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ABSTRACT
Traffic forecasting is a complex multivariate time-series regres-
sion task of paramount importance for traffic management and
planning. However, existing approaches often struggle to model
complex multi-range dependencies using local spatiotemporal fea-
tures and road network hierarchical knowledge. To address this, we
propose MultiSPANS. First, considering that an individual record-
ing point cannot reflect critical spatiotemporal local patterns, we
design multi-filter convolution modules for generating informa-
tive ST-token embeddings to facilitate attention computation. Then,
based on ST-token and spatial-temporal position encoding, we em-
ploy the Transformers to capture long-range temporal and spa-
tial dependencies. Furthermore, we introduce structural entropy
theory to optimize the spatial attention mechanism. Specifically,
The structural entropy minimization algorithm is used to gener-
ate optimal road network hierarchies, i.e., encoding trees. Based
on this, we propose a relative structural entropy-based position
encoding and a multi-head attention masking scheme based on
multi-layer encoding trees. Extensive experiments demonstrate
the superiority of the presented framework over several state-of-
the-art methods in real-world traffic datasets, and the longer his-
torical windows are effectively utilized. The code is available at
https://github.com/SELGroup/MultiSPANS.
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1 INTRODUCTION
Transportation is a complex real-world system that includes peo-
ple, vehicles, road network sensors, and other components, with a
wealth of temporal and spatial connections. As urbanization con-
tinues to advance, there is an increasing demand for more precise
analysis of traffic data to improve the efficiency of transportation
systems. To address the growing complexity of traffic-related tasks,
deep learning approaches have been widely employed for route
planning [23, 28, 37], flow prediction [10, 15, 21, 62], accident pre-
diction [14, 39, 55], vehicle scheduling [43, 52], etc. One of the
fundamental technologies for intelligent transportation is traffic
state forecast, which can be considered as a multivariate time se-
ries regression task. It involves modeling temporal and spatial de-
pendencies to predict future traffic situations (e.g., flow, speed, or
occupancy) based on prior road networks, historical observations,
and external traffic-related information.

Current fundamental time-series methods for traffic forecast
tasks include Recurrent Neural Networks (RNNs) [2, 21, 61] and
Temporal Convolutional Networks (TCNs) [26, 46, 47], while Graph
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Figure 1: An toy example of the hierarchical urban zoning
and its impact on traffic flow.

Neural Networks (GNNs) are commonly used to factor the spa-
tial attributes [21, 47, 61]. These works still face challenges, such
as difficulty in modeling long-range dependencies [1, 3], dealing
with time-varying graphs [12], and coping with unreliable struc-
tures [46]. Recently, Transformer [38] has been widely used in spa-
tiotemporal tasks to address existing issues. However, these frontier
Transformer-based methods have two problems corresponding to
time-series and graph learning. First, Transformers may not be as
effective as expected in handling long time-series data [22, 56]. It is
possibly because the information in discrete time points is insuf-
ficient to learn pairwise attention and model higher-order global
temporality [15, 30]. Second, Transformers have difficulty in di-
rectly utilizing the graph structure. Mainstream approaches include
fusing GNN and Transformer output [49, 62] or obtaining simple
attention masks/encoding [15, 53] from networks. These structure
learning mechanisms for Transformers are designed without theo-
retical guidance and may ignore the rich structural information.

To address both issues in spatial-temporal Transformers, we
aim to improve the network to capture rich spatiotemporal depen-
dencies from multiple ranges. Motivated by patching techniques
in the visual [6] Transformer, we aim to extract and aggregate
multi-frequency local spatiotemporal signals to obtain more repre-
sentational ST-tokens as the basis for effective attention computa-
tion. Further, we expect Transformer to focus on urban functional
zoning impact on traffic state (i.e., greater correlation in the same
section). As shown in Fig. 1, functional zoning is naturally hierar-
chical, reflected in the road network, hard to predefine, and highly
correlated with traffic states, e.g., roads in the same high-level com-
munity have similar flow characteristics. Therefore, we introduce
the structural entropy theory to measure the uncertainty of the road
network and obtain the hierarchical zoning unsupervisedly and
adaptively. Specifically, we propose MultiSPANS: a Multi-range
Spatiotemporal Prediction Attention Network with Structural en-
tropy optimization. First, we design a lightweight multi-filter convo-
lution module comprising temporal filters graph filters for ST-tokens
with extensive local information. Then, we organize the network by
interleaving multiple temporal and spatial Transformers to enhance
the model’s fitting capability toward complex traffic data. Moreover,
an innovative hierarchical graph perception mechanism based on
structural entropy is presented. Structural entropy [17] canmeasure
the complexity of a road network and guide the optimal graph hier-
archical abstraction by creating the encoding tree [19]. According

to the structural entropy and multi-level encoding tree, we devised
hierarchical correlation scores to identify the nodes’ position in
the hierarchical community, and multi-level attention masks to
learn the relevance at different structural levels separately on each
attention head. The main contributions are outlined below:
• A novel and effective spatial-temporal Transformer network,
MultiSPANS, is proposed for a more accurate and versatile
traffic state forecast, which addresses current issues. Ex-
periments validate that our method achieves new SOTA in
real-world road network datasets.
• A practical and pluggable spatial-temporal convolutional
module is proposed to obtain informative ST-tokens for Trans-
formers in spatiotemporal tasks. It can embed longer histori-
cal windows with high computational efficiency to enhance
the model’s ability to handle long time series.
• The structural entropy theory is first exploited to optimize
the spatial attention mechanism, which mines the hierar-
chical structure of the road networks. Visualization study
shows that our method can intuitively model multi-range
spatial dependencies and discover more relative patterns.

2 PRELIMINARIES
2.1 Problem Definition
The 𝐶-channel (speed, flow, occupancy, etc.) traffic state signal
collected by the 𝑛-th sensor at the moment 𝑡 (i.e., atomic data point)
can be represented by the vector 𝑥𝑛,𝑡 ∈ R𝐶 . The traffic state feature
in a time window of width 𝑇 (starting from moment 𝑡 ) for a road
network with 𝑁 sensor nodes can be represented as:

𝑋 [𝑡,𝑡+𝑇 ] =



𝑥1,𝑡+1
𝑥2,𝑡+1
· · ·

𝑥𝑁,𝑡+1



𝑥1,𝑡+2
𝑥2,𝑡+2
· · ·

𝑥𝑁,𝑡+2

 · · ·


𝑥1,𝑡+𝑇
𝑥2,𝑡+𝑇
· · ·

𝑥𝑁,𝑡+𝑇


 ∈ R

𝑇×𝑁×𝐶 .

(1)
The traffic state forecasting problem aims to predict future traffic
states according to historical observations, prior structure, and
additional information, which can be formalized as:

𝑋 [𝑡,𝑡+𝑇 ′ ] = 𝑓\
(
𝑋 [𝑡−𝑇,𝑡 ] , 𝐴𝑡−𝑇 ,𝐺

)
, (2)

where 𝑓\ is model with parameter \ , 𝑋 [𝑡,𝑡+𝑇 ′ ] is the predicted time
window of width 𝑇 ′, and 𝐴𝑡−𝑇 is the addition information of the
historical window. 𝐺 denotes the topology structure, which can be
road network maps or dynamic graph sequences.

2.2 Graphs and Structural Entropy
Let𝐺 = {𝑉 , 𝐸} denote a graph, where𝑉 is the set of𝑁 vertices 1 and
𝐸 ⊆ 𝑉 ×𝑉 is the edge set. A ∈ R𝑁×𝑁 denotes the adjacency matrix
of𝐺 , whereA𝑖 𝑗 is referred to as the weight of the edge from vertex 𝑖
to vertex 𝑗 . The degree of vertex 𝑣𝑖 ∈ 𝑉 is defined as 𝑑 (𝑣𝑖 ) =

∑
𝑗 A𝑖 𝑗 ,

and 𝐷 = diag(𝑑 (𝑣1), 𝑑 (𝑣2), . . . , 𝑑 (𝑣𝑁 )) refers to the degree matrix.
Recent research by Li and Pan [17] has systematically presented the
structural information theory, aiming to measure the uncertainty
and information embedded in graphs and obtain the informative

1Vertices are defined in the graph and nodes are in the tree.
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Figure 2: The overall architecture of MultiSPANS.

hierarchical structures for graph compression. The theory mainly
consists of two parts: Encoding Tree and Structural Entropy.
Encoding Tree An encoding tree is a hierarchy that encodes and
compresses graphs. For the graph 𝐺 = {𝑉 , 𝐸}, the encoding tree T
rooted at node _ is defined with the following properties: 1) For
each node 𝛼 in T, its associated vertex (e.g., the physical node in
graph 𝐺) set is defined as T𝛼 ⊆ 𝑉 . 2) For each node 𝛼 , its parent
node is denoted as 𝛼− and its 𝑖-th children node is denoted as 𝛼 ⟨𝑖 ⟩
ordered from left to right as 𝑖 increases. 3) For each non-leaf node 𝛼
with 𝑁 children, all vertex subset T𝛼 ⟨𝑖⟩ satisfy T𝛼 =

⋃𝑁
𝑖=1T𝛼 ⟨𝑖⟩ and⋂𝑁

𝑖=1T𝛼 ⟨𝑖⟩ = ∅. Thus, the encoding tree abstracts and encodes the
graph into a hierarchical community structure.
Structural Entropy Structural entropy is determined by the en-
coding tree and the graph together, which can be formulated as
follows:

𝐻T (𝐺) =
∑︁

𝛼∈T,𝛼≠_
𝐻T (𝐺 ;𝛼) = −

∑︁
𝛼∈T,𝛼≠_

𝑔𝛼

𝑣𝑜𝑙 (𝐺) log2
V𝛼
V𝛼−

, (3)

where 𝑔𝛼 is the sum weights of edges from the vertices outside T𝛼
to those inside T𝛼 . 𝑣𝑜𝑙 (𝐺) is the sum degree of all vertices in 𝐺 ,
andV𝛼 is the sum degree in T𝛼 . The encoding tree that minimizes
the graph’s structural entropy compresses the most knowledge.
Therefore, taking the total information in the graph as constant, it
is optimal to represent the essential graph hierarchical structure.

3 PROPOSED METHOD
3.1 Overall Architecture
Fig. 2 depicts the comprehensive architecture, encompassing three
primary sub-modules: the multi-filter convolutional (MFCL) mod-
ule, the spatial-temporal (ST) Transformers, and the hierarchical
graph perception mechanism. Firstly, we employ the MFCL mod-
ule to obtain ST-tokens, including multiple 1D filters to enhance
temporal signals at diverse frequencies and multi-hop graph con-
volutional filter to aggregate neighborhood signals (§ 3.2). Next,
we model complex dependencies with the Transformer network,
consisting of a stack of ST encoders with residual connections. Each
ST encoder comprises two sequentially arranged temporal and spa-
tial Transformers. (§ 3.3). The skip connections of each ST encoder
are summed and fed into an output layer with a transposed 1D
convolutional layer(§ 3.4). Furthermore, we propose a hierarchical

. . . . . .

(1) (2) (3) (4)

. . . . . .

(1) (2) (3) (4)

Figure 3: An illustration of the workflow of multi-filter con-
volution module. (1) 3D spatiotemporal data with the 𝑇 -step
time window and a predefined graph 𝐺 . Each atomic data
point has 𝑐-channel attribute; (2) Multiple temporal convo-
lutional filters are employed to extract diverse short-range
time patterns; (3) Graph convolutional filters are added for
neighborhood aggregation that facilitates the local spatial
pattern; (4) Processed data enjoy more extensive channels 𝑐𝑡 .

graph structure perception mechanism for spatial attention based
on structural entropy optimization to exploit the rich information
embedded in road networks. It abstracts the graph into a hierarchy
(i.e., encoding tree), based onwhichwe present multi-level attention
masks to regularize spatial attention and hierarchical correlation
scores as relative position encoding (§ 3.3.3).

3.2 Multi-filter Convolution Module
The multi-filter convolution (MFCL) module aims to expand the
dimensionality and enrich the information of token embeddings
while incorporating more intricate local spatiotemporal features
and patterns. We employ two specific designs: multi-frequency tem-
poral convolution filters and multi-hop graph convolution filters.
Fig. 3 illustrates the data structure and workflow of this module.
Temporal Convolution Filter Recognizing the inherent periodic-
ity of the traffic system, we employ a set of standard 1D filters with
various sizes to extract short-range temporal features at multiple
frequencies. Suppose there are𝑚 filters with sizes 𝑘1, 𝑘2, · · · , 𝑘𝑚 ,
the temporal convolution operation with 𝑐-channel input and 𝑐𝑡 -
channel output at time 𝑡 can be formulated as follows:

𝑥 ′𝑡 = | |𝑚𝑗=1
∑𝑐
𝑖=1

∑𝑘 𝑗
𝑙=1𝑊

( 𝑗 ) [𝑙, 𝑖]𝑋 [𝑖, 𝑡 + 𝑙 − 𝑘 𝑗 ], (4)
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where𝑋 ∈ R𝑇×𝑐 is input time series, 𝑥 ′𝑡 ∈ R𝑐𝑡 denotes the output at
step 𝑡 , and𝑊 ( 𝑗 ) ∈ R𝑘 𝑗×𝑐×(𝑐𝑡 /𝑚) is the kernel matrix of 𝑗-th filter
(where 𝑐𝑡 must be divisible by𝑚). [·] is the index operation, and | | is
the concatenation operation along the channel dimension. By con-
catenating the multiple filters’ results, the channel of temporal data
is extended to 𝑐𝑡 . Since all filters are expected to produce sequences
of a uniform length, we padded the sequence to 𝑇 ← 𝑇 + 𝑘 𝑗 − 1 in
length by duplicating the first and last point of the sequence before
feeding into the 𝑗-th filter. The size and number of convolution
filters can be customized for different tasks to accommodate larger
historical windows, and the uniform stride of temporal filters can
be enlarged to compress the sequence. Our basic implementation
selects four filters with size 1 × 1, 1 × 2, 1 × 3, and 1 × 6, often
corresponding to intervals of 5, 10, 15, and 30 minutes.
Graph Convolution Filter To extract the short-range spatial pat-
tern of the traffic state that propagates on the road network, multi-
hop graph convolution filters are adopted to fuse the node feature
within the neighborhood. Denoting the 1-hop adjacency matrix
of the graph as 𝐴, the ℎ-hop graph convolution operation with
𝑐𝑡 -channel can be formulated as:

𝑥 ′𝑛 = | |ℎ𝑗=0
∑𝑁
𝑖=1𝐴

𝑗 [𝑛, 𝑖]𝑋 [𝐼 ], 𝐴 = 𝐷−1 (𝐴 + 𝐼 ) . (5)

The kernel matrix 𝐴 is derived by adding the self-loop matrix 𝐼 to
𝐴 and normalizing it with the degree matrix 𝐷 . 𝑋 ∈ R𝑁×𝑐𝑡 denotes
the node features with 𝑐𝑡 -channel at the moment 𝑡 after temporal
filtering, and 𝑥 ′𝑛 is the output of the 𝑛-th node. 𝐴 𝑗 refers to the 𝑗-th
power of 𝐴, which acts as the multi-hop graph convolution filter
that aggregation messages from 𝑗-hop neighbors. Finally, all the
outputs are concatenated into a vector of dimension 𝑑 = (ℎ + 1) · 𝑐𝑡 ,
allowing each data point to aggregate the multi-hop neighborhood
locality of the road network. Our method aggregates the neigh-
borhood representation of each hop independently and has fewer
trainable parameters than other similar designs [1, 46].

3.3 Spatial-Temporal Transformer Network
3.3.1 Position Embedding Layer. First, to integrate the spatial node
position within the spatial Transformer, we utilize the Laplacian
graph matrix to encode the road network topology into static rep-
resentations [8]. Specifically, We compute the node eigenvectors
of 𝐺 via 𝑈𝑇Λ𝑈 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2, where 𝑈 and Λ correspond
to eigenvalues and eigenvectors. A linear projection𝑊 ∈ R𝑘×𝑑
is applied on 𝑘 smallest non-trivial eigenvectors to generate the
spatial embedding D𝑠 ∈ 𝑛 × 𝑑 . Second, we employ the Sinusoidal
position encodingD𝑡 ∈ 𝑡×𝑑 based on the original Transformer [38]
design to incorporate temporal sequential information. In addition,
for continuous time-series datasets, the position of the current
batch within the entire dataset needs to be considered. We perform
one-hot encoding on the day-of-week and hour-of-day timestamps
of the data batch and map them into D𝑏 ∈ 𝑡 × 𝑑 to account for
cross-batch periodicity. Finally, 𝐻 + D𝑡 + D𝑏 and 𝐻 + D𝑠 + D𝑏 are
fed into the spatial and temporal Transformer, respectively. Here,
𝐻 ∈ R𝑇×𝑁×𝑑 is the hidden output state of the previous module
due to sequential arrangement.

3.3.2 Spatial-Temporal Transformer. In order to model global spa-
tiotemporal dependencies on global road networks and historical
windows, we employ the unified transformer module with ℎ-head
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Figure 4: An illustration depicting the hierarchical graph
perception mechanism and the spatial Transformer.

attention, which can be formulated as:

𝑄 =𝑊
(𝑖 )
𝑄
(𝐻 + D + D𝑏 ), 𝐾 =𝑊

(𝑖 )
𝑄

𝐻,𝑉 =𝑊
(𝑖 )
𝑉

𝐻, (6)

𝐴(𝑖 ) = ((𝑄 (𝑖 ) · 𝐾 (𝑖 ) )𝑇 + 𝑆/
√
𝑑) ⊙ 𝑀 (𝑖 ) , (7)

𝐻 ′ = Norm(RelU(𝑊𝑓 𝑓 𝑛 · | |ℎ𝑖=1 (softmax(𝐴(𝑖 ) )𝑉 (𝑖 ) ))) . (8)
For the 𝑖-th attention head, 𝐻 is the spatiotemporal input (as Fig. 3
shows) and𝑊 (𝑖 )

𝑄
,𝑊 (𝑖 )
𝐾

, and𝑊 (𝑖 )
𝑉

are learnable linear projection.
𝐴(𝑖 ) is the attention matrix, 𝑆 is an addition similarity matrix (also
denoted as relative position encoding), and 𝑀 (𝑖 ) is the attention
mask, which is Hadamard product (⊙) with 𝐴(𝑖 ) . The final outputs
𝐻 ′ of all heads are concatenated into 𝑑-channel and further fed into
a channel-mixing feed-forward layer, where𝑊𝑓 𝑓 𝑛 is the parameter
of the feed-forward network and Norm is the batch normalization.
The structure of the Temporal and Spatial Transformer is basically
the same, but there are still the following differences: 1. the position
encodings 𝐷 are differently obtained. As described in § 3.3.1, 𝐷 in
Temporal Transformer is𝐷𝑡 , while it is𝐷𝑠 in Spatial Transformer; 2.
Temporal Transformer only models the relationship between time
points, with all spatial locations share a set of projection parameters,
while the opposite is the case for spatial Transformer; 3. We design
a unique relative location encoding 𝑆 and a multi-head attention
mask𝑀 for spatial attention in § 3.3.3.

3.3.3 Multi-Range Graph Structure Perception. The urban fabric
has a natural hierarchy due to its functional division (e.g. residen-
tial, commercial, etc.), which can be reflected by the road network
structure and influence the traffic state. Structural entropy and
encoding tree theory are innovatively introduced to mine higher-
order knowledge from the road network and incorporate it into the
self-attention mechanism. Firstly, we apply the structural entropy
minimization algorithm to obtain an optimal encoding tree, which
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serves as a hierarchical abstraction of the road network. Secondly,
we use the hierarchy to model the low-rank relationship within
the network and propose multi-level attention masks. Finally, we
propose the hierarchical correlation score based on the relative po-
sition of physical (leaf) nodes on the encoding tree, which reveals
the road network’s underlying structure and node positions.
Road Network Abstraction Drawing inspiration from the princi-
ple of structural entropyminimization [17], we introduce a heuristic
algorithm and corresponding tree operators (i.e., the combination
operator and merge operator) from deDoc [19] to compute the
optimal encoding tree of road network 𝐺 to obtain a hierarchical
zoning structure. First, we initial a flat encoding tree (with only
one level where all leaf nodes are direct descendants of the root
node). For each iteration, the node pair and operator that maximize
the reduction of structural entropy are selected and conducted in
a greedy manner. In the end, the algorithm terminates when the
structural entropy ceases to decrease continuously, resulting in the
final optimal encoding tree denoted as T∗.
Multi-level Attention Mask The number of levels in an encoding
tree generally depends on the size of the graph and its structural
complexity and can be determined adaptively during the optimiza-
tion. Each level of the encoding tree corresponds to a partition of
the graph node-set, representing the road network potential zoning
at a specific spatial scale. Given {𝛼1, 𝛼2, . . . , 𝛼𝑛} on the 𝑙-th level of
the optimal encoding tree T∗ and T_ =

⋃𝑙
𝑖=1T𝛼𝑖 , we can acquire the

mask matrix𝑀 (𝑙 ) ∈ {−𝐼𝑁 𝐹, 1}𝑁×𝑁 that satisfied

𝑚𝑙 [𝑖, 𝑗] =
{
1 if ∃𝛼𝑚 ∈ {𝛼1, . . . , 𝛼𝑙 }, 𝑣𝑖 ∈ T𝛼𝑚 , 𝑣 𝑗 ∈ T𝛼𝑚
−𝐼𝑁 𝐹 else

,

(9)
where𝑚𝑙 [𝑖, 𝑗] denotes the element in the 𝑖-th row and 𝑗-th column
of 𝑀𝑙 . For an 𝐿-level encoding tree, we can obtain 𝐿 − 1 mask
matrices with diverse granularity from every level except for the
leaf level. In addition, we introduce an additional adjacency matrix
as the 𝐿-th mask to capture edge-level local relations with the
minimum range. The 𝐿 masks are applied to the 𝐻 attention heads
(ensuring 𝐻 > 𝐿) to capture dependencies within different ranges,
whereas the extra 𝐻 − 𝐿 attention heads are unmasked to model
the wide global attention.
Hierarchical Correlation Score The multi-level attention mask
can leverage low-rank constraints on multi-head spatial attention
within structural levels but may ignore vertical cross-level relations
in hierarchies. Therefore, we design a relative position encoding
to identify vertices in graphs based on the optimal encoding trees.
Specifically, we define the relative structural entropy based on the
encoding tree 𝑇 . For nodes 𝛼 and 𝛽 that have an inheritance re-
lationship, the structural entropy of 𝛼 relative to 𝛽 is defined as
𝐻T
𝑟𝑒𝑙
(𝐺 ;𝛼 |𝛽)=𝐻T (𝐺 ;𝛼)/𝐻T (𝐺 ;𝛼). It reflects the relative complex-

ity and informativeness between the vertices and sub-structures
of the graph 𝐺 . Then, assuming two leaf nodes 𝛼𝑖 and 𝛼 𝑗 of the
encoding tree share the lowest common ancestor \ , the structural
entropy of 𝛼𝑖 relative to 𝛼 𝑗 can be defined as follows:

𝐻T
𝑟𝑒𝑙
(𝐺 ;𝛼 𝑗 |𝛼𝑖 ) = 𝐻T

𝑟𝑒𝑙
(𝐺 ;\ |𝛼𝑖 ) + 𝐻T

𝑟𝑒𝑙
(𝐺 ;𝛼 𝑗 |\ ) =∑︁

𝛽,T𝛼𝑖 ⊆T𝛽 ⊂T\
𝐻T (𝐺 ; 𝛽− |𝛽) +

∑︁
𝛽,T\ ⊃T𝛽 ⊇T𝛼𝑗

𝐻T (𝐺 ; 𝛽 |𝛽−). (10)

From another perspective, we view the encoding tree as a graph
and add up the relative structural entropy of the connected nodes
on the shortest directed path between two leaf nodes 𝛼 𝑗 , 𝛼𝑖 to
obtain the final relative structural entropy, based on which can
we generate the hierarchical correlation matrix satisfying that
𝑆ℎ𝑖𝑒𝑟 [𝑖, 𝑗] = 𝐻T

𝑟𝑒𝑙
(𝐺 ;𝛼 𝑗 |𝛼𝑖 ) where T𝛼𝑖 = 𝑣𝑖 and T𝛼 𝑗

= 𝑣 𝑗 . The
hierarchical correlation score 𝑆ℎ𝑖𝑒𝑟 enables attention to prioritize
more intricate structures while preserving the hierarchical infor-
mation of the road network. In conclusion, in order to improve the
mechanisms of spatial attention, the road network is first abstracted
into an encoding tree via the structural entropy minimization al-
gorithm. Then each level 𝑖 of the encoding tree (and the adjacency
matrix) is constructed as an attention mask𝑀 (𝑖 ) that operates on
a specific attention head. Furthermore, a hierarchical correlation
score 𝑆ℎ𝑖𝑒𝑟 derived from relative structural entropy is employed
as a prior score and is added to attention matrices. The modified
Spatial Transformer module is depicted in Fig.4.

3.4 Output Layer
After collecting all intermediate outputs of the ST encoder blocks
and the multi-filter convolution filter with the skip connections,
they are summed into 𝐻𝑜 ∈ R𝑇×𝑁×𝐷 and fed into a deconvolution
decoder and an MLP decoder. The deconvolution smoothly extends
the predicted sequence if the dimension of the hidden states length
𝑇 is inconsistent with the multi-step predicted length 𝑇 ′. The MLP
projects the output’s channel dimension and sequence length to
the desired shape and obtains the final prediction 𝐻𝑜 ∈ R𝑇

′×𝑁×𝐶𝑜 .

4 RESULTS AND ANALYSIS
4.1 Experimental Settings
Implementation. All experiments were performed on the NVIDIA
GeForce 3090 with 24GB of memory. The model was trained by
Adam optimizer [25] with a mean absolute loss (MAE) for 50 epochs,
employing the learning rate 1𝑒 − 2 and batch size 32. The datasets
were partitioned into training, validation, and test sets with a ratio
of 6 : 2 : 2. The model with the best validation performance was
selected for testing. For a fair comparison, we uniformly configured
the number of ST layers as 𝑘 = 3, the hidden dimension as 𝑑 = 64,
and the heads number in self-attention as ℎ = 8 for all baselines.
Datasets.We conduct experiments on traffic dataset PEMSD4 [11]
and PEMSD8 [11]. Both include flow, speed, and occupancy infor-
mation, with an interval of 5 minutes. We use all channels as input
and select one as the output, based on which we derive four subsets:
PEMSD4-speed, PEMSD4-flow, PEMSD8-speed, and PEMSD8-flow.
Evaluation Metrics. Three metrics, mean absolute error (MAE),
mean absolute percentage error (MAPE), and root mean square
error (RMSE), are used for evaluation. Additionally, the average
error of output steps was reported to evaluate comprehensively.
Baselines. We compare MultiSPANS against the following base-
line methods of four types. Traditional Methods: Models that
apply traditional machine learning methods, including Support
Vector Regression (SVR) [7] and Vector Auto Regression(VAR) [27];
Deep Learning Methods: Methods that apply deep approaches
excluding GNN or attention, including AutoEncoder(AE) [29] and
LSTM [13]; Advanced Methods: Model specialized for spatiotem-
poral traffic data with a subtle combination of TCN/RNN and GNN,
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Table 1: Experiment Results of the average 12-step forecast. The best results are bolded, and the runner-up results are underlined. Our
indicates the performance of our purposed MultiSPANS. Imp. denotes the improvement of our method over the SOTA method.

Methods VAR SVR AE LSTM TGCN DCRNN STGCN MTGNN GWNet ASTGCN STTN GMAN Our Imp.Dataset Metrics

PEMSD4-flow
MAE 24.98 27.45 24.59 23.80 22.88 22.63 21.60 19.29 19.53 19.56 19.49 19.35 19.07 1.10%
MAPE 18.24 19.83 16.48 15.78 14.52 13.97 14.68 13.54 13.41 13.91 13.78 13.57 13.29 0.90%
RMSE 38.91 40.74 37.63 35.92 34.41 34.70 34.76 31.82 31.95 32.03 31.87 31.62 30.46 3.30%

PEMSD8-flow
MAE 27.46 32.83 20.48 19.48 18.61 18.42 17.92 15.47 15.09 15.92 15.63 15.34 14.68 2.72%
MAPE 16.82 15.97 13.43 14.85 11.47 11.10 11.36 10.16 9.63 10.66 10.46 10.22 9.79 -
RMSE 45.01 43.95 35.19 33.27 27.95 28.14 27.34 24.93 24.84 25.37 25.26 25.13 23.87 4.31%

PEMSD4-speed
MAE 3.29 3.15 2.35 2.58 1.94 1.70 1.80 1.67 1.66 1.80 1.72 1.74 1.61 3.01%
MAPE 5.90 5.77 4.79 4.17 3.77 3.60 3.57 3.48 3.45 3.94 3.68 3.64 3.39 1.74%
RMSE 5.72 6.02 4.98 5.07 4.18 3.95 3.02 3.76 3.71 3.97 3.72 3.72 3.66 1.35%

PEMSD8-speed
MAE 3.14 3.60 2.13 2.35 1.73 1.51 1.55 1.47 1.42 1.59 1.54 1.49 1.36 4.23%
MAPE 6.39 6.48 5.04 4.96 3.42 3.26 3.28 2.95 3.06 3.62 3.61 3.41 2.84 3.73%
RMSE 6.83 6.13 5.35 5.29 3.67 3.64 3.50 3.49 3.56 3.73 3.90 3.43 3.26 4.96%

including TGCN [61], STGCN [54], MTGNN [46], and GWNET [47];
Transformer-basedMethods: Methods using attention to capture
both spatial and temporal dependencies, including ASTGCN [10],
STTN [49], and GMAN [62]; Implementation of the baselines comes
from the Libcity2 [40] benchmark and is adapted to our settings.

4.2 Experimental Result
4.2.1 Comparison with baselines. A comprehensive comparison
between the MultiSPANS and the baselines is conducted, and the
results are reported in Table 1. Evidently, all deep learning-based
approaches outperform traditional ones in traffic forecast, and fur-
ther improvements can be achieved by introducing and improv-
ing GNN or Transformer for better spatiality. We observed that
Transformer-based methods generally perform better than GNN-
RNN (e.g., STGCN and DCRNN) methods due to their stronger
ability to capture global and dynamic dependencies. However, MT-
GNN and GWNET, based on TCN and GNN, show competitive
performance and even outperform Transformer-based methods.
This may be attributed to their adaptive graph structure learning
modules. The MultiSPANS exhibits remarkable performance supe-
riority over baseline methods across all datasets. Compared to the
SOTAs, MultiSPANS achieves an average improvement of 2.57%,
2.16%, and 3.78% for MAE, MAPE, and RMSE, respectively. Par-
ticularly, MultiSPANS achieves the most significant improvement
on PEMSD8-speed, which delivers impressive results of MAE 1.36,
MAPE 2.84, and RMSE 3.26, corresponding to the improvements
of 4.23%, 3.73%, and 4.96%, respectively. Additionally, We found
that MultiSPANS performs exceptionally well in RMSE, with 23.87
in PESMD8-flow and 30.46 in PESMD4-flow, which may be attrib-
uted to the smoothing and denoising impact of the MFCL module
and transposed convolutional output layer.

4.2.2 Long time-series modelling experiments. In this subsection,
we explore the ability of MultiSPANS to model larger historical
time windows and choose a convolution-based (i.e., STGCN) and a
transformer-based approach (i.e., STTN) for comparison.

We adopt the stride of 1, 3, 4 for the 12, 36, 48 steps historical
window for a uniform 12- length hidden state in MultiSPANS. In
2https://libcity.ai/#/

Table 2: Results with longer windows on PESMD4-flow.

Model MAE MAPE RMSE Paras. Time

MultiSPANS2−𝐼48 18.85 13.19 30.18 332.3K 269.15s
MultiSPANS2−𝐼36 18.93 13.17 30.25 332.3K 269.48s
MultiSPANS1−𝐼48 19.06 13.21 30.33 332.0K 266.39s
MultiSPANS1−𝐼36 19.01 13.24 30.28 332.0K 266.19s
MultiSPANS1−𝐼12 19.07 13.29 30.46 332.0K 259.46s

STTN−𝐼48 19.31 13.55 31.74 699.8K 931.18s
STTN−𝐼36 19.40 13.62 31.69 700.1K 693.41s
STTN−𝐼12 19.49 13.78 31.87 700.2K 178.64s
STGCN−𝐼48 20.97 14.42 33.35 1565.5K 62.72s
STGCN−𝐼36 21.31 14.45 33.44 1172.3K 43.95s
STGCN−𝐼12 21.60 14.68 34.76 385.9K 15.56s

Table 2, 𝐼48, 𝐼36, 𝐼12 represent using historical windows of length
48, 36, 12. MultiSPANS1 denotes the MultiSPANS with original set-
tings, while MultiSPANS2 denotes it with 8 temporal filters of size
[1, 2, 3, 4, 6, 12, 18, 24]. Paras. reports models’ total parameter num-
bers. Time reports the average time cost of an epoch. The best
results are bolded. As can be observed in Table. 2, expanding the
history window can improve the performance in most cases, but the
extra time and space cost varies among the methods. In particular,
the improvement in STTN is disproportionate to its incremental
time consumption, mainly due to the increasing computation in dy-
namic spatial attention on more time patches. Meanwhile, STGCN
improved significantly with longer historical windows, possibly
owing to the notable increase in learnable parameters, which also
require larger memory. However, the proposed MultiSPANS can
compress the hidden temporal dimension by tuning the stride of the
temporal convolutional filters, thus allowing longer-range history
windows to be exploited for improved forecast results at trivial addi-
tional cost. Furthermore, extending the number of temporal filters
to extract more frequencies of short-range patterns can consider-
ably improve the performance of MultiSPANS to model long-range
with a MAE of 18.85, MAPE of 13.17, and RMSE of 30.18.
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Figure 5: Forecast results for different periods at the same location.We visualized the traffic flow over 100 consecutive time steps
using the average results of multiple 12-step forecasts and the ground truth.

4.3 Ablation Studies
In this subsection, we conduct an ablation study on the PEMSD4-
flow dataset by removing specific modules to evaluate their effec-
tiveness, and results are presented in Table 3.

To thoroughly evaluate the multi-filter convolution (MFCL) mod-
ule, we perform three experiments: (1) removing the temporal filter
(w\o TF), (2) removing the spatial filter (w\o SF), and (3) replacing
the MFCL module with a linear layer(w\o MFCL). It is evident that
the improvement of MFCL is dramatic, reaching a surprising 5.24%.
Meanwhile, the temporal filter is more effective than the spatial,
contributing a 1.98% improvement compared to 1.49%. This observa-
tion highlights the necessity of the multi-filter convolution module
to extract local patterns for the long-range attention mechanism.

To evaluate the effectiveness of the hierarchical graph percep-
tion mechanism, we design experiments to remove or modify its
components. Specifically, we (1) remove the multi-level attention
mask(w\o mask), (2) remove the hierarchical correlation score(w\o
score), (3) remove the whole mechanism(w\o mask), and (4) use
the Infomap [33] algorithm, a minimum entropy-based hierarchical
community detection method, to construct the multi-level mask(w
Infomap). The results show that both the multi-level attention mask
and hierarchical correlation score significantly improve the model’s
performance, contributing to a 2.33% and a 1.52% improvement, re-
spectively. And the total improvement of the proposed mechanism
amounts to 4.55%, compared to the vanilla attention. This suggests
that our approach efficiently incorporates topological knowledge
into the multi-headed attention, effectively capturing spatial de-
pendencies. Furthermore, our structural entropy-based method
outperforms the Infomap-based method, indicating that structural
entropy optimization is more suitable for road network hierarchy
abstraction. Overall, these analyses demonstrate that our design ef-
fectively supports multi-range spatio-temporal modeling for traffic.

4.4 Case Studies
4.4.1 Temporal Dependency Study. Figure 5 presents the average
prediction of methods in different periods at the same location,
along with the corresponding ground truth. Specifically, we display
the flow prediction of DCRNN, STTN, STGCN, TCN, MultiSPANS,
and the ground truth starting from time steps 72 (a), 432 (b), 792
(c), and 1152 (d) of node 101 in the PEMSD4. In (b), (c), and (d),
our model’s results are smoother and less sensitive to anomalies in
comparison. This can be attributed to the denoising effect of the

Table 3: Effects of different MultiSPANS components.

Model MAE MAPE RMSE Imp.

MultiSPANS 19.07 13.29 30.46 -
w\o TF 19.49 13.56 30.98 1.98%
w\o SF 19.42 13.44 30.92 1.49%

w\o MFCL 20.04 14.13 31.78 5.24%
w\o mask 19.48 13.79 30.79 2.33%
w\o bias 19.32 13.56 30.83 1.52%
w\o both 19.73 14.3 31.25 4.55%
w Infomap 19.43 13.58 30.89 1.83%

incorporated multi-filter convolution module and temporal decon-
volution decoder. And overall, our model fits the ground truth better,
matching trends (b,c) and effectively modeling specific temporal
patterns (a,d), indicating its efficiency in temporal modeling.

4.4.2 Spatial Dependency Study. We also illustrate the spatial at-
tention map captured by MultiSPANS in Fig. 6. As shown in Fig.
(a), attention is modeled globally without masks, and most nodes
rely heavily on a few key nodes in the road network. Fig. (b) shows
the discrete attention matrix when using the adjacency matrix as a
mask. Both attention-modeling approaches drastically lose sight of
the complex semantics of the road network. Meanwhile, as shown
in Fig. (a)∼(h), the multi-level attention we designed can capture
different range dependencies at each attention head separately. The
fusion of the attention map provided by the hierarchical graph
perception mechanism (Fig. (c)) shows that our approach is able
to model richer spatiality than vanilla attention. To interpret the
plausibility of the attention of our method, we further analyze
temporal patterns among closely related nodes. Specifically, we
selected the three nodes with the strongest relevance to 197 points
based on multi-level attention (Fig. (i)) and vanilla attention (Fig.
(j)) and visualized their corresponding local flow in Fig.(k) and
Fig.(l), respectively. While if no multi-level constraints are added,
long-range relationships can be captured (e.g., nodes 246 and 197),
but the overall similarity is not pronounced.

4.4.3 Hyperparameter Analysis. Fig. 7 evaluates two hyperparam-
eters on PEMSD4-flow, i.e., the temporal filter number 𝑘1 and hops
of the spatial filter 𝑘2. Appropriate 𝑘1 and 𝑘2 do promote model
performance in terms of extracting extensive local patterns and
avoiding excessive noise. Meanwhile, they generally remain at a
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Figure 6: The heatmaps of attention score. The results of the 100th-250th nodes are shown. (a): The attention map without masks; (b):
The attention map masked by adjacency matrix; (c): The average attention map from all heads in MultiSPANS; (d)∼ (h): The multi-head
attention maps with hierarchical graph perception mechanism from coarse to fine granularity; (i)∼(j): The attention heat map between the
197th node and other nodes with vanilla attention and our multi-range method, respectively; (k)∼(l): Current traffic flow at the 197th node
and the top 3 relevant nodes based on vanilla attention and our method, respectively.
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Figure 7: Influence of hyperparameters. Figure (a), (b) shows
the influence of 𝑘1, and Figure(b), (d) shows that of 𝑘2.

high level and exhibit relative stability, indicating that our method
is not sensitive to the hyperparameters. Further, Noting that even
with 𝑘1 = 1 or 𝑘2 = 0 (i.e. with only one temporal filter or not
exhibiting spatial neighborhood), MultiSPANS still achieves RMSEs
of 30.98 and 30.92, respectively, exceeding most existing models.

5 RELATEDWORK
Deep traffic forecast Deep traffic forecast is a spatiotemporal
regression task involving GNN, RNN, TCN, and Transformer [41]
etc. Learning spatiality with GNN and predicting with RNN is a typ-
ical paradigm [4, 5, 21, 48, 61]. Meanwhile, deep convolutional ap-
proaches of stacking GNN and TCNmodules have also proved effec-
tive, which ameliorates the localization problem [9, 9, 26, 47, 47, 54].
To further improve the capabilities, somework aims to utilize traffic-
related attributes, like hour-of-day and day-of-week etc [10, 36, 51],
and some adopt graph structure learning for high-quality and task-
relevant road network structures [34, 42, 46, 47, 60]. Recently, many
studies [22, 30, 44, 63] have endorsed Transformers in long time
series, despite some deficiencies [56] such as poor information in
single tokens [30]. Therefore, advanced work [10, 12, 15, 32, 49, 62]
is keen to model both temporal and spatial dependencies with
Transformers. For example, ASTGNN [12] propose a dynamic tri-
multi-head self-attention, and STTN [49] incorporates GCNs and
spatial Transformers with the gated-fusion. PDformer [15] adopts
geographic and semantic spatial masks on attention heads.

Structural entropy application. To evaluate the quality and in-
formativeness of the graph structure, many works [17, 31, 33] are
presented to extend the Shannon entropy [35] to structural data.
Among which, structural information theory [17], as a de-facto
solution to measure information in graphs, was first applied in
network security [16, 20, 24] and bioinformatics [18, 19, 57], etc.
Recently, a wave of work has been aimed at applying structural
entropy to cutting-edge machine-learning areas. Some work has
attempted to improve GNNs by structural entropy, i.e., selecting
optimal hyperparameters [50], learning graph structures [64], or
designing pooling frameworks [45]. Some work combines struc-
tural information with reinforcement learning to optimize role [58]
and state [59] abstraction, with promising results achieved.

6 CONCLUSION
We address multi-range spatial modeling from the structural en-
tropy perspective and propose a novel Transformer-based traffic
forecast framework. Consisting of amulti-filter convolutionmodule,
road network abstraction, and graph perception mechanism, Mul-
tiSPANS succeeds in spatiotemporal tokenizing, discovering road
network hierarchy, and poses the multi-level constraint on Trans-
formers. Experiments show that MultiSPANS achieves excellent
performance, and demonstrate the effectiveness of proposed mod-
ules. In the future, we plan to focus on applying structural entropy-
guided attention mechanisms to graph and spatial data and analyze
the Transformer’s interpretability from the hierarchical network
analysis perspective.
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