baselines. This is
because GNN enhances aspect representations by learning syntactic
dependency trees or induced trees, which shows that capturing the
3https://github.com/huggingface/transformers
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Figure 4: Visualization of ablation study results, where “w/o” is without and “+ Dis.”means the introduction of the distance syntax.
The left two figures depict the removal of the importance function in RDGCN, while the right two show the introduction of the
distance-importance function IMP𝑑𝑖𝑠 (·) to the baselines, where the green bars indicate the improved performance.

structural patterns of syntactic parsing can indeed improve analysis
performance. Among GNN-based ones, models (such as R-GAT and
SSEGCN) that consider multiple syntactic views outperformmodels,
such as DGEDT and DualGCN, that only consider the raw topology
of dependency trees, particularly on the Laptop and Twitter datasets.
This implies that syntaxes in different viewsmay be complementary,
and effectively and comprehensively mining syntactic information
can further improve GNN-based ABSA. Further, the existing SOTA
baselines that incorporate distance syntax either intuitively reduce
the distance weights equidistantly (PWCN) or obstruct the original
explicit weights by attention and masks (R-GAT and SSEGCN), both
of which are inferior to RDGCN. It shows that the proposed criterion
together with the distance-importance function are necessary and
effective. Last but not least, we can observe that the powerful BERT
outperformsmost baselines and RDGCN+BERT achieves the biggest
breakthrough in BERT performance compared to other algorithms,
justifying that RDGCN acquires more valuable syntactic knowledge
for ABSA. In general, RDGCN (+BERT) performs the best on ABSA
tasks compared to the SOTA baselines.

4.5 Case Study
To better showcase the superiority of our RDGCN, we conduct case
studies on some example sentences, as depicted in Table 2. The first
sentence “Great food but the service was dreadful” owns two aspects
(“food’‘ and “service’‘) with opposite sentiment polarities. The aspect
“quality’‘ in the second sentence does not have any obvious opinion
token. The interfering token “Biggest’‘ in the third sentence “Biggest
complaint isWindows 8”may neutralize the negativity of the opinion
token “complaint”. The fourth sample has the above three difficulties
at the same time. On the one hand, we argue that the estimations of
the attention-based R-GAT are susceptible to opposite or interfering
opinion tokens in the first, third, and fourth sentences. On the other
hand, SSEGCN fails to deal with the second sentence lacking explicit
opinion tokens. A possible explanation is that the dependency type
syntax is more suitable for such cases than the tree distance syntax,
which is not available in SSEGCN. Consistent predictions with true
labels verify that RDGCN captures more complementary syntactic
information than SOTA baselines.

4.6 Ablation Study
To answerRQ2, we conduct ablation studies to examine the effect of
syntactic importance functions on model performance. As depicted
in Figure 4(a) and Figure 4(b), the performance of RDGCN decreases
regardless of whether it is without the distance-importance function

Figure 5: The process of the RL module, whose hollow points
indicate that RL stops searching at the current time index 𝑏.

Figure 6: The effect of curvature values on performance. The
left figure depicts the performance of RDGCN with different
𝐾 , while the right shows the performance difference between
RDGCN and a Eq. 2-based control.

IMP𝑑𝑖𝑠 (·) (distance syntax) or the type calculation IMP𝑡𝑦𝑝𝑒 (·) (type
and topology syntax). It is worth noting that dropping the function
IMP𝑑𝑖𝑠 (·) will result in a larger performance penalty than dropping
the function IMP𝑡𝑦𝑝𝑒 (·). RDGCN without IMP𝑡𝑦𝑝𝑒 (·) reduces both
the Acc. and F1 by about 1%, while RDGCNwith IMP𝑑𝑖𝑠 (·) removed
decreases the Acc. by about 3% and F1 by about 4% on average for the
three datasets. This observation suggests that the IMP𝑑𝑖𝑠 (·) may be
more critical to aspect analysis than IMP𝑡𝑦𝑝𝑒 (·). To further examine
the applicability of IMP𝑑𝑖𝑠 (·), we graft it to three baselines to replace
the original distance-importance calculation procedure (PWCN) or
dependency topology (ASGCN and kumaGCN). From the outcomes
illustrated in Figure 4(c) and Figure 4(d), we draw three conclusions.
First, the performance of all three baselines is improved, suggesting
that the investigation of distance syntax and the proposed criterion
are warranted. Second, since PWCN does not apply the IMP𝑑𝑖𝑠 (·) to
the edge weights of syntactic induced graphs and also does not learn
structural patterns throughGNNs, its improvement is limited. Third,
the amelioration of syntactic distance-based ASGCN and kumaGCN
is more significant on Laptop and Twitter than on Restaurant, which
is consistent with the first conclusion about the classification results
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Figure 7: Visualization of [0, 1]-scaled importance weights of context tokens for the aspect “OSX” using different strategies.

Figure 8: Visualization of the performance impact of different
key hyperparameters on the Laptop dataset.

in Table 1, again showing that IMP𝑑𝑖𝑠 (·) takes full advantage of the
explicit distance syntax and has good portability on several datasets.
Overall, the importance calculation functions contained in RDGCN
for the minimum distances and dependency types are efficacious in
improving performance, particularly the former, which dynamically
searches for exponential curvature based on reinforcement learning
(RL) and generates weight distributions that vary with the interval.

4.7 RL Process Analysis
In this part, we focus on the RL-basedmodule to further examine the
distance-importance function IMP𝑑𝑖𝑠 (·). To present the RL process,
we plot the updating of the curvature𝐾 that controls the concave arc
distribution of the distance edge weights in Figure 5 (a). As the time
index𝑏 increases, we can observe that the curvatures corresponding
to different datasets are updated towards disparate destinations and
remain unchanged after the termination condition is met. Although
𝐾 does not directly participate in training, it will influence the edge
weights of induced graphs, which are the important factors affecting
performance. Therefore, we tune the history reward number𝑅 small
to speed up the end of RL. As per Figure 5(b), it is clear that after𝐾 is
fixed, the performance of RDGCN is still improving. In this way, the
RL module can quickly achieve the best 𝐾 , making the performance
improve faster, while ensuring a long-period stable training process.
In other words, because the training is less stable during the update
process, RL chooses𝐾 during the early period of faster performance
improvement, and instructs RDGCNwith stable𝐾 in the subsequent
process. To evaluate the search results, we quantify the influence of
𝐾 onmodel performance in Figure 6(b). On the one hand, different𝐾
values yield different performance on every dataset. This is expected
since different 𝐾 determine different key distance intervals. On the
other hand, the𝐾 values searched for different tasks all facilitate the
RDGCN to yield excellent performance, indicating the effectiveness
of the RL module. Further, we swap the function IMP𝑑𝑖𝑠 (·) with the
importance function via interval concatenation adopted in Equation
2 to construct the control model. The box plots in Figure 6(b) depict

the average results yielded from RDGCN and its control baseline on
all optional curvatures (𝐾 ∈ [0.1, 2]) or slopes (𝐾 ∈ [1, 10]). We find
that the IMP𝑑𝑖𝑠 (·)-based RDGCN outperforms the control model on
all datasets, which implies that our smooth descent strategy is more
feasible and reasonable than steep descent. Besides, we compare the
function IMP𝑑𝑖𝑠 (·) with attention-based and equidistant strategies
on the sentence-aspect pair sample “However I can refute that OSX is
FAST”-“OSX”. Figure 7 illustrates the importance weights of context
tokens for the aspect term “OSX” based on different strategies. First,
even though the attention allocates a greater importance weight to
the opinion token “FAST”, it pays some attention to noise tokens like
“However” and “refute” that may interfere with classification. Second,
the two types of weight descent also allocate greater importance to
the key opinion token “FAST” while eliminating the interference of
“However”. Third, the distance-importance function IMP𝑑𝑖𝑠 (·) using
non-equidistant descent further excludes all contexts except “FAST”
compared to the equidistant descent method, which is beneficial for
improving ABSA. Thus, it makes sense to design a function for the
importance calculation of explicit distance syntax via the criterion.

4.8 Hyperparameter Analysis
To answer RQ3, we examine the influence of four hyperparameters
(the input dropout, the maximum of the tree-based distances 𝑇 , the
hidden dimension 𝐷 , and the number of GCN layers 𝐿) of RDGCN
on ABSA performance of the Laptop dataset, as depicted in Figure 8.
For the dropout, the performance first increases and then decreases
because too small or too large dropout value will lead to overfitting
or insufficient input features. For the𝑇 , a lower upper bound of the
distances may miss part of the useful syntax for ABSA. In addition,
due to the requirements of the proposed criterion on the weights of
induced edges with larger distances, the performance does not show
a significant landslide as𝑇 increases. For the 𝐷 , feature vectors and
matrices with too small dimensions are difficult to encode sufficient
feature information, resulting in sub-optimal performance. For the
𝐿, too many aggregation layers may cause feature over-smoothing,
which is common in GNN-based ABSA models. Based on the above
observations, we argue that the influence of these hyperparameters
in the regular range on the aspect sentiment prediction performance
of RDGCN is acceptable, which once again verifies that the proposed
RDGCN has excellent stability.

5 CONCLUSION
This paper develops RDGCN to improve the importance calculation
of dependency types and tree-based minimum distances for ABSA.
Extensive experiments justify the effectiveness of RDGCN.
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