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Abstract
Compared with traditional sequential learning
models, graph-based neural networks exhibit ex-
cellent properties when encoding text, such as the
capacity of capturing global and local information
simultaneously. Especially in the semi-supervised
scenario, propagating information along the edge
can effectively alleviate the sparsity of labeled data.
In this paper, beyond the existing architecture of
heterogeneous word-document graphs, for the first
time, we investigate how to construct lightweight
non-heterogeneous graphs based on different lin-
guistic information to better serve free text repre-
sentation learning. Then, a novel semi-supervised
framework for text classification that refines graph
topology under theoretical guidance and shares
information across different text graphs, namely
Text-oriented Graph-based Transductive Learning
(TextGTL), is proposed. TextGTL also performs
attribute space interpolation based on dense sub-
structure in graphs to predict low-entropy labels
with high-quality feature nodes for data augmen-
tation. To verify the effectiveness of TextGTL, we
conduct extensive experiments on various bench-
mark datasets, observing significant performance
gains over conventional heterogeneous graphs. In
addition, we also design ablation studies to dive
deep into the validity of components in TextTGL.

1 Introduction
Text classification is a fundamental and long-standing task
of Natural Language Processing, which has been shown use-
ful in countless intelligent services, such as sentiment analy-
sis [Wang et al., 2020a] and fake news detection [Wang et
al., 2020b]. Different from traditional sequential learning
methods [Iacobacci and Navigli, 2019; Kim, 2014; Blei et
al., 2003], some recently proposed studies adopt graph learn-
ing approaches to model free text, aiming to improve classifi-
cation performance based on text representation with higher
quality. More concretely, all these works utilize different me-
dia (e.g., words [Yao et al., 2019; Liu et al., 2020] and top-
ics [Wang et al., 2019; Hu et al., 2019]) as bridges to asso-
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Figure 1: An example heterogeneous graph for propagating informa-
tion among documents. Some linguistic phenomena will obviously
limit the reasonable information propagation among nodes.

ciate free text, form heterogeneous text graph, and introduce
graph neural networks to capture global and local information
simultaneously.

Although these graph-based methods have yielded promis-
ing results on free text classification, they are mostly
intuition-based and lack theoretical guidance, leading to lim-
itations in real-world setups. On the one hand, as previ-
ously mentioned, they all rely on constructing heterogeneous
graphs which not only hugely expand the scale of model pa-
rameters [Yao et al., 2019; Liu et al., 2020], but also intro-
duce subsequent problems such as node redundancy, infor-
mation missing, and error cascade propagation (illustrated in
Figure 1). On the other hand, while the motivation of in-
corporating graph structures for text modeling is to promote
information sharing along edges and break the independence
across samples (nodes), thus alleviating the data sparsity and
over-fitting issues, existing methods can merely achieve this
goal on datasets where edges naturally have meanings. More
particularly, this line of algorithms has only been success-
fully applied on data with explicit graph structures (e.g., ci-
tation [Kipf and Welling, 2017; Velickovic et al., 2018] and
molecular bond [Fout et al., 2017]) but have never been used
to model free text under more strict semi-supervised condi-
tions.

In this work, we propose a semi-supervised pipeline
framework, namely Text-oriented Graph-based Transductive
Learning (TextGTL), which explores attacking the problem
of semi-supervised classification for free text with a graph-
based architecture. Moreover, to the best of our knowl-
edge, we are the first to construct non-heterogeneous graphs
for text classification, which greatly reduces the parame-
ter complexity and makes the trained model lightweight.



Specifically, following the theoretical insights from docu-
ment similarity research [Pörner and Schütze, 2019], we
first design a set of novel strategies to respectively construct
text graphs based on multiple linguistic information sources
(i.e., semantics, syntax, and sequential context). Next, in-
spired by the works of [Li et al., 2018; Yang et al., 2019;
Li et al., 2020], TextGTL refines the graph topology by
strengthening the connection density and information consis-
tency within the same dense substructure of the text graph, so
that it can better serve the information propagation. We also
obtain high-quality features through attribute space interpo-
lation according to the structural tightness and estimate their
low-entropy labels as new training samples, which substan-
tially mitigates the data sparsity issue through data augmen-
tation. Finally, to boost the performance of semi-supervised
text classification, we design multi-graph parallel Graph Con-
volutional Networks [Kipf and Welling, 2017] to share hidden
layer signals between multiple text graphs.

In order to demonstrate the effectiveness of our proposed
method, we conducted extensive experiments on five popular
text classification datasets and benchmarked TextGTL against
seven strong baselines. Empirical results show that TextGTL
outperforms its counterparts on all tested datasets, especially
in the challenging corpus with long sentences. We further
performed ablation studies to investigate how each compo-
nent affects the final model performance as well as the rela-
tionship between text graphs via different linguistic informa-
tion.

The main contributions of this paper can be summarized as
follows:

• By proposing novel non-heterogeneous graph construc-
tion methods for free text, we significantly reduce the
parameter scale and optimize the graph quality.

• Based on our unsupervised text graph topology refine-
ment and data augmentation schemes, we successfully
strengthen the useful information propagation among
nodes and achieved graph-based semi-supervised free
text classification.

• Through joint training on multiple text graphs, the
proposed TextGTL system outperforms state-of-the-art
methods in extensive experimental setups.

2 Related Work
2.1 Graph-Based Text Classification
Different from the existing sequence learning model, the
graph-based methods expect to establish label or feature as-
sociations for independent samples by constructing a graph
structure. In the initial stage, such methods are more com-
mon in text graph topology with real meaning, e.g., citation
networks [Kipf and Welling, 2017; Velickovic et al., 2018],
protein networks [Fout et al., 2017], and social networks [Liu
and Wu, 2018]. They can learn higher-quality text represen-
tations through smoothing attributes along the edges. With
the development of multiple text graph construction methods,
some works began to lean toward free text as the object of
analysis. More methods focus on constructing heterogeneous
graphs, using words, topics, and other elements as bridges

to realize the information propagation [Yao et al., 2019;
Liu et al., 2020; Hu et al., 2019; Chen et al., 2020; Ye et al.,
2020]. In addition, the work of [Zhang et al., 2020] use graph
neural networks to capture the information of the internal
structure of the text (e.g., co-occurrence). Some studies also
construct text or online word graphs to alleviate the problems
of sample imbalance and poor scalability [Tian et al., 2020;
Huang et al., 2019].

However, existing methods often use heterogeneous struc-
tures to model free text, which greatly increases the parameter
scale. Meanwhile, the construction method is mainly based
on empirical design, without theoretical guidance.

2.2 Semi-Supervised Text Classification
The prior semi-supervised methods can be roughly divided
into two categories: latent variable model and embedding-
based model. The former expands the topic model based on
labeled samples and then relies on the posterior topic-label
distribution for label prediction. The latter uses the given la-
beled samples as a seed to derive the embedding and label-
ing of the pending text. Among them, some semi-supervised
methods introduce graphs as the basis for derivation. For ex-
ample, PTE [Tang et al., 2015] first represented the labeled
information and different levels of word co-occurrence infor-
mation as a large-scale heterogeneous text network, which is
then embedded into a low dimensional space through an ef-
ficient algorithm. HAN [Wang et al., 2019] and HGAT [Hu
et al., 2019] designed heterogeneous graph to achieve more
flexible feature capture. EGNN-Proto [Lyu et al., 2020] uti-
lize an edge-labeling graph neural network to implicitly mod-
els the intra-cluster similarity and the inter-cluster dissimilar-
ity of the documents

However, graph-based semi-supervised methods generally
do not consider the derivation strategy [Gururangan et al.,
2019; Meng et al., 2018; Miyato et al., 2019] in classic semi-
supervised methods. Hence, we propose a novel graph-based
data augmentation technique and corresponding graph neural
network structure to fill this gap.

3 Methodology
In this section, we will introduce the proposed pipeline frame-
work TextGTL, as shown in Figure 2.

3.1 Problem Definitions & Notions
Semi-supervised text classification is a common natural
language processing task. Given a text corpus D =
{d1, d2, · · · , dn}, where n = |D|, and di denotes a docu-
ment. Among D, every text di has a corresponding label
yj ∈ C, where C = {c1, c2, · · · , cnc} is the label set, and
nc = |C|. X ∈ Rn×dem is the attribute set of D, xi ∈ X
denotes the initial attributes of di, and dem is the deminsion
of attributes. Y ∈ Rn is the label set of D, and due to the
semi-supervised setting, |Yobs| � |Y − Yobs|, where Yobs is
the training set.

There exist settings for this task, namely transductive learn-
ing and inductive learning, which are different in information
visibility. While the former can fully observe and utilizeX in
both learning and inference stages, the latter is blocked from
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Figure 2: The overall architecture of TextGTL. From left to right, TextGTL first constructs multiple text graphs based on different linguistic
factors (see section 3.2). Next, TextGTL is guided by criterion C to refine the graph topology and perform data augmentation (see section 3.3
and Figure 3). Finally, TextGTL feeds the refined multiple text graphs into a 2-layer GCN that can share hidden layer information to achieve
semi-supervised text classification (see section 3.4).

partial information during the learning stage but are fed with
the complete dataset during testing. In this paper, we focus
on transductive learning.

3.2 Non-Heterogeneous Text Graph Construction
In this section, we will explore how to construct meaning-
ful text graphs and propose novel strategies to associate text.
Unlike heterogeneous graphs that use words, topics, etc., as
bridges to associate documents, we intend to use different
linguistic information to consider whether the information
is propagated between documents. To capture various infor-
mation, TextGTL evaluates the propagation probability from
three different linguistic perspectives as follows.

Semantics Text Graph
Inspired by the task of unsupervised semantic textual similar-
ity, we design meta-document embedding to integrate multi-
ple pre-trained document vectors based on various methods
to represent the documents, and then determine if the asso-
ciation exists [Pörner and Schütze, 2019]. Given zero-mean
random vectors v1, and v2, Canonical Correlation Analysis
(CCA) finds linear projections θ1 and θ2 such that θ>1 v1 and
θ>2 v2 are maximally correlated. [Bach and Jordan, 2002]
showed that CCA reduces to a generalized eigenvalue prob-
lem, and Generalized CCA (GCCA) generalizes CCA to K
random vectors v1, v2, · · · , vK ∈ Rdemk . Then, the gener-
alized eigenvalue problem finds scalar-vector pairs (ρ, θ) that
satisfy∣∣∣∣∣ 0 Σ··· Σ1,K

Σ··· 0 Σ···
ΣK,1 Σ··· 0

∣∣∣∣∣ θ = ρ

∣∣∣∣∣Σ1,1 0 0
0 Σ··· 0
0 0 ΣK,K

∣∣∣∣∣ θ, (1)

where ΣK,K is the covariance matrix and ΣK,1 is the cross-
covariance matrices. For stability, we add τσkIk, k ∈ [1,K]
to every Σk,k, where τ = 0.1 is a hyperparameter, Ik is the

identity matrix and σk is the average variance of vk. We
stack the eigenvectors of the top-dem eigenvalues into oper-
ator matrices Θk ∈ Rdem×demk and define the GCCA meta-

embedding of document dm as (i.e., vk =

hd0,k

· · ·
hdn,k

):

hGCCA
dm

=

K∑
k=1

Θk(hdm,k
− Ei∈|D|[hdi,k

]), (2)

where hdm,k
∈ Rdemk is the kth kind of pre-training ini-

tial document representaiton of dm. For each document pair
(di, dj) to be determined for establishing an association or
not, we use a simple classifier as follows:

y(di,dj) = ReLU(α[hGCCA
di

||hGCCA
dj

]), (3)

where y(di,dj) denotes adding an edge between (di, dj) or
not, ReLU(·) is an activation function, α is a trainable param-
eter, and || denotes concatenation. The positive and negative
examples used in training are derived from the classification
training set sample combination. Then, we can minimize the
cross-entropy loss for data distribution for training

L = −
n∑

k=1

(yklog(ŷk) + (1− yk)log(1− ŷk)). (4)

When the edge between (di, dj) is determined to be added,
we will use wsem

i,j = σ(hGCCA
di

· hGCCA>
dj

) as its initial
weight and normalize it on whole graph.

Syntax Text Graph
Dependency parsing is considered to be useful for guiding the
understanding of sentences in a document, so we are ready
to calculate the contact ratio of syntax dependency between



documents. First, for the document di, we use the parser of
Stanford CoreNLP to get the smallest dependency unit (i.e.,
[word, dependency-relation, word]) that exists in the docu-
ment and generate a set. Next, like the bag-of-words, we rep-
resent all documents as a vector hsyndi

= [0, · · · , nj , · · · , 0],
where nj is the number of jth dependency unit in di. Similar
to the construction method of the semantics text graph, we
also build a classifier to add edges and determine the weight
of edges wsyn

i,j , so we omit it.

Context Text Graph
The sequential context describes the language characteristics
of local co-occurrence between words, which has been widely
used in text representation learning. In TextGTL, to evaluate
the sequential context similarity between two documents, we
design a sliding-window-based calculation method as

wseq
i,j =

∑
m,n∈di

⋂
dj

log(p(wm, wn)/p(wm)p(wn)), (5)

where wm and wn are a pair of words which simultaneously
appear in both di and dj , and p(wm) is the probability of
the word wm appeared in a sliding window. p(wm, wn) is
the probability of the word pair (wm, wn) co-occurring in the
same sliding window, which can be estimated as the fraction
of the total number of sliding windows over di and dj and the
number of times that wm and wn co-occur in the same sliding
window.

In the end, as shown in the Figure 2, we obatin three inde-
pendent text graphs constructed based on different linguistic
information.

3.3 Topology Refinement & Data Augmentation
Based on the widely-adopted perspective of existing graph-
based semi-supervised models, i.e., attributes exhibit smooth-
ness along the graph edges [Stretcu et al., 2019; Xu et al.,
2020; Li et al., 2018; Li et al., 2020], some works propose
a criterion to assess both training samples and given graph
topology, which is highly correlated to the subsequent clas-
sification performance. Criterion C: The higher the consis-
tency of the node information (i.e., attribute and label) within
the same dense subgraph, the more reasonable and sufficient
the information propagation. This criterion is highly consis-
tent with the basic assumptions (i.e., graph homogeneity) of
traditional label propagation algorithms, and has been proved
by mass experiments, so we use it as our guide to refine text
graph topology.

Subgraph Density
Specifically, when we refine the three text graphs’ topology
respectively, we first need to reasonably strengthen the den-
sity of the subgraphs in each text graph (All operation in each
of the three text graphs is independent, and we take one as an
example.). As shown in Figure 3, through the structure-based
overlapping clustering algorithm [Epasto et al., 2017], we ob-
tain the dense subgraphs in the text graph, which are regarded
as the range that the information propagation should cover.
However, due to the existence of long-distance dependence,
information often cannot be propagated adequately in GNNs
that only stack about two or three layers. This is the rea-
son why some nodes’ representations are under-smoothing.
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Figure 3: This is a toy example of TextGTL’s topology refinement
and data augmentation. TextGTL generates super nodes d′1 and d′2
based on the dense subgraphs SubG1, and SubG2 discovered by the
structure-based overlapping clustering. It refines the graph topology
by associating the super nodes with the original nodes in the cluster
(dotted line). Since a super node can be regarded as the central node
in a cluster, its attributes (d′1, and d′2) and label (only d′2) can be
obtained through attribute interpolation and label estimation, which
realizes data augmentation.

Therefore, by generating super nodes and connecting them
with corresponding subgraph members, we limit the maxi-
mum distance of nodes in the subgraph to 2, which will effec-
tively alleviate the phenomenon of under-smoothing. In par-
ticular, Dropedge [Rong et al., 2020] shows that too dense the
graph structure is also not conducive to deep node represen-
tation learning. This is because in a graph with too high con-
nectivity, information propagation becomes easy, which can
easily lead to the convergence of nodes in the entire graph,
i.e., the problem of over-smoothing. Hence, we randomly
remove some edges in the text graphs. The weights of new
edges are also calculated from section 3.2.

Information Consistency (Data Augmentation)
From another perspective, improving the consistency of node
information within the subgraph can also improve the perfor-
mance of the downstream tasks. As the sum of all nodes of the
corresponding cluster, the super node can be regarded as mul-
tiple sampling of the same label distribution. This operation
is similar to mixup [Zhang et al., 2018], but different from
augmenting the marginal sample to improve the model in a
supervised setting, our goal is to obtain samples with higher
class separability in a semi-supervised setting. Specifically,
according to the Law of Large Numbers [Prékopa, 1972], it
should fit the original distribution more closely than the orig-
inal node [Li et al., 2020]. On this basis, as shown in Figure 3,
some super nodes can be directly labeled based on their con-
taining training samples in clusters. By introducing a simple
classifier trained by such high-quality labeled super nodes,
we can obtain more super nodes with high-quality features
and low-entropy labels, and provide more training data for
downstream models, which realizes data augmentation.

3.4 Joint Training on Multiple Text Graphs
After obtaining the three updated text graphs and the aug-
mented training sample set, we focus on exploring an efficient



graph neural network framework to learn document represen-
tation and achieve classification. We consider that, on the
one hand, crudely compressing three different text graphs to-
gether will inevitably confuse the various structure informa-
tion and lose the freedom of the model. On the other hand, the
basic principle of graph neural network learning is that nodes
propagated information to each other and update their feature
embeddings by propagating information among other neigh-
boring nodes. Therefore, we attempt to transmit information
within the text graph independently while sharing informa-
tion between different text graphs to promote a more flexible
propagation of information throughout the model.

We stack a 2-layer GCN. Among them, the first layer is a
general GCN [Kipf and Welling, 2017], and three graphs are
fed independently. The first layer of each text graph is the
same and independent, as follows:

H(1) = σ(Ã ·H(0) ·W (1)), (6)

where H(1) denotes the hidden representation matrix of D
at the 1st layer, H(0) is the initial embedding of D, W (1)

is a learnable linear transformation matrix, and σ(·) is an
element-wise nonlinear activation function. Among them,
Ã = M−

1
2 (A + I)M−

1
2 represents the symmetric normal-

ized adjacency matrix, A, and M are the weighted adjacency
matrix and degree matrix. Next, by combining hidden repre-
sentations from three text graphs, the second layer as follows:

H(2) = σ(Ã · [H(1)
sem||H(1)

syn||H(1)
seq] ·W (2)), (7)

In the last layer of TextGTL, we perform a mean pooling
over graphs to obtain the final representation of documents
for classification.

4 Experiment
4.1 Datasets & Baselines
We choose a suite of recently widely used benchmark datasets
for experiments and analysis. We conduct extensive experi-
ments on 5 benchmark text datasets: 20-Newsgroups dataset,
Ohsumed dataset, R52 Reuters dataset, and R8 Reuters
dataset, and Movie Review dataset. These datasets involve
many life genres, such as movie reviews, medical litera-
ture, and news documents, etc. The Movie Review dataset
is designed for binary sentiment classification. The 20-
Newsgroups dataset, R52 Reuters dataset, R8 Reuters dataset
are news classification datasets. The Ohsumed dataset is
medical literature. To evaluate the performance of the semi-
supervised learning model, we gave 20 labeled data per class.
We split the same number of samples of the verification set
as the training set from the dataset, and ensure that there is no
sample imbalance in the testing set. A summary statistics of
the benchmark datasets is presented in Table 1.

To comprehensively evaluate our proposed method for
semi-supervised text classification, we compare it with
the following three groups of state-of-the-art methods:
SVM [Blei et al., 2003]: SVM classifiers using TF-IDF fea-
tures. CNN [Kim, 2014]: CNN classifiers using averaged
word embeddings as sentence embedding, whose word em-
beddings are pre-trained with Wikipedia Corpus based on

#Nodes #Classes #Avg. Length

20NG 18,846 20 221.26
Ohsumed 7,400 23 135.82
R52 9,100 52 69.82
R8 7,674 8 65.72
MR 10,662 2 20.39

Table 1: Summary of the text datasets.

GloVe. LSTM [Iacobacci and Navigli, 2019]: A LSTM sen-
tence encoder using pre-trained word embeddings as CNN.
PTE [Tang et al., 2015]: A graph-based semi-supervised
representation learning method for text data. PTE firstly
learns word embedding based on the heterogeneous text net-
works containing three bipartite networks of words, docu-
ments, and labels, then averages word embeddings as doc-
ument embeddings for text classification. TextGCN, Ten-
sorGCN [Yao et al., 2019; Liu et al., 2020]: A GCN-
based methods on sequential contextual graph and multiple
text graph. HAN [Wang et al., 2019]: It embeds hetero-
geneous information network by first converting a hetero-
geneous information network to several homogeneous sub-
networks through pre-defined meta-paths and then applying
graph attention networks. To be fair, all of our models use a
uniform pre-training vector as the initial representation of the
document. The results of models with ∗ come from original
code or replication.

4.2 Experiment Settings
We use K = 4 kinds of document initial embeddings in
the semantics text graph that are derived from [Pörner and
Schütze, 2019], set the length of sliding-window as 20,
and the dependency parser used in the syntax text graph
is Stanford CoreNLP. We equip TextGTL with the Ego-
Splitting [Epasto et al., 2017] as an overlapping clustering
algorithm (resolution=1.0). During data augmentation, we
select GBDT as a simple classifier, and iterated 10 rounds to
obtain more labeled super nodes to add to the training set. As
mentioned in section 3.3, in this study, we adopt a two-layer
GCN to achieve. The initial features of the first-layer nodes
in the three different text graphs are all TF-IDF attributes
from TfIdfcounter in sklearn, the output feature dimension
is 200, the input feature dimension of the second-layer nodes
is 200×3, and the output feature is the number of classes.
During the training process, the dropout rate is 0.5, and the
L2 loss weight is 5e-6. We use Adam optimizer with a max-
imum of 200 epochs and a learning rate of 0.002, when the
verification loss is not reduced for 10 consecutive epochs, an
early stop will be executed. All results reported in this study
are the average of 10 independent tests.

4.3 Results Analysis
A comprehensive experiment is conducted on the benchmark
datasets. The results presented in Table 2 show that our pro-
posed TextGTL significantly outperforms all baselines (in-
cluding some state-of-the-art sequential learning and graph-
based models). Among them, we notice that the sequen-
tial learning method is generally lower than the graph-based
method in corpus sets with a larger average text length, which
we suspect may be due to the limitation of the representa-



Datasets SVM CNN LSTM PTE* TextGCN* TensorGCN* HAN* TextGTL(Ours)

20NG 65.94±0.29 77.84±0.23 76.84±0.19 68.54±0.33 77.63±0.21 78.63±0.31 71.36±0.19 80.14±0.26
Ohsumed 40.04±0.27 35.64±0.36 31.55±0.32 43.84±0.41 50.88±0.27 52.17±0.39 41.76±0.35 54.11±0.24
R52 79.74±0.31 81.84±0.16 81.79±0.25 74.62±0.22 81.38±0.09 82.29±0.20 73.26±0.28 83.23±0.25
R8 80.72±0.17 84.79±0.18 86.46±0.30 80.73±0.26 85.57±0.12 86.15±0.18 78.53±0.15 87.06±0.30
MR 57.64±0.18 59.19±0.20 62.37±0.36 56.89±0.36 60.47±0.18 61.25±0.37 58.84±0.26 62.42±0.28

Table 2: Test accuracy (%) of the semi-supervised text classification benchmark. The highest performance per dataset is highlighted in bold.
The ± error bar denotes the standard deviation in 10 independent trials.

text graph 20NG Ohsumed R52 R8 MR
Semantics 78.17 51.56 81.05 84.88 60.11
Syntax 77.29 49.74 79.37 83.09 58.93
Sequential 78.85 52.78 81.44 86.01 60.76
Semantics(w/o) 79.15 53.20 81.94 86.33 61.42
Syntax(w/o) 79.76 53.52 82.24 86.84 62.04
Sequential(w/o) 78.44 52.05 81.33 85.12 60.53

Table 3: Analysis of the effectiveness of a single text graph. In the
upper half table, the first three rows are the results of only using a
single graph, while the lower half table is the results of the com-
plementary experiment, where (w/o) means TextGTL without using
corresponding text graph.

Component 20NG Ohsumed R52 R8 MR
Only Text Graphs 75.13 48.43 77.97 82.84 57.13
+Topology Refinement 75.84 49.18 78.61 83.42 57.86
+Data Augmentation 79.52 52.84 82.44 86.77 61.63
+Joint Training 80.14 54.11 83.23 87.06 62.42

Table 4: Ablation analysis of TextGTL. + indicates that the corre-
sponding components are added to the model from top to bottom in
the table.

tional ability of the sequential model when processing multi-
ple sentences.

4.4 Discussion of Text Graphs
We discuss the specific performance of the text graph pro-
posed in this paper by testing the effectiveness of the three
text graphs. The results are shown in Table 3. We notice
that the performance of any single text graph is lower than
the result of joint training as shown in Table 2, which shows
that the three text graphs are complementary in information
propagation. In addition, after statistics, the edges and nodes
in the text graphs of TextGTL are far less than the existing
heterogeneous graph methods.

4.5 Ablation Analysis
Finally, we performed an ablation analysis of the compo-
nents in our proposed TextGTL to confirm the improvement
of model performance brought by different components. The
experimental results are shown in Table 4. We notice that
the performance of the model based on only three original
text graphs is only competitive, which is slightly lower than
TextGCN. We guess the main reason is the undersmoothing
of information propagation and noise in the text graphs. How-
ever, each of the remaining components has brought certain
improvements to the performance of the model, especially
topology refinement and data augmentation. It proves that
Criterion C correctly guides to topology refinement.
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Figure 4: The accuracy with different number of labeled documents.

4.6 Impact of Number of Labeled Data
To explore the performance of different models given dif-
ferent amounts of labeled samples, we experiment with
TextGTL and baseline methods on the MR dataset. The ex-
perimental results are shown in Figure 4. With the increase
of labeled documents, all methods have achieved better re-
sults in terms of test accuracy. And under different settings,
TextGTL always outperforms all other methods. If fewer la-
beled documents are provided, the performance of the base-
line will be significantly reduced, and our model can still
achieve higher performance. It illustrates that our proposed
TextGTL can more effectively use limited label data for text
classification.

5 Conclusion
In this work, we propose a pipeline framework Text-oriented
Graph-based Transductive Learning to build text graphs, re-
fine topologies, data augmentation, and design GCNs that
share hidden layer information for semi-supervised text clas-
sification. Experimental results show that TextGTL can effec-
tively improve the performance of semi-supervised text clas-
sification. In addition, we further discussed the performance
improvement brought by different strategies in ablation anal-
ysis. In the future, we will continue to explore more develop-
ment possibilities for graph-based text classification tasks.
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