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Abstract

Exploiting deep learning techniques for traffic flow prediction has become increasingly widespread. Most existing studies
combine CNN or GCN with recurrent neural network to extract the spatio-temporal features in traffic networks. The traffic
networks can be naturally modeled as graphs which are effective to capture the topology and spatial correlations among road
links. The issue is that the traffic network is dynamic due to the continuous changing of the traffic environment. Compared with
the static graph, the dynamic graph can better reflect the spatio-temporal features of the traffic network. However, in practical
applications, due to the limited accuracy and timeliness of data, it is hard to generate graph structures through frequent
statistical data. Therefore, it is necessary to design a method to overcome data defects in traffic flow prediction. In this paper,
we propose a long-term traffic flow prediction method based on dynamic graphs. The traffic network is modeled by dynamic
traffic flow probability graphs, and graph convolution is performed on the dynamic graphs to learn spatial features, which
are then combined with LSTM units to learn temporal features. In particular, we further propose to use graph convolutional
policy network based on reinforcement learning to generate dynamic graphs when the dynamic graphs are incomplete due to
the data sparsity issue. By testing our method on city-bike data in New York City, it demonstrates that our model can achieve
stable and effective long-term predictions of traffic flow, and can reduce the impact of data defects on prediction results.

Keywords: Traffic Flow Prediction, Dynamic Graph, Graph Convolutional Policy Network, Spatio-Temporal Prediction,
Reinforcement Learning

1. Introduction

With the development of deep learning technology, exploiting deep neural networks models for the task of traffic flow
prediction has become increasingly popular [1]. The research on traffic flow prediction is based on various traffic data provided
by relevant institutions and organizations. It collects statistics on the traffic flow in a certain area and predicts the traffic flow
at various places or roads in the area in the future. In recent years, new models for traffic flow prediction have been developed,
especially based on CNN (Convolutional Neural Network) [2, 3, 4, 5, 6] and GCN (Graph Convolutional Network) [7, 8, 9, 10].
The former uses convolution after contiguous or similar places are aggregated, and the latter models each place in the traffic
network into a graph structure and then performs convolution operations.

Recent studies have shown that modeling the traffic network as a graph is more effective than converging the places in the
network and then convolving it [11, 8]. The graph can represent the correlations between different areas in the transportation
network, as well as the traffic flow information associated with each area [12]. As graph neural networks evolve, how to apply
various graph neural networks for traffic flow prediction has attracted increasing research attention. However, it is worth
noting that the traffic network is constantly changing. In the long-term prediction of traffic flow, the prediction performance
will be less promising if the traffic network is modeled as a static graph without considering the dynamic changes of the traffic
network [13, 14].

Another problem of long-term traffic flow prediction is the integrity and accuracy of the data source. In practical applica-
tions, the data collected by some institutions and organizations is not real-time [15]. As shown in Figure 1, sometimes the data
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Figure 1: Data defects that may occur in practical applications of traffic flow prediction.

will be missing or the previous data will be collected after a period of time, which will have a great impact on the prediction
of traffic flow [16, 17]. This situation is named as “data defects” in long-term traffic flow prediction. These defective data
will eventually become available and completed with the continuous collection and synchronization of various institutions and
organizations, but before they are available, direct use of these data to predict traffic flow will obviously cause large deviations.
Therefore, it is necessary to design a method to ensure eliminating the effect caused by data defects in spatial and temporal
relations in traffic flow prediction.

To address the above problems, we have sufficient motivation to design a traffic flow spatio-temporal prediction model
that accepts and generates dynamic graphs, based on the changing characteristics of traffic graph modeling over time. The
generated dynamic graphs can improve the quality of the spatial features captured by the model, and more importantly, can
overcome the adverse effects caused by data defects.

In this paper, we propose a long-term prediction model for traffic flow using dynamic graph generation to overcome data
defects. In this model, the stations involved in the graph are based on recent real-time city bike data in New York City,
where each station is a node in the graph. Based on the statistics of the traffic flow of each station within a certain period
of time, a probability graph of the traffic flow transfer between each station is generated, and the inflow and outflow of
traffic are taken as the features of the station node. Assuming that the data itself is defective (i.e., it takes a long time to
obtain relevant data and calculate the traffic flow in the current time period), we use the GCPN model (Graph Convolutional
Policy Network) [18] to perform reinforcement learning on existing traffic flow graphs, and utilize complete historical data
as the learning environment. According to the characteristics of our traffic flow graph, the states, actions, rewards, etc. in
the reinforcement learning process are designed to generate dynamic graphs sequence on the time series. We perform graph
convolution operation on the generated graphs to extract spatial features, and use LSTM (Long-Short Term Memory) [19] to
extract temporal features. Long-term prediction of traffic flow is achieved by generating dynamic graphs and adjusting the
time interval between the LSTM input sequence and output.

The contributions of this work are summarized as follows:

• Model travel records on the traffic network as traffic flow transfer graphs and traffic flow probability graphs, and use
dynamic graphs in the overall framework to reduce traffic flow prediction error.

• Aiming at the possible data defects in practical applications, propose to apply dynamic graph generation to the long-term
prediction task of traffic flow. Make the generation of traffic flow transfer graph consistent with the Markov Decision
Process, and utilize the related algorithms in the Graph Policy Convolutional Network to generate dynamic graphs
through reinforcement learning.

• Design a spatio-temporal prediction network with dynamic graphs available. This deep learning network combines
graph convolutional network (GCN) and LSTM. The former is used to learn the spatial features of the traffic network,
and the latter is used to learn the temporal features of the traffic network.

• Use the real city bike data in New York City to conduct long-term traffic flow prediction experiments. Our dynamic
graph method is better than other spatio-temporal prediction methods under any prediction period, especially when there
are data defects. When data defects exist, the Root Mean Square Error (RMSE) of the prediction results of our dynamic
graph method is reduced by up to 32.4% compared with other static graph methods.

The paper is structured as follows: Section 2 reviews the related work. Section 3 describes the technical details involved
in the long-term traffic flow prediction methods. Experimental setup and results are discussed in Section 4. The conclusion of
the paper is in Section 5.
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2. Related Work

We review the related work from two aspects: deep learning model of traffic flow prediction and dynamic graph generation.

2.1. Deep learning model of traffic flow prediction

In recent years, with the development of deep learning technology, various neural network models have been applied to the
task of traffic flow prediction [1, 20]. Since traffic flow prediction involves both spatial and temporal characteristics, research
on traffic flow prediction is mainly focused on improving prediction performance from these two aspects. In terms of temporal
feature extraction, temporal network models such as LSTM (Long-Short Term Memory) and GRU (Gated Recurrent Unit) are
widely used. In terms of spatial feature extraction, the modeling methods of the traffic network in recent years can be divided
into two types: Euclidean space (grid format) [3, 21, 22, 23, 24, 25] and non-Euclidean space (graph format) [8, 26, 27, 28,
29, 30].

In the research of traffic flow prediction using Euclidean space, Liu et al. [3] proposed the ConvLSTM model, which maps
traffic flow data to a one-dimensional vector space, combines the one-dimensional spatial information vectors at different
times into a matrix, and convolves through CNN and combines with LSTM to extract the spatio-temporal characteristics of
traffic flow; Zhang et al. [22] proposed the ST-ResNet model, which divides cities into grid-based maps according to latitude
and longitude, each grid represents an area, and counts the inflow and outflow in the area and converts it into a 2-channel
matrix; Zhang et al. [21] divided the actual map into a grid map, modeled the grid map as a weighted directed graph, and
then fed it into a convolutional neural network for learning after the graph embedding operation. Guo et al. [23] proposed
RSTN, which combines CNN, LSTM and ConvLSTM modules through residual connections to capture spatio-temporal and
extraneous dependencies. The traditional prediction problem is regarded as a learning residual function of travel density in
each time interval. Chen et al. [31] proposed MGSTC, which explores multiple spatio-temporal correlations through multiple
gated spatio-temporal CNN branches, and dynamically combines spatio-temporal features with external factors.

In the research of traffic flow prediction using non-Euclidean space modeling, Yu et al. [9] proposed the STGCN frame-
work. To make full use of spatial information, a general graph structure was used to model the traffic network, where the
stations in the traffic network were modeled as the nodes. The nodes in the graph have different observation values at different
times, and they utilized the graph convolution and gated linear units to extract spatial and temporal features respectively; Chai
et al. [28] proposed the use of multi-graph convolutional networks to predict traffic flow. By establishing multiple graphs
based on distances, traffic interactions and correlations between stations in the traffic network and fusing these graphs, they
learned the spatio-temporal features through graph convolution and encoding-decoding networks. Zhao et al. [8] proposed
the T-GCN model, which modeled roads in traffic network as nodes in the graph, edges representing the connections between
roads, and captured spatio-temporal features through graph convolutional network and gated recurrent unit.

It is worth noting that there have been some researches [32, 33] on the use of reinforcement learning in the field of traffic,
but the scenarios they orient are not traffic flow predictions, but mostly optimization problems. Schultz et al. [32] developed
a deep learning model for calibrating transportation simulators and reinforcement learning to solve the problem of optimal
planning for travelers on the networks. Liu et al. [33] used DQN algorithm to optimize traffic light control strategies. There is
no direct research on applying reinforcement learning to dynamic graph generation in traffic flow prediction.

2.2. Dynamic graph generation

With the widespread application of graph neural networks, knowledge graphs and other technologies, research is no longer
limited to static graphs, but began to study dynamic graphs. In terms of dynamic graph generation, a more general framework
is to learn the representation of dynamic graphs, and perform link prediction of graphs based on the learned representations [34,
35, 36]. Sankar et al. [35] proposed the DySAT model that predicted links by learning the node representation of a dynamic
graph, and applied the attention mechanism to the dynamic graph to capture the changes of the same node at all times;
Trivedi et al. [34] proposed the unsupervised DyRep model, describing the changing process of dynamic graphs as events, and
encoding these events for learning to achieve link prediction.

Another novel approach is to generate graphs through reinforcement learning [37, 18]. Khan et al. [37] proposed to treat
each node in the graph as an agent, which shared action space and state space. They perform parameter update through
graph convolutional network and policy gradient algorithm. You et al. [18] proposed the GCPN model, which treated the
entire graph as an agent, computed nodes embedding and predicted actions, and optimized the policy network through policy
gradient algorithm.

In summary, there is currently no research that explores dynamic graph generation to the deep learning framework for
long-term traffic flow prediction in the presence of data defects.
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3. Model

3.1. Problem definition
Given traffic flow data, our main task is to make more accurate long-term predictions of traffic flow in the presence of

data defects. The data defects mainly refer to: due to the delay in the statistics of transportation data by relevant institutions
or organizations, and the coverage of transportation data calculated by different institutions or organizations are different, it
takes a long time to obtain complete traffic flow data in a city. As shown in Figure 1, generating a graph based on traffic data
requires data support within a long time T . If the data defect due to delay occurs at time t, the graph of time steps after t will
be affected. And this part of the defective data will not be available in the short term. Therefore, since there is not enough
data to support the moment when predictions are needed, historical traffic flow data are necessary to generate current travel
records and traffic flow features that may occur in the short term, and then make further long-term forecasts.

In order to describe the problem more clearly, we define the following key concepts:
Definition 1: Traffic flow graph Gt. We use weighted graph Gt = (V t, Et) to describe the topology between stations

in the traffic network, where V = {v1, v2, · · · , vN} is the set of station nodes (N is the number of stations), and E is the
set of weighted edges. The weight of the edges varies depending on the content represented by the graph. We describe the
graph G by the adjacency matrix A ∈ RN×N . G is a dynamic graph, different times t correspond to different Gt and Et.
In our model, there are two types of traffic flow graphs: traffic flow transfer graph Gttrans and traffic flow probability graph
Gtprob = {Gtin, Gtout}. The specific construction method of graph G will be introduced in the following section.

Definition 2: Traffic flow feature X . The traffic flow of each station in the traffic network at time t includes two parts,
namely the inflow It and the outflow Ot. For a traffic network with N nodes, It = [it1, i

t
2, · · · , itN ], Ot = [ot1, o

t
2, · · · , otN ],

where itj , o
t
j ∈ R are the inflow and outflow of the station j at time t. The traffic flow feature Xt at time t is [It, Ot] ∈ RN×2.

Definition 3: Long-term prediction. A traffic flow prediction task is to predict the traffic flow Xt+n at time step t + n
under the premise of known traffic flow [X1, · · · , Xt]. In this paper, we specify the task as a long-term prediction when the
actual time length corresponding to n is greater than 1 day. Otherwise, the task is a short-term prediction.

Definition 4: Data defects. Assume that the correct traffic flow feature at time t is Xt. Data defect refers to the fact that
the counted traffic flow X̃t at time t does not match the correct traffic flowXt due to errors in data statistics, that is, X̃t 6= Xt,
which leads to the wrong traffic flow graph G̃t.

According to the above definition, our problem can be described as two parts: (1) In the case of data defects in the time
range [t, t+n], according to the historical time range [t−T, t+n−T ] with complete data records {Gt−T , Gt+1−T , · · · , Gt+n−T },
the traffic flow graph Gt can be autonomously generated {Gt, Gt+1, · · · , Gt+n}. (2) In the time range [t −m, t], according
to the dynamic graph sequence {Gt−m, Gt+1−m, · · · , Gt} and the traffic flow feature sequence {Xt−m, Xt+1−m, · · · , Xt},
predict the future long-term traffic flow Xt+n.

3.2. Framework overview
The overview of our dynamic graph convolutional network for long-term traffic flow prediction is shown in Figure 2. Our

model can be roughly summarized into three parts:
Traffic flow probability graph modeling. We utilize graph to reflect the topological relationship between various stations

for the traffic network of a city. The traffic flow probability graph we propose is a directed weighted graph. The stations in
the traffic network correspond to the nodes in the graph, and the edge weights represent the probability that the outflow or
inflow of the station node flows to its neighbor nodes. The graph structure generated based on the source data will be used for
reinforcement learning to generate dynamic graphs, and we employ graph convolution to extract spatial features and add them
to the prediction network.

Dynamic graph generation. As mentioned in previous sections, because the data in practical applications may have
defects, we need the traffic flow graph to be able to generate short-term dynamic graph sequence under the guidance of
historical complete data via reinforcement learning. The short-term dynamic graph completion makes the long-term prediction
result more accurate. Dynamic graph generation is implemented by policy gradient algorithm, and the differences of the graph
are used as reward signals for reinforcement learning to generate action sequences on the traffic flow transfer graph.

Spatio-temporal prediction network. After completing the short-term dynamic graph sequence, we obtain the sequence
of spatial features through graph convolution. Then the spatial feature sequence is used as the input of the LSTM unit, and the
long-term time feature is captured by adjusting the time interval between the output and input of the LSTM unit.

In summary, for the traffic flow prediction task with data defects, we model the topology structure of the traffic network,
complete the obtained graph through reinforcement learning, and then combine the graph convolution and LSTM to capture
spatio-temporal features for long-term traffic flow prediction. Since our proposed method is oriented to actual application
scenarios, it can utilize the newly collected complete data to continuously update the model parameters. When the defective
data is continuously collected over time until it is completely available, the collected data will first be used to update the
parameters of the dynamic graph generation. Then the newly generated dynamic graph will be applied to the spatio-temporal
prediction network. The following sections introduce the specific implementation methods of these parts in detail.
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Figure 2: An overview of our spatio-temporal prediction network model for long-term traffic flow prediction

3.3. Traffic flow graph modeling
In recent research of traffic flow prediction, graph neural networks have been gradually applied to the spatial feature

extraction for traffic networks. In a traffic network, there are several Points of Information (POI), e.g., a building, a park, or a
bus stop. Traffic flow can be seen as the process of people starting from one POI to another POI through various transportation
vehicles. To make the model interpretation more popular and consistent with the data used, we collectively refer to these POIs
as stations.

In the research of using Euclidean space to model traffic networks, the stations are often alone or aggregated in a two-
dimensional grid structure, which obviously ignores the topology information between the stations. In the task of traffic flow
prediction, in order to better capture the spatial features, it is necessary to build a model of the traffic network in non-Euclidean
space. For a traffic network, if we consider the stations in it as nodes in the graph, then for the traffic flow prediction task, the
links between the nodes should be determined by the traffic flow. That is, if someone departs from station v1 to station v2, a
potential link will be created between nodes v1 and v2. If there are more travel records between the two stations, it means that
the traffic flow between the two stations is greater, and the weight of the links should be greater.

Based on the above ideas, a directed weighted graph is needed to model the traffic network. We first propose the concept
of traffic flow transfer graph. For a traffic network with N stations, it is assumed that the sampling time interval of the traffic
flow is T , and the traffic flow transfer graph corresponding to the time t is denoted as Gttrans = (V t, Ettrans). We record
the travel records provided by relevant institutions or organizations as rτ,τ

′

vi.vj , which means that someone in the current traffic
network departs from station vi at time τ and arrives at station vj at time τ ′. Then the edge weight between any two nodes in
the traffic flow transfer graph Gttrans should be the number of travel records from station vi to station vj in the range of time
(t− T, t], that is:

wttrans(vi, vj) = countτ,τ ′∈(t−T,t]

(
rτ,τ

′

vi.vj

)
, (1)

where wttrans(vi, vj) represents the weight of the edge (vi, vj) and count(·) is the counting function. On this basis, we hope
to better reflect the possibility that the traffic flow of each node is transferred to the neighbor nodes, so we propose a traffic
flow probability graph model. It is worth noting that we need to consider the probability of outflow and inflow at the same
time, and use the probability as the weight of the edge in the graph. We use a simple probability calculation method. In the
outflow probability graph Gtout = (V t, Etout) and the inflow probability graph Gtin = (V t, Etin), for node vi, the probability
of traffic outflow and traffic inflow to node vj is:

wtout(vi, vj)=


0, if

∑
vk∈V

wttrans(vi, vk)=0

wttrans(vi,vj)∑
vk∈V

wttrans(vi,vk)
, otherwise

(2)

wtin(vi, vj)=


0, if

∑
vk∈V

wttrans(vk, vi)=0

wttrans(vj ,vi)∑
vk∈V

wttrans(vk,vi)
, otherwise

(3)

Figure 3 shows an example of generating the traffic flow transfer graph and traffic flow probability graph Taking node v0
as an example, the probability of outflow and inflow to neighbor nodes are different in a specified period of time. The traffic
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flow probability graph Gtprob = {Gtout, Gtin} can reflect the traffic transfer probability between stations in the current traffic
network at time t, laying a foundation for subsequent work of dynamic graph generation and graph convolution.

3.4. Dynamic Graph Generation

In this section we will explain why dynamic graph generation is used in our model and introduce the approach we adopt
for dynamic graph generation of traffic flow prediction tasks. We formulate the problem of graph generation as learning an
RL (Reinforcement Learning) agent that iteratively adds substructures and edges to the traffic flow probability graph in a
traffic-predictive environment.

First, although it is better to use the graph structure to obtain the topology information of the traffic network to extract
the spatial features than to mesh the traffic network into grids, it is still flawed to simply use the static graph to model the
traffic network. Obviously, the traffic network is changing over the time. Regardless of the topology information contained in
the graph structure, it is difficult to capture the changing spatial features using static graphs. So dynamic graphs are a better
choice. However, considering the practical application situation, if it requires effective traffic flow prediction in real time, it is
hard to generate a graph model at regular intervals. Various travel record data are collected by a number of relevant institutions
or organizations, and there will be problems of inconsistent standards, unsynchronized data, and even data missing. It takes
time for complete data to be collected. If we ignore the data during this period, it will inevitably affect the results of long-term
prediction of traffic flow. Therefore, we propose to add dynamic graph generation to our framework to preserve the integrity
of the data as much as possible to reduce the error of long-term prediction.

For dynamic graph generation tasks, the advantage of reinforcement learning is that generating a graph does not need to
give a complete graph sequence, only an intermediate state is needed to generate action. Meanwhile, reinforcement learning
is capable of directly representing hard constraints and desired structures through the design of environment dynamics and
reward function. Through the action sequence, it is feasible to generate a sequence of dynamic graphs at any time interval,
which meets the requirements for dynamic graphs in our long-term traffic flow prediction framework. We use the GCPN
model [18] for dynamic graph generation, and the environment corresponding to this model can be easily extended to graph
generation tasks in other settings. Since reinforcement learning is not the main research content of this paper, we mainly
introduce how to make the corresponding graph of the traffic network conform to the reinforcement learning environment of
graph generation. For more details of GCPN, please refer to [18].

In order to reduce the difficulty of dynamic graph generation, we use the traffic flow transfer graph Gttrans instead of the
traffic flow probability graph Gtprob for generation. After generating a new traffic flow transfer graph, we can get the traffic
flow probability graph Gtprob by Equations (2) and (3).

Details of RL Process. We take the dynamic graph generation procedure as Markov Decision ProcessMDP < S,A, P,R, γ >,
where S = {si} is the set of states that consists of all possible intermediate and final graphs, A = {ai} is the set of
actions that describe the modification made to current graph at each time step, P is the transition dynamics that specifies
the possible outcomes of carrying out an action p(st+1|st, . . . , s0, at). R(st) is a reward function that specifies the reward
after reaching state st, and γ is the discount factor. The dynamic graph generation procedure can be viewed as a trajec-
tory (s0, a0, r0, · · · , sn, an, rn), where sn is the final generated graph. Meanwhile, a modification of a graph at each time

6



1

4
2

5

2

3

2
3

1

1 Observe

1

4
2

5

2

3

2
3

1

1 Sample

0

0

Node

Node

Type

Stop

Act
Environment

Update

Render

1

4
2

4

2

3

2
3

1

1 0.1

0

Step Reward

Final Reward

1

4
2

4

2

3

2
3

1

1 Observe

1

4
2

4

2

3

2
3

1

1 Sample

1

1

Node

Node

Type

Stop

Act
Environment

Update

Render

1

4
2

4

2

3

3
3

1

1 0.1

1

Step Reward

Final Reward

(a) State — (b) GCPN — (c) Action — (d) Transition — (e) State — (f) Reward —

Figure 4: The main steps of dynamic graph generation. (a) is the traffic flow transition graph corresponding to the current state st. (b) GCPN performs graph
convolution and calculates the node embeddings to generate the policy πθ . (c) at is the action quaternion obtained by the policy πθ , which is used in (d)
state transition to obtain a new state (e) st+1, and calculate the reward function (f) rt.

step can be viewed as a state transition distribution: p(st+1|st, . . . , s0) =
∑
at
p(at|st, . . . , s0)p(st+1|st, . . . , s0, at), where

p(at|st, . . . , s0) refers to a policy network πθ. Figure 4 shows the main 6 steps of dynamic graph generation.

• State space: The state of the environment st is the intermediate generated graph Gt at the time step t. And the state
is fully observable by the RL agent. Update the current state according to the predicted action. If the action’s type is
1, a new edge is added or edge weight is added by 1 between the two nodes; if the action’s type is 0, the edge weight
between the two nodes is reduced by 1 or the edge disappears. Note that it is not possible to perform an action of link
disappearing between two nodes that are not linked. These infeasible actions will be rejected and the state remains
unchanged.

• Action space: We design actions similar to the link prediction work in network science. In the traffic flow transfer
graph, the generation and disappearance of links correspond to the increase and decrease of the traffic flow between any
two stations. We describe the action as a quaternion at = (v1, v2, type, stop), where v1 and v2 represent the station
nodes, and type ∈ {0, 1} corresponds to whether the link disappears (0) or is newly added (1), stop ∈ {0, 1} indicates
whether the current action can stop the learning process.

• State transition: The traffic flow transition graph Gttrans at time t is the state st in the graph generation environment.
The definition ofGttrans is consistent with Section 3.3, that is, the entire graph is observed by the reinforcement learning
agent. In the specific generation task, the start graph used for graph generation should be a traffic flow transfer graph
that can be statistically obtained from data without defects.

• Reward: Reward is used to guide the behavior of reinforcement learning agent, including intermediate reward and final
reward. The final rewards is defined as a sum of structural rewards and adversarial rewards. Both are determined by
the difference between the adjacency matrix corresponding to the intermediate state graph and the target graph. The
intermediate rewards include step-wise validity rewards and adversarial rewards. If the transferred state can reduce the
difference from the target graph, a small positive reward will be allocated, otherwise a small negative reward will be
allocated. When it is determined that the action is a terminating action, both an intermediate reward and a final reward
are allocated. Since our model assumes that no new stations are added during the change of the traffic network, we
use a simpler method to measure the difference between the current state st and the final target graph state sf by the
similarity of the graph adjacency matrix. We also use the Generative Adversarial Network (GAN) framework [38] to
define the adversarial rewards:

min
θ
max
φ

V (πθ, Dφ) = Ex∼pdata [logDφ(x)] + Ex∼πθ [logDφ(1− x)], (4)

where πθ refers to the policy network, Dφ is the discriminator network, x means an input graph, pdata represents
the underlying data distribution which defined either over final graphs (for final rewards) or intermediate graphs (for
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intermediate rewards). Meanwhile, the structural rewards is defined by the similarity measure. The calculation method
of similarity and structural reward function is shown in Equations 5 and 6.

sim(st, sf ) =
~st · ~sf
|~st| · | ~sf |

, (5)

r(t)=

{
β, if sim(st, sf )<ε
λ·(sim(st, sf )−sim(st−1, sf ))), otherwise (6)

where st and sf are the flattened vectors of adjacency matrices of the graph corresponding to the current state and the
final state, λ is the reward coefficient, β is the final reward whose value is much larger than the intermediate reward,
and ε is the threshold for judging whether the action is terminated.

After defining the generating environment of the traffic flow transfer graph, we can use the intermediate graph Gttrans
as the input of the GCPN, and the output obtained is the action at at the current time step t. GCPN mainly includes two
parts: computing node embedding and action prediction. In [18], the node embedding is computed by graph convolutional
neural network [39], and then node v1, node v2, action type and terminal type in the action quaternion is mapped by MLP
layer by layer to give predictions of each component. The policy gradient algorithm uses the Proximal Policy Optimization
(PPO) [40, 41] algorithm.

The trained GCPN can generate dynamic traffic graphs within a certain time range based on the current state. These
generated dynamic traffic graphs are based on historical traffic flow transfer patterns and do not be affected by data defects.
It should be noted that the graph convolution operation in GCPN is different from the graph convolution operation in the
spatio-temporal prediction network in Section 3.5. The purpose of the graph convolution in this section is to calculate the
node embedding of the traffic flow transfer graph Gttrans, while the graph convolution in Section 3.5 is to capture the spatial
features of the traffic network utilizing the traffic flow probability graph Gtprob. It is worth emphasizing again that the role
of GCPN is only to generate dynamic graphs to improve the accuracy of long-term prediction. The main framework of the
long-term traffic flow prediction is still the spatio-temporal prediction network in Section 3.5.

In addition, in practical applications, if there is a temporary station cancellation in the current traffic system, we constraint
the generated dynamic traffic graph so that the indegrees and outdegrees of the cancelled station are 0. But for temporary
increasement of the station, the traffic flow transfer graph and traffic flow probability graph need to be rebuilt and the model
need to be retrained.

3.5. Spatio-temporal prediction network
To implement long-term prediction of traffic flow, we have proposed the use of dynamic graph models to fully extract

spatio-temporal features. In this section we will introduce the framework of our spatio-temporal prediction network. The
framework of our spatio-temporal prediction network is shown in Figure 5. The length of the input sequence is determined
according to the predicted duration T . For each group of traffic flow probability graphs and traffic flow features in the
sequence, we extract spatial feature by Graph Convolution Network. Then based on the obtained spatial feature sequence,
LSTM is used to extract temporal features, and the final output is the traffic flow features X̂t+T after the predicted period T
corresponding to the current sequence[Xt−n, · · · , Xt−1, Xt].

First, we extract spatial features through Graph Convolutional Neural Networks (GCN) [39]. Graph convolutional neural
network is a very important type of graph neural network, which can process first-order neighborhood information on non-
Euclidean space. The input of the GCN model requires the adjacency matrix and node features of the graph. In our problem,
they correspond to the adjacency matrix Atprob of the traffic flow probability graph Gtprob and the traffic flow feature Xt of the
nodes, respectively. It is worth noting that the traffic flow probability graph contains two parts, the inflow probability graph
Gtin and the outflow probability graph Gtout, so our graph convolution operation will combine the topological structure of the
two graphs to learn the spatial features. We use the more common model of single-layer graph convolution operations. The
specific forward propagation method is:

Ht
out = D̃

− 1
2

out Ã
t
outD̃

− 1
2

outX
tW0, (7)

Ht
in = D̃

− 1
2

in ÃtinD̃
− 1

2
in XtW0, (8)

Ht
s = σ

(
(Ht

out||Ht
in)W1

)
, (9)

where Ãt = At + I is the self-connection added to the adjacency matrix, I is the identity matrix; D̃ is the degree matrix of
At, that is, D̃ii =

∑
j Ã

t
ij ; X

t is the traffic flow feature at time t; ”||” is the concatenation operation, which combines the
convolution results of the inflow probability graph and the outflow probability graph, and then performs a linear transformation
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Figure 5: The framework of our spatio-temporal prediction network.

through a fully connected layer. W0 is the parameter matrix of the graph convolution layer, and W1 is the parameter matrix of
the fully connected layer. Finally, a non-linear transformation is performed by the activation function σ to obtain the spatial
feature Ht

s that aggregates the adjacent vertex features of the inflow and outflow probability graphs. The activation function
can be sigmoid or ReLU, etc. but LeakyReLU is chosen in our model. The above-mentioned graph convolution operation
can be regarded as the convolution of a two-channel adjacency matrix. This method combines the two aspects of outflow and
inflow in the topological relationship to capture more comprehensive spatial features

After extracting the spatial features of the traffic network through graph convolution, we also need to extract the temporal
features to achieve long-term traffic flow prediction. In simple terms, it is necessary to learn a sequence of spatial features
over a regular period of time, and capture the features of spatial features that change over time. So after graph convolution
we add the LSTM layer to our spatio-temporal prediction network. From another perspective, although it is able to generate
dynamic graph sequences through the GCPN model in Section 3.4, the results obtained by GCPN cannot be used as the results
of traffic flow prediction. The original intention of adding dynamic graph generation to traffic flow prediction is for scenarios
with data defects. The purpose of generating dynamic graphs is to reduce the error of long-term prediction in the case of data
defects. The generated dynamic graphs cannot be used as predicted results. In other words, even in the task of short-term
prediction, the results obtained by reinforcement learning cannot compete with supervised learning. Therefore, LSTM is still
very important in learn temporal feature for our proposed model.

In our spatio-temporal prediction network model, whether it is a graph that can be obtained from the original data or a
graph that needs to be generated by GCPN, it is necessary to extract the spatial feature Ht

s through the graph convolution
layer. Therefore, the input of the LSTM layer is the spatial feature sequence [Ht−n

s , · · · , Ht−1
s , Ht

s] within a certain period of
time, and for different prediction period length T , the output is the traffic flow feature Xt+T at time t+ T .

Since the traffic flow features of weekdays and weekends are generally different, when it is detected that there is a large
difference between the traffic flow of weekdays and weekends in the dataset, the data of weekdays and weekends should be
trained separately. In other words, there are independent GCPN, GCN and LSTM parameters for weekdays and weekends.

The loss function used in the training process is the Mean Square Error (MSE) loss function, which is used to calculate
the difference between the predicted traffic flow Ŷt and the target traffic flow Yt. The goal of model training is to minimize
the loss function. The calculation method is shown in the Equation (10).

loss(Yt, Ŷt) = (Yt − Ŷt)2, Yt, Ŷt ∈ RN×2. (10)

For the entire network framework, the length of time it can predict depends on the time interval between the spatial features
of the LSTM’s input and output, and its prediction error will be affected by the quality of the spatial features, the time interval
within the sequence, and the sequence length. In the case of data defects, blindly increasing the prediction time and the length
of the prediction sequence will inevitably increase the impact of data defects. Therefore, in order to make long-term traffic
flow prediction results long-term and accurate enough, both dynamic graph generation and LSTM are indispensable.
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4. Experiment

4.1. Datasets

The dataset used is city bike data from New York City 1. The data set contains cycling records of city bikes with cycling
time of more than 1 minute. The key fields in each record include start time and date, end time and date, start and end station
names, IDs, latitude and longitude, etc. We use data for a year of 2019, that is, data between 2019.1.1-2019.12.31, including a
total of 20,551,697 cycling records and 974 stations. These stations are all start stations or end stations that have appeared in
the data set. We summarize all the stations information in the dataset to establish a traffic network for city bikes, and treat the
cycling of bikes as traffic flow, and test the performance of our proposed model on this traffic network. Since these data have
been recorded for a long time, we assume that these cycling records in the dataset are true, complete and reliable. Therefore,
in order to simulate the data defects in real-time prediction, we process part of the data by adding random noise. The specific
operation is introduced in Section 4.3.

4.2. Evaluation Metrics and Baselines

In order to evaluate our model, we use Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) to measure
the difference between the predicted traffic flow Ŷt = {ŷ1, ŷ2, · · · , ŷN} and the actual traffic flow Yt = {y1, y2, · · · , yN},
where N is the number of stations in traffic networks. RMSE is calculated as:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2. (11)

And MAE is calculated as:

MAE =
1

N

N∑
i=1

|ŷi − yi|. (12)

Both of them can describe the difference between the predicted traffic flow and the actual traffic flow. The smaller the value,
the more accurate the prediction.

We compare our proposed dynamic graph-based spatio-temporal long-term traffic flow prediction model (Dynamic graph)
with the following baseline method:

ARIMA [42]: The Auto-Regressive Integrated Moving Average model is a classic time series predictive analysis method.
It uses the historical time data of the variable itself to predict its changes by difference method.

SVR [43]: Support Vector Regression method. Use the sliding window overlap to set the input and output data, and train
the model to obtain the relationship of historical data input and output. The RBF kernel function is used in the experiment.

LSTM [44]: Consistent with LSTM layer in Section 3.5. However, only temporal features are extracted, and spatial
features are not extracted.

DCRNN [45]: Diffusion Convolutional Recurrent Neural Network. A traffic flow prediction method that captures both
spatial and temporal dependencies. It uses bidirectional random walk to model spatial dependencies, and uses GRU and
encoder-decoder framework to model temporal dependencies.

STGCN [9]: Spatio-Temporal Graph Convolutional Networks. A traffic prediction method that only uses convolutional
structure, which combines graph convolution and temporal convolution to capture spatio-temporal correlation.

T-GCN [8]: A deep learning network based on GCN and GRU to extract the spatio-temporal features in the traffic network.
We change the modeling of the road network in the original model to the modeling of the stations suitable for our dataset, and
generate the undirected graph with edge weights as the actual distance of the stations as the input of GCN.

Static graph: Use the approach in Section 3.3 to model the traffic network, and learn the spatio-temporal features through
GCN and LSTM. The difference from the prediction network in Section 3.5 is that the input of the graph convolution layer
uses only one static graph generated after counting long-term data sequences.

4.3. Experimental Settings

We randomly add noise ε to simulate the situation of data defects in practical applications, that is, X̃t = Xt+ε. The added
random noise obeys Gaussian distribution, that is, ε ∼ N(µ, σ2). We set µ = 0 and σ2 = 1. For all the baseline methods
in Section 4.2 and our dynamic graph method, the training set accounts for 60% of the total data, the validation set accounts
for 20%, and the test set accounts for 20%. In the training set, 50% of the data is completely correct. This part of the data is
used for both spatio-temporal network training and dynamic graph generation. The remaining 10% of the data is added with

1NYC City Bike Data: http://www.citibikenyc.com/system-data
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random noise to simulate data defects. The random noise is also added to 10% of the data in the validation set and test set. It
is worth noting that since the datasets provided to all methods are uniform, the comparison between different methods is fair.
The methods using static graphs utilize the correct original data to generate static graphs, while the dynamic graph method
will learn from the correct original data through GCPN to generate dynamic graphs. For the dynamic graph generation task,
we employ the OpenAI Gym environment and adapt it to our traffic flow graph dataset. The target graph is set to the traffic
flow transfer graph after 15 minutes from the current graph. We set the final reward β to 5, the reward factor λ to 0.01, and
the immediate reward range is [−5, 5]. We use the single-layer GCPN model to train the policy network. The learning rate of
the PPO algorithm is set to 0.001. The training process uses the Adam optimizer. For long-term traffic flow prediction tasks,
since more GCN layers will make the embedding of each node more similar, resulting in over smoothing [46], which is not
conducive to the loss function and back propagation, we use the single-layer GCN model in our Dynamic graph methods. The
number of layers of LSTM is also set to 1. The input sequence of the LSTM unit is the spatial feature in the past 6 hours,
and the number of hidden units is set to 128. The batch size is set to 64. The training process utilize the Adam optimizer and
the learning rate is set to 0.001. All baseline methods using LSTM follow the above settings. The time length of the traffic
flow probability graph in the Static graph method is consistent with that in our Dynamic graph method. Since we detect that
there is a large difference in traffic flow between weekdays and weekends in the city bike dataset, the average traffic flow on
weekdays is about 3-5 times that of weekends, so we distinguish between weekdays and weekends for training and prediction
for all methods. The prediction results of weekdays and weekends are evaluated together using the unified evaluation metrics.

To make fair comparisons across different methods, we evaluate the experiments using the same multi-node GPU cluster,
where each node consists of a 64-core Intel Xeon CPU E5-2680 v4@2.40GHz with 512GB RAM and four NVIDIA TeslaP100
GPUs. The cluster system runs on Ubuntu 20.04 LTS with Linux kernel v.5.4.0. Our experiments is implemented using
PyTorch 1.5.0 and Python 3.6.10.

Table 1: Results of long-term traffic flow prediction without data defects.

Methods 1d15min 1d30min 1d1h 1d2h

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ARIMA 1.613 1.196 1.625 1.207 1.662 1.241 1.695 1.284
SVR 1.443 0.816 1.458 0.826 1.479 0.827 1.487 0.836

LSTM 0.962 0.496 0.989 0.503 0.993 0.538 1.041 0.579
DCRNN 0.824 0.403 0.869 0.421 0.915 0.452 0.942 0.478
STGCN 0.832 0.410 0.863 0.434 0.935 0.462 0.968 0.472
T-GCN 0.829 0.417 0.872 0.439 0.923 0.459 0.954 0.487

Static Graph 0.831 0.404 0.862 0.428 0.893 0.454 0.942 0.468
Dynamic Graph 0.801 0.398 0.815 0.401 0.834 0.418 0.868 0.436
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(a) The RMSE of traffic flow prediction after 1 day.
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(b) The RMSE of traffic flow prediction after 1 week.

Figure 6: Long-term traffic flow prediction RMSE of static graph and dynamic graph method under different prediction periods length without data defects.

4.4. Main Results
In this section, we evaluate the performance of our model on the New York City bike-sharing data. In order to test our

model’s ability to make long-term prediction, we test the prediction results of the baseline methods and our method (Dynamic
graph) with and without data defects.
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4.4.1. Comparison of other baseline methods without data defects
We first evaluate the performance of our method without data defects. Table 1 shows the result of long-term traffic flow

prediction without data defects. We set the sampling interval (the length of a time step) to 15min, and give the prediction
results when the prediction period is 15min, 30min, 1h, and 2h after 1 day.

The results in Table 1 shows that classic machine learning models such as ARIMA and SVR for time series prediction
problems are difficult to deal with the instability of time feature sequences when facing more complex spatio-temporal pre-
diction problems. Although the performance of LSTM is acceptable, considering only temporal features and ignoring spatial
features is obviously not as comprehensive as extracting both temporal and spatial features. The DCRNN, STGCN, T-GCN
comprehensively consider the spatio-temporal features, but its graph modeling only considers the geographical distance infor-
mation of the stations, and does not consider the dynamic changes of the transportation network in the long-term prediction.
In addition, when there is no defect in the data, the result of the Static Graph method is not better than other methods, which
indicates that the transfer relationship in traffic graph modeling is not better than the distance relationship. However, the graph
based on distance modeling is always static, while the transfer of traffic changes over time. Therefore, the Dynamic Graph
method can capture more effective temporal and spatial dependence.

Table 2: Results of long-term traffic flow prediction with data defects.

Methods 1d15min 1d30min 1d1h 1d2h

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ARIMA 2.121 1.448 2.135 1.454 2.164 1.467 2.217 1.491
SVR 1.986 1.218 1.998 1.225 2.012 1.239 2.075 1.258

LSTM 1.325 0.878 1.346 0.894 1.369 0.914 1.428 0.927
DCRNN 1.174 0.723 1.206 0.741 1.238 0.774 1.293 0.785
STGCN 1.213 0.762 1.226 0.787 1.254 0.806 1.318 0.834
T-GCN 1.202 0.756 1.216 0.770 1.235 0.781 1.296 0.795

Static Graph 1.217 0.775 1.235 0.784 1.258 0.797 1.315 0.813
Dynamic Graph 0.809 0.403 0.823 0.413 0.852 0.428 0.875 0.447
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(a) Comparison of traffic flow prediction after 1 day.
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(b) Comparison of traffic flow prediction after 1 week.

Figure 7: The performance of different models in long-term predictions at different length of prediction periods in the case of data defects.

In order to more intuitively reflect that our Dynamic Graph method still has slight advantages without data defects, we
use Static Graph model and Dynamic Graph model to predict the traffic flow in the future 30 minutes to 4 hours after 1 day
and 1 week respectively. The results of RMSE are shown in Figure 6. It can be found that although the prediction error of
both methods will inevitably increase with the prediction time, the growth rate of the Dynamic Graph method is lower than
that of the Static Graph method. This phenomenon becomes more obvious when the prediction period becomes longer. The
prediction result after one week has a larger error than the prediction one day later.

4.4.2. Comparison of other baseline methods with data defects
We then evaluate the performance of our method with data defects. Table 2 shows the result of long-term traffic flow

prediction without data defects. We set the sampling interval (the length of a time step) to 15min, and give the prediction
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(a) Visualization of traffic outflow for prediction period of 15 minutes.
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(b) Visualization of traffic outflow for prediction period of 30 minutes.
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(c) Visualization of traffic outflow for prediction period of 1 hour.
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(d) Visualization of traffic outflow for prediction period of 2 hours.

Figure 8: Visualization of actual and predicted traffic outflow for some high-traffic flow stations in New York City bikes systems at different prediction
periods length.

results when the prediction period is 15min, 30min, 1h, and 2h after 1 day. The results in Table 2 indicates that when the
data has defects, the traffic flow series input by each method has deviations, so only extracting the temporal dependence cause
the error to be further amplified. In the deep learning methods that extract spatio-temporal dependencies, since the graph
of DCRNN, STGCN, and T-GCN are distance-based, they do not change with the absence of traffic data, so they are less
affected by spatial relationships, but still affected by data defects. Since the Static Graph method is based on traffic transfer,
it is more affected by data defects. Our Dynamic Graph method can generate dynamic graphs through reinforcement learning
to compensate for the deviation of the input sequence itself, so it is less affected by data defects. In order to more intuitively
reflect the ability of our model to overcome data defects in long-term prediction tasks, we set the sampling interval to 15
minutes on the defective data, using baseline methods and our model to predict the traffic flow in future 30 minutes to 4 hours
after 1 day and 1 week respectively. Figure 7 shows the results of long-term prediction in the case of data defects. It can be
seen that the errors of the baseline method are much higher than our model. Moreover, the RMSE of other baseline methods
increases significantly after the prediction period changes from one day to one week. However, the RMSE of our proposed
method only slightly increases since it can automatically compensate for the impact of data defects.

Through the above analysis, we can consider that our model can effectively extract the spatio-temporal features in the
traffic network, especially in terms of spatial features. Compared with considering only temporal features, our proposed
modeling method of traffic flow probability graph can effectively capture spatial features and reduce errors in long-term traffic
flow prediction. Secondly, our proposed method based on reinforcement learning for dynamic graph generation can effectively
overcome the problems of data delay and missing in practical applications. In the case of data defects, the anti-interference
ability of the dynamic graph generation method is stronger. Finally, our model has better long-term prediction capabilities.
Regardless of whether the data is defective, our model can effectively reduce the error in long-term prediction.

4.5. Model Analysis

In order to further analyze our model and experimental results, we compare the actual traffic flow with the traffic flow
predicted by our dynamic graph spatio-temporal network model through visualization. We select some stations (10 in total)
with a large traffic in the New York City bike sharing system, and predict the data at the end of January, 2019 when the
prediction period length is 15min, 30min, 1h, and 2h after 1 day, respectively. The sampling interval for the traffic flow is 15
minutes. For better visualization, we only visualize the traffic outflow. The visualization results are shown in Figure 8. The
error (RMSE and MAE) between predicted traffic flow and actual traffic flow is also shown in the figure. It should be noted
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Figure 9: The relationship between traffic flow prediction results and the length of data sampling time required to generate the graph.

that the actual traffic flow is obtained from the statistics of the original data, and the predicted traffic flow is obtained from the
data after adding noise.

From the figure we can get the following information: Firstly, although the traffic flow has a certain periodicity (for
example, there are usually two peaks in a weekday), but its changes are not very regular. It can be found from Figure 8 that the
features of traffic flow on weekends are significantly different from those on weekdays, and the peak traffic flow on each day of
the weekdays is also quite different. Therefore, we can see the advantages of our dynamic graph method. Since our dynamic
graph method captures the different spatial features of the traffic network at different times, it can more accurately predict
the abnormal peak of traffic flow. The static graph method is difficult to capture these spatial features. Even in the absence
of data defects, the dynamic graph method is better than the static graph at these peak points. This is why the RMSE of the
dynamic graph method in Figure 6 is smaller. In the case of data defects, the advantages of the dynamic graph method are
more obvious. Secondly, as the length of the prediction period increases exponentially, the error (RMSE and MAE) between
the predicted traffic flow and the actual traffic flow gradually increases. However, there is no large deviation in the overall
trend of traffic flow, and the prediction of the moments when the peaks and valleys appear is accurate. Therefore, our model
can be considered to have the ability to make long-term predictions. Finally, it is not hard to find that the main error between
the predicted traffic flow and the actual traffic flow occurs when the actual flow fluctuates rapidly in a short time, especially
when the traffic flow is zero. The reason may be that when the traffic flow is small, a large number of zero elements appear in
the adjacency matrix of the traffic flow probability graph, which affects the generation of dynamic graphs and the extraction
of spatial features. However, in general, our spatio-temporal prediction network model based on dynamic graph generation is
capable of long-term prediction of traffic flow when the data has defects.

In addition, obtaining a traffic flow probability graph by collecting data requires a certain data length. In order to verify
that our proposed model can be applied to practical prediction tasks, we test the long-term prediction error (RMSE) of traffic
flow at different data sampling time lengths. The sampling interval is 15 minutes and the prediction period is 1 hour. The
results are shown in Figure 9. Since the weights of the edges in the traffic flow probability graph are all traffic flow transition
probability values between [0, 1], as long as the graph contains sufficient transition probability information. When the data
sampling time exceeds 1 hour, the error value is basically stable. The result demonstrates that the dynamic graph model we use
does not require long training data length when facing intact data. However, for dynamic graph generation tasks on defective
data, the model still needs sufficient historical data as the data support for the policy network.

5. Conclusion

In this paper, we propose a method that can make long-term predictions of traffic flow even if the data is defective. For the
traffic network in a specified area, we model the topology information in the traffic network through the graph structure, and
establish a dynamic traffic flow probability graph model to represent the spatial features. In order to overcome the data defects
that may occur in practical applications, such as the data provided by relevant institutions and organizations are not real-time
and accurate, and the graph structure cannot be obtained in a short time, we propose a method of dynamic graph generation
to perform reinforcement learning on the complete traffic flow transfer graph environment through GCPN. For the completed
dynamic graph sequence, we extract spatial features through GCN, and then extract temporal features through LSTM, and
train deep learning models to achieve long-term prediction of traffic flow.

We test our method on a bike sharing system in New York City by simulating data defects through randomly generating
noise. The experimental results demonstrate that our model can outperform mainstream machine learning and deep learning
methods in traffic flow prediction tasks, and has the ability to predict long-term traffic flow. However, the model still has
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room for improvement. In terms of dynamic graph generation, the technology for generating graphs using reinforcement
learning is still immature, and the training period for policy networks for larger traffic networks will be very long. In terms
of spatial feature extraction, we can further consider the addition of heterogeneous graph models [47, 48] and attention
mechanisms [49, 50]. In the future, we will consider more efficient methods to combat data defects in traffic flow prediction
tasks, and optimize the structure of the spatio-temporal prediction network to reduce errors in long-term prediction tasks.
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