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Abstract
Aspect sentiment triplet extraction (ASTE) aims
to extract triplets composed of aspect terms, opin-
ion terms, and sentiment polarities from given sen-
tences. The table tagging method is a popular ap-
proach to addressing this task, which encodes a
sentence into a 2-dimensional table, allowing for
the tagging of relations between any two words.
Previous efforts have focused on designing vari-
ous downstream relation learning modules to bet-
ter capture interactions between tokens in the ta-
ble, revealing that a stronger capability to capture
relations can lead to greater improvements in the
model. Motivated by this, we attempt to directly
utilize transformer layers as downstream relation
learning modules. Due to the powerful seman-
tic modeling capability of transformers, it is fore-
seeable that this will lead to excellent improve-
ment. However, owing to the quadratic relation
between the length of the table and the length
of the input sentence sequence, using transform-
ers directly faces two challenges: overly long ta-
ble sequences and unfair local attention interac-
tion. To address these challenges, we propose
a novel Table-Transformer (T-T) for the tagging-
based ASTE method. Specifically, we introduce a
stripe attention mechanism with a loop-shift strat-
egy to tackle these challenges. The former modifies
the global attention mechanism to only attend to
a 2-dimensional local attention window, while the
latter facilitates interaction between different atten-
tion windows. Extensive and comprehensive exper-
iments demonstrate that the T-T, as a downstream
relation learning module, achieves state-of-the-art
performance with lower computational costs.

1 Introduction
Aspect sentiment triplet extraction (ASTE) remains a cru-
cial research direction in the era of large language models
(LLMs) [Wang et al., 2023; Zhang et al., 2024], widely used
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Figure 1: A toy example of three different ASTE methods. Our T-T
model achieves commendable results in both performance and cost.

for fine-grained opinion mining from user reviews, social
media news, and other types of text [Zhang et al., 2022a].
ASTE task aims to extract corresponding aspect terms, opin-
ion terms, and sentiment polarities from a given sentence.
The sentiment polarity here is classified into three cate-
gories: {Positive, Neutral, Negative}. For example, as shown
above in Figure 1, given the sentence “The screen of the
phone is smaller, but overall it’s good.”, it has two sentiment
triplets: (screen, smaller, Negative) and (phone, good, Pos-
itive), where screen and phone are the aspect terms, smaller
and good are the corresponding opinion terms, Negative and
Positive are the corresponding sentiment polarities.

Recently, a variety of techniques have been proposed
for addressing the ASTE task, including span-based meth-
ods [Xu et al., 2021; Chen et al., 2021; Li et al., 2023b;
Zhao et al., 2024], generative methods [Gao et al., 2022;
Gou et al., 2023; Xianlong et al., 2023; Mukherjee et al.,
2023; Zou et al., 2024], and tagging methods, among which
the tagging method is particularly attractive. Sequence tag-
ging methods [Peng et al., 2020; Xu et al., 2020; Xianlong
et al., 2023] use the BIESO scheme1 to tag aspect and opin-
ion terms in sentences, but these methods fail to fully cap-
ture the relations between individual words. Another more
competitive tagging approach is the table tagging methods
[Wu et al., 2020; Chen et al., 2022; Zhang et al., 2022b;
Liang et al., 2023b; Sun et al., 2024]. Given a sentence, it

1BIESO means “begin, inside, end, single, other”, respectively.



begins with encoding using a transformer-based pre-trained
language model. Then, the obtained representations are en-
coded into a relation table. In this relation table, the horizon-
tal axis represents aspect terms, the vertical axis represents
opinion terms, and each cell (e.g. cellij) in the table denotes
the relation between the i-th and j-th words in the sentence.
With this approach, sentiment triplets can be easily annotated
within the table, and the relations between any two words can
be fully captured.

One of the keys to the table tagging methods lies in design-
ing different downstream relation encoding modules to help
the model learn stronger relations representations. Previous
methods [Wu et al., 2020; Jing et al., 2021; Chen et al., 2022;
Zhang et al., 2022b; Liang et al., 2023a; Peng et al., 2024b;
Peng et al., 2024a] have designed various downstream rela-
tion encoding modules, such as using Multi-Layer Percep-
tion (MLP) [Jing et al., 2021], Graph Convolutional Network
(GCN) [Chen et al., 2022], and Convolutional Neural Net-
work (CNN) [Zhang et al., 2022b]. These works demonstrate
that a stronger relation encoding module can yield greater
overall benefits for the model. This motivates us to seek even
more powerful relation encoding modules.

In this work, we attempt to directly utilize transformer lay-
ers [Vaswani et al., 2017] as our downstream relation encod-
ing module. Ideally, the use of self-attention mechanisms
in transformers enables the model to capture dependencies
across the entire table sequences. This capability holds the
promise of significantly enhancing the model’s performance.
However, in reality, two formidable challenges impede the re-
alization of this technique. Challenge 1: Overly long table
sequences. It is known that, if assuming the input sentence
sequence length is n, the time and space complexity of the
transformer layer in the multi-head self-attention module is
O(n2). However, when dealing with table sequences, where
the length of the table itself is n2, the computational com-
plexity of the attention mechanism in the transformer layer
escalates to O(n4). This is unacceptable with limited com-
putational resources. Challenge 2: Unfair local attention
interaction. Long sequences encourage us to use local atten-
tion mechanisms, but in reality, the correlation between to-
kens is not confined to local areas. When each token only fo-
cuses on its immediate periphery, capturing information from
interactions with distant tokens becomes challenging.

To address the aforementioned challenges, we propose
a novel Table-Transformer (T-T) for ASTE’s table tagging
method. As shown in Figure 1, when directly utilizing
transformer-based sequence labeling models to process sen-
tences, although cost-effective, their performance suffers due
to their inability to fully capture word relations. However,
when encoding sentences into table sequences first and then
using transformer layers as the relation encoder can yield
good results, but the costs are intolerable due to the chal-
lenge of overly long sequences. Our approach, tailored for
table sequence inputs, introduces unique enhancements to the
original transformer layers, enabling the model to achieve
strong performance while maintaining relatively low compu-
tational costs. Specifically, to address the overly long table
sequences challenge, we propose a stripe attention mecha-
nism. It enhances the original global self-attention mecha-

nism by restricting it to operate only within a fixed-size win-
dow range (assumed to be a constant k). This modification
reduces the original time-space complexity from O(n4) to
O(k2n2). For the unfair local attention interaction chal-
lenge, we devise a novel loop-shift strategy that effectively fa-
cilitates information interaction between different windows.

Our contributions can be summarized as follows:
1) We observe the two-dimensional nature of table se-

quences and based on this insight, we have designed an en-
hanced transformer layer called T-T. It can effectively capture
local information within table sequences without relying on
external knowledge or task-specific designs.

2) We introduce two novel techniques aimed at effectively
addressing the two challenges encountered by the original
transformer when handling table sequences.

3) Experimental results show that our approach achieves
state-of-the-art performance within acceptable costs.

2 Related Work
Aspect Sentiment Triplet Extraction.
To meet the demand for a more detailed exploration of the
opinion contained within the text, [Peng et al., 2020] first
proposed and addressed the ASTE task in a pipeline man-
ner. Subsequently, more diversified techniques have been
proposed. MRC methods [Mao et al., 2021; Zhai et al., 2022;
Zou et al., 2024] treated the ASTE task as a form of machine
reading comprehension task. Generative methods [Zhang et
al., 2021; Gao et al., 2022; Gou et al., 2023; Mukherjee
et al., 2023] treated the ASTE task as an index generation
task. Span-based methods [Xu et al., 2021; Li et al., 2023b;
Zhao et al., 2024] extracted all possible spans and considered
the interplay of information at the span level.

Table tagging, as another vibrant research direction, was
initially proposed by GTS [Wu et al., 2020] to annotate sen-
timent triplets in a 2D table. Subsequent extensive work, de-
spite variations in the tagging schema, primarily focused on
how to capture sufficient relation information for the table.
EMC-GCN [Chen et al., 2022] utilized GCN to incorporate
rich syntactic information. BDTF [Zhang et al., 2022b] em-
ployed CNN to fully grasp word boundaries. STAGE [Liang
et al., 2023a] and SimSTAR [Li et al., 2023a] integrated the
learning of span-level information into the relation encoder.
MiniConGTS [Sun et al., 2024] proposed a new table tagging
scheme based on contrastive learning. In conclusion, the de-
sign of a more powerful downstream relation encoder stands
as a pivotal focus in the table tagging methods.

Efficient Transformer.
The transformer model architecture [Vaswani et al., 2017]
has become an indispensable tool in modern deep learning re-
search due to its effectiveness in the field of NLP [Tay et al.,
2022]. However, the self-attention mechanism and stacked
design logic of the transformer layers result in high com-
putational resource requirements. A large amount of previ-
ous work has focused on addressing this issue. Some efforts
attempted to reduce computational costs by modifying the
scope of self-attention calculations. These strategies include
sliding windows [Beltagy et al., 2020; Zaheer et al., 2020]
or different attention mechanisms at various layers [Zhang et
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Figure 2: a) shows the architecture of our table tagging model for ASTE. One of the core components is the configurable relation encoding
module. TL and BR donate the top-left and bottom-right vertex cells of the sentiment region, respectively. b) shows the architecture of our
proposed T-T module. In sub-figure c), the left half shows the query matrix and key matrix divided into 42 blocks, while the right half
represents the attention map, where the colored blocks indicate the dot product computations. In sub-figure d), the final outputs of different
layers shift between state (i) and state (ii). For a boundary token (marked with a red star), it attends to tokens 1, 2, and 4 in the output state
(i), and to tokens 5, 7, and 8 in the output state (ii).

al., 2023]. Other efforts have aimed at optimizing the compu-
tational efficiency of the self-attention matrix, such as apply-
ing a low-rank matrix [Wang et al., 2020], a kernel function
[Katharopoulos et al., 2020], or a focused attention module
[Han et al., 2023].

3 Preliminary
Task Definition.
Given a sentence X = {x1, x2, ..., xn} of length n, the aim
of ASTE is to extract all sentiment triplets T = {(a1, o1, s1),
(a2, o2, s2), ..., (a|T |, o|T |, s|T |)} from X . Here, a and o re-
spectively represent the aspect term and opinion term, which
are spans within X , while s denotes the corresponding senti-
ment polarity in {Positive, Neutral, Negative}.

Tagging Scheme.
We choose the boundary-based tagging scheme [Zhang et al.,
2022b; Ning et al., 2023] in our work. For sentence X , it is
mapped onto a two-dimensional table of size n×n, where the
vertical and horizontal axes represent aspect terms and opin-
ion terms, respectively. For an sentiment triplet (ai, oi, si)
in X , assuming that ai and oi are located at positions [x, y]
and [m,n] (x ≤ y,m ≤ n). They can form a rectangular
region in the table, with coordinates (x,m) as the top-left
corner and (y, n) as the bottom-right corner. We label the
cells on the boundary of this region as TL (top-left vertex)
and BR (bottom-right vertex), while all other cells are tagged
as None. When the sentiment elements are single words, the

TL and BR positions coincide. Subsequently, we label the
sentiment polarity of this rectangular region according to si.

Generalised Attention Mechanism.
For an input sequence C = {c1, c2, ..., cn} ∈ Rn×d, the gen-
eralised attention mechanism of Transformer [Vaswani et al.,
2017] treats the attention calculation over the entire sequence
as a directed graph G = {C,A}, where the adjacency ma-
trix A ∈ Rn×n is used to describe directed edges. For any
aij ∈ A (aij = 1 or 0), if aij = 1, it indicates that the query
ci attends to the key cj . Let N(ci) denote all neighbors of ci
(including itself), the attention calculation for ci is defined as:

ATTN(ci) = σ(Q(ci)K(N(ci))
T )V (N(ci)), (1)

where Q(·),K(·) : Rd → Rm and V (·) : Rd → Rd are the
query, key, and value functions, respectively. σ is a softmax
function.

4 Method
Our framework is shown in Figure 2, with the relation encod-
ing module configured as our T-T2.

4.1 Table Encoding
As illustrated in Figure 2 a), sentence X is first inputted into
a pre-trained language model (PLM) for encoding, yielding
the last hidden layer’s representation H = {h1, h2, ..., hn}.

2Codes are available at https://github.com/KunPunCN/T-T



Subsequently, we extract the features of aspects and opinions
from H ∈ Rn×d using two separate linear layers:

ha
i = Lineara(hi), ho

j = Linearo(hj), (2)

where ha
i ∈ Rd and ho

j ∈ Rd denote the aspect and opinion
representation, respectively. To ensure that the table captures
sufficient relation information, which is beneficial for down-
stream tasks, we followed the previous works [Chen et al.,
2022], employing Biaffine Attention [Dozat and Manning,
2017] to capture the relations distribution between words.
This process is formalized as:

rij = W1(h
a
i ⊕ (ho)j)⊕ ha

i
TW2h

o
j ⊕ Pooling(h[i,j]),

(3)
where ⊕ denotes the concatenation operation. The first two
terms represent the biaffine attention process, where W1 ∈
Rd×2d and W2 ∈ Rd×

√
d×d are learnable parameters. The

last term Pooling(h[i,j]) represents the maxpooling opera-
tion for the sentence from token hi to hj , which aims to
extract the span-level information. rij ∈ R2d+

√
d is the ta-

ble representation. Finally, a dense linear layer Lineard:
R2d+

√
d → Rd′

is used to compress rij’s dimension to d′:
r′ij = Lineard(rij). Therefore, the final representation of
the relation table is denoted as R ∈ Rn×n×d′

.

4.2 Relation Encoding with T-T module
The initialized relation table needs additional refinement of
the relations distribution through the proposed T-T module.
As depicted in Figure 2 b), we first use a simple convolutional
layer with a kernel size of 3 to capture spatial correlations,
and then feed the obtained representation R0 ∈ Rn×n×d′

into
the T-T module. The T-T improves upon the original trans-
former architecture by replacing the full attention mechanism
with an enhanced stripe attention mechanism and adding a
novel loop-shift strategy at the end of each layer.

Stripe Attention Mechanism.
Here we propose a novel stripe attention mechanism to ad-
dress the overly long table sequence challenge. As described
in the Preliminary section, the generalised attention mech-
anism treats the attention calculation as a directed graph
G = {C,A}. In the original transformer layer, a full attention
mechanism is used, which means A is the full ones matrix
and N(ci) = C in Formula (1). When the input is a sequence
C ∈ Rn×d′

, each token needs to interact with all other to-
kens and store all computation results, leading to a spatiotem-
poral complexity of O(n2). The derivation reveals that the
spatiotemporal complexity of the full attention layer scales
quadratically with the length of the input sequence. When
our input is the flattened table sequence R0 ∈ Rn×n×d′

, the
overall spatiotemporal complexity becomes O(n4). This is
intolerable for limited computational resources.

To maintain good performance while reducing the spa-
tiotemporal complexity, the proposed stripe attention mech-
anism partitions the table sequence R0 into multiple smaller
blocks, treating them as the smallest computational units. As-
suming each block has a width of b and a shape of Rb×b×d′

(where n is padded beforehand to a multiple of b), this re-
sults in a total of l2 (we define l = n

b ) blocks: O =

{o1, o2, ..., ol2} ∈ Rl2×d′
. It is worth noting that we apply

a cyclic shift operation on this sequence, which means that
for a block oi in this sequence, its left and right neighbors in
the attention map are oi±1 = o(i±1+l2)%l2 , and its upper and
lower neighbors are oi±l = o(i±l+l2)%l2 , where % is used
for the remainder calculation. Similar to Formula 1, for each
block oi, it’s attention calculation is defined as:

ATTN(oi) = σ(Q(oi)K(N(oi))
T )V (N(oi)). (4)

Per Formula 4, the query matrix and the key matrix require a
dot product operation to generate the attention map.

As shown in the left half of Figure 2 c), the query and key
matrices are also partitioned into multiple blocks. Accord-
ing to Formula 4, a dot product operation is needed for the
query matrix and the key matrix to generate the attention map.
In the full attention mechanism, each query block needs to
undergo a dot product operation with all key blocks, result-
ing in a complexity of O(n4). To enhance attention perfor-
mance while maintaining lower complexity, in our stripe at-
tention mechanism, each query block only selectively attends
to its neighboring blocks in the key matrix. As indicated by
the highlighted red boundary box in Figure 2 c), for a query
block, we define its neighbors in the 2D table space as all key
blocks within a square area centered around it. Assuming a
window width of w(w ≤ l) centered around each block for
attention, then the neighbors of block oi can be defined as:

N(oi) =


oi−⌊w

2 ⌋l−⌊w
2 ⌋, ... oi−⌊w

2 ⌋l+⌊w
2 ⌋,

oi−(⌊w
2 ⌋−1)l−⌊w

2 ⌋, ... oi−(⌊w
2 ⌋−1)l+⌊w

2 ⌋,
...

...
...

oi+⌊w
2 ⌋l−⌊w

2 ⌋, ... oi+⌊w
2 ⌋l+⌊w

2 ⌋

 ,

(5)
where w is odd. The number of N(xi) is |N(xi)| = w2,
which means that for each block (total of n2 tokens), it attends
to all blocks within a square area of w2, encompassing a total
of w2×b2 tokens. The overall complexity is O(n2×w2b2) =
O(w2b2n2). In addition, when w = l, N(xi) will include all
blocks, and stripe attention will degenerate into full attention.

An example of the stripe attention map is shown in the right
half of Figure 2 (c), where n = 4b and w = 3. Compared
to local attention, stripe attention allows tokens to attend to
a broader range of relevant positions in the 2D table space,
thereby enhancing learning capability, while only marginally
increasing complexity by a constant factor.

Loop-shift Strategy.
Here we propose an innovative loop-shift strategy to address
the unfair local attention interaction challenge. While the
stripe attention mechanism achieves a balance between atten-
tion scope and computational load, partitioning the table se-
quence into fixed block widths prohibits interaction between
different blocks. This presents an unfair scenario for tokens
situated at block edges, as their crucial neighbors may re-
side in different blocks. Therefore, inspired by [Liu et al.,
2021], we introduce a novel loop-shift operation to the ta-
ble sequence between different T-T layers. For the output of
any given layer, which has a shape of n × n, before feeding



it into the next layer, we first transform the positional distri-
bution of the table tokens. As illustrated in Figure 2 d), we
perform a two-step shift operation on the table with a width
of b

2 . Firstly, we chop the tokens from the top of the table,
forming a shape of b

2 × n, and move them to the bottom of
the table. Secondly, we chop the tokens on the left side of the
table, forming a shape of n × b

2 , and move them to the right
side of the table. This operation effectively cyclically shifts
the entire table to the upper-left direction by a distance of b

2 .
Similarly, for the next layer’s output, we need to cyclically
shift the entire table in the opposite direction, by a distance
of b

2 towards the bottom-right direction, to restore the table’s
distribution. Therefore, the shift operation occurs in pairs,
implying that the number of T-T layers in our model is even.

After passing through N layers of the T-T module, we ob-
tain the last layer’s representation RN ∈ Rn×n×d′

. Then a
weighted residual connection is used to derive the final repre-
sentation: R = W3R

N + (1−W3)R
0.

4.3 Triplet Decoding
During the decoding stage, we employ two separate full lin-
ear layers to predict the coordinates of all TL and BR, respec-
tively. The predicted results for each position are pTL

ij and
pBR
ij , respectively. Given the labels yTL

ij and yBR
ij , the corre-

sponding loss is:

L1 =

n∑
i=1

n∑
j=1

LCE(p
TL
ij , yTL

ij ) + LCE(p
BR
ij , yBR

ij ), (6)

where LCE is the cross entropy loss function. Subsequently,
for any pair of TL and BR, they form a candidate rectangle
when the TL is positioned to the upper left or coincides with
the BR. This rectangle is represented as:

rabcd = rab ⊕ rcd ⊕ pooling(rab, ..., rcd), (7)
where rab and rcd respectively represent the token at TL and
BR, rab, ..., rcd denote all tokens within this rectangle. Then,
a sentiment classifier Linears: R3d → R4 is utilized to pre-
dict the sentiment polarity of this region as one of { Pos, Neu,
Neg, Invalid}: psk = Linears(rabcd). Since each TL/BR may
form candidate rectangles with multiple BR/TL, the label In-
valid is additionally used to assess the validity of the candi-
date region. When the prediction psk is Invalid, the region
should be dropped. When the prediction psk falls within {
Pos, Neu, Neg}, the corresponding sentiment triplet can be
extracted based on the TL, BR coordinates, and sentiment po-
larity of the region. The loss of this process is:

L2 =

m∑
k=1

LCE(p
s
k, y

s
k), (8)

where m represents the number of candidate rectangles, psk
and ysk are the prediction and label, respectively, for the k-th
candidate rectangles. The overall loss is: L = L1 + L2.

5 Experiments
5.1 Experimental Settings
Datasets and Baselines.
We conduct our experiments on four benchmark datasets
[Peng et al., 2020; Xu et al., 2020], which are originally

Dataset 14res 14lap 15res 16res
#S #T #S #T #S #T #S #T

train 1,266 2,338 906 1460 605 1,013 857 1,394
dev 310 577 219 346 148 249 210 339
test 492 994 328 543 322 485 326 514

Table 1: Statistics of datasets, where #S and #T represent the number
of sentences and triplets, respectively.

derived from the SemEval challenge [Pontiki et al., 2014;
Pontiki et al., 2015; Pontiki et al., 2016]. The detailed statis-
tics are provided in Table 1. We categorize the comparison
baselines into five types: seq tagging, MRC-based, genera-
tive, span-based, and table tagging.

Implementation.
The proposed model contains a table encoder and a rela-
tion encoder, with hidden state dimensions of d = 768 and
d′ = 1024, respectively. We initialize the table encoder with
the BERT-base-uncased [Devlin et al., 2019] version. As a
relation encoder, our T-T module consists of two transformer
layers and utilizes the parameters from the last two layers of
the BERT-large version for initialization. The block width b is
7 for 14res, 15res, 16res and 5 for 14lap. The window width
w is 3. During training, we use the AdamW optimizer with an
initial learning rate of 3e-5 for all layers. The model is trained
for 15 epochs on RTX 3090 GPUs, with a batch size of 4. In
each epoch, we evaluate the training model on the develop-
ment set and save the best one. We use the sentence-level F1
score as the evaluation metric, which means that a sentence is
considered a true positive only when all triples within it are
correctly extracted. All the reported results are the average of
five runs with different random seeds.

5.2 Main Results
As shown in Table 2, we have the following observations:
Our model surpassed the best baseline, D2E2S, with improve-
ments of 0.66%, 0.02%, 2.75%, and 0.1% F1 scores on 14res,
14lap, 15res, and 16res, respectively, resulting in an over-
all average improvement of 0.89% F1 score. While D2E2S
introduced additional tools to provide syntactic dependency
information and developed task-specific unique modules, our
model solely utilized a streamlined architecture to effectively
capture local information within 2D table sequences.

Our model significantly outperformed all table tagging
methods. Compared to the best table-based model, Mini-
ConGTS, our model surpassed it by 0.2%, 0.07%, 3.46%,
and 0.01% F1 scores on 14res, 14lap, 15res, and 16res, re-
spectively, under the F1 scores, with an overall average im-
provement of 0.93%. This demonstrates that our T-T module
exhibits stronger relation encoding capabilities compared to
previous relation encoding modules.

Compared to initializing the T-T parameters using the last
two layers of BERT, “Random init.” indicates random initial-
ization of the T-T, which resulted in an average decrease of
0.70% F1 score in overall model performance. We attribute
this to the insufficient training data size to optimize the pa-
rameters of the two transformer layers, resulting in model un-
derfitting. On the other hand, initializing with the last two lay-



Model 14res 14lap 15res 16res Avg-F1P. R. F1 P. R. F1 P. R. F1 P. R. F1
Seq tagging

Peng-two-stage [Peng et al., 2020] 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21 50.22
TAGS‡ [Xianlong et al., 2023] 74.92 73.81 74.36 64.69 61.89 63.26 69.55 65.25 67.33 75.40 72.48 74.17 69.78

MRC-based
COM-MRC [Zhai et al., 2022] 75.46 68.91 72.01 62.35 58.16 60.17 68.35 61.24 64.53 71.55 71.59 71.57 67.07
Triple-MRC [Zou et al., 2024] / / 72.45 / / 60.72 / / 62.86 / / 68.65 66.17

Generative
GPT3.5‡ [Ouyang et al., 2022] 60.77 54.22 57.31 59.13 49.27 53.76 58.24 48.23 52.77 59.33 56.02 57.60 55.36

LEGO [Gao et al., 2022] / / 73.7 / / 62.2 / / 64.4 / / 69.9 67.55
MvP [Gou et al., 2023] / / 74.05 / / 63.33 / / 65.89 / / 73.48 69.19

CONTRASTE [Mukherjee et al., 2023] 73.6 74.4 74.0 64.2 61.7 62.9 65.3 66.7 66.1 72.2 76.3 74.2 69.3
Span-based

Span-ASTE [Xu et al., 2021] 72.89 70.89 71.85 63.44 55.84 59.38 62.18 64.45 63.27 69.45 71.17 70.26 66.19
D2E2S [Zhao et al., 2024] 75.92 74.36 75.13 67.38 60.31 63.65 70.09 62.11 65.86 77.97 71.77 74.74 69.84

Table tagging
GTS-BERT† [Wu et al., 2020] 68.09 69.54 68.81 59.40 51.94 55.42 59.28 57.93 58.60 68.32 66.86 67.58 62.60
EMC-GCN [Chen et al., 2022] 71.21 72.39 71.78 61.70 56.26 58.81 61.54 62.47 61.93 65.62 71.30 68.33 65.21

BDTF [Zhang et al., 2022b] 75.53 73.24 74.35 68.94 55.97 61.74 68.76 63.71 66.12 71.44 73.13 72.27 68.62
STAGE-3D [Liang et al., 2023a] 78.58 69.58 73.76 71.98 53.86 61.58 73.63 57.90 64.79 76.67 70.12 73.24 68.34

SimSTAR [Li et al., 2023a] 76.23 71.63 73.86 66.46 58.23 62.07 71.71 59.59 65.09 72.07 74.12 73.06 68.52
MiniConGTS [Sun et al., 2024] 76.10 75.08 75.59 66.82 60.68 63.61 66.50 63.86 65.15 75.52 74.14 74.83 69.80

T-T (Ours) 77.06 74.56 75.79 67.50 60.25 63.67 72.15 65.40 68.61 75.05 74.63 74.84 70.73
-w/ Random init. 76.24 73.44 74.81 66.61 60.19 63.24 71.17 65.39 68.16 74.60 73.19 73.89 70.03

Table 2: Main results on 4 datasets. †, ‡ denote that results are obtained from [Chen et al., 2022] and conducted by us, other results are from
the original papers. The best results are in bold, while the second best are underlined.

Ablation Settings #Param. #Training Cost #Interfere Cost 14res F1 14lap F1 15res F1 16res F1
Full Model 184.3M 5.93 /ms 1.44 /ms 75.79 63.67 68.61 74.84
-w/o Loop-shift 184.3M 5.53 /ms 1.33 /ms 73.63 62.35 66.38 72.73
-w/o Stripe Attention (SA) 184.3M 19.14 /ms 4.40 /ms 75.81 63.89 68.73 74.80
-w/ Normal layers 184.3M 19.03 /ms 4.32 /ms 75.74 63.81 68.52 74.68
-w/o T-T Relation Encoder 159.1M 4.74 /ms 1.12 /ms 71.42 60.28 64.67 70.51

Table 3: Ablation results on 4 datasets. “-w/o” means without. “/ms” donates the average computation time per sentence.

ers of pre-trained BERT incorporates certain semantic knowl-
edge, thereby improving the model’s effectiveness.

5.3 Ablation Study and Computational Cost
We conduct an ablation experiment to validate the proposed
module’s improvements in model performance and costs. As
shown in Table 3, since loop-shift and Stripe Attention (SA)
are parameter-independent mechanisms, removing them will
not alter the model’s parameters.

When the loop-shift strategy is removed, the training and
inference costs remain largely unchanged. However, the per-
formance decreased by 2.16%, 1.32%, 2.23%, and 2.11% F1
scores on the four datasets, demonstrating the crucial impor-
tance of information interaction across different blocks for
enhancing the overall model performance. When SA is re-
moved, the model degrades to full attention while retaining
the Loop-shift strategy, resulting in performance similar to
that of directly using normal layers. After removing SA,
we observe a slight improvement in model performance, but
there is a significant deterioration in both training and infer-
ence costs, which are 13.21/ms and 2.96/ms, respectively.
This demonstrates that the Stripe Attention mechanism not

Model 14res 14lap 15res 16res Avg-F1
GTS† 74.63 66.46 67.52 74.20 70.70

EMC-GCN† 76.33 67.94 67.26 74.15 71.42
STAGE† 77.87 69.70 70.60 79.98 74.54

MiniConGTS 79.60 73.23 73.87 76.29 75.75
T-T 79.97 73.40 74.35 80.11 76.96

Table 4: Results on the AOPE task. † donates that results are derived
from [Liang et al., 2023a]. The best results are in bold, while the
second best are underlined.

only greatly improves attention computation efficiency but
also effectively attends to relevant tokens. When the T-T re-
lation encoder module is removed, the model’s performance
significantly deteriorates, with respective drops of 4.37%,
3.39%, 3.94%, and 4.33%. This demonstrates the critical im-
portance of designing a stronger relation encoding module.

5.4 Auxiliary Experiment on Subtask
To further investigate the effectiveness of T-T, we conduct an
auxiliary experiment on the Aspect Opinion Pair Extraction
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Figure 3: The sensitivity of different hyperparameters.

(AOPE) task, which aims to extract all aspect-opinion pairs
from a sentence. By modifying the category width of the sen-
timent classifier Linears from 4 ({Pos, Neu, Neg, invalid})
to 2 ({Valid, invalid}), our model can directly address these
tasks without any additional modifications. As depicted in
Table 4, we chose the table tagging methods for comparison
to demonstrate the specific improvements of our model. The
results demonstrate that our T-T achieves comprehensive im-
provements across four datasets, with an average F1 score in-
crease of 0.96% compared to the best baseline, MiniConGTS.
This further validates the important role of T-T in capturing
and matching token relationships within the table sequences.

5.5 Hyperparameter Analysis

To investigate the impact of different hyperparameter set-
tings in the T-T module on model performance, we conduct
an additional experiment. The results, depicted in Figure 3,
demonstrate the effects when varying (a) the block width b,
(b) the window width w, and (c) the T-T layer count while
keeping other settings consistent with the main experiment.

In Figure 3 (a), as the block width b increases, the training
time cost exhibits a nearly quadratic growth, consistent with
the O(w2b2n2) complexity of the stripe attention mechanism
as stated earlier. Additionally, when the block width exceeds
7, there is minimal improvement in the model’s performance.
We attribute this to the observation range (b × w = 3 × 7)
approaching saturation, effectively attending to all important
tokens. The findings drawn from Figure 3 (b) are consistent
with Figure 3 (a) as the training time cost exhibits a quadratic
increase with the window width w. Additionally, when the
window width exceeds 3, there is minimal performance im-
provement. In Figure 3 (c), as the number of T-T layers in-
creases, the computational cost shows linear growth. When
the number of layers exceeds 2, there is a slight decline in
model performance, which we attribute to potential underfit-
ting caused by an excessive number of parameters.
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Figure 4: F1 scores for different aspect-opinion word distances on
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Figure 5: Performance of different word spans. Single. denotes
triplets with single-word aspects and opinions. Multi. A./Multi. O.
denote triplets with multiple-word aspects/opinions.

5.6 Further Analysis on Loop-shift Strategy
The loop-shift strategy is employed to address the challenge
of unfair local attention interaction. We conducted an addi-
tional experiment to validate this strategy further. As shown
in Figure 4, removing the loop-shift strategy results in a
significant performance drop of the model on long-distance
pairs. This demonstrates the effectiveness of the loop-shift
strategy, as removing it prevents tokens at the boundaries of
attention windows from fully capturing valuable information,
resulting in significant performance degradation.

5.7 Performance of Different Word Spans
We also compare the performance of T-T with other table tag-
ging methods across different word spans, including single-
word (Single.), multi-word aspect (Mutil. A.), and multi-word
opinion (Mutil. O.). The results are shown in Figure 5. Our
model outperforms previous methods in all settings, with the
improvement being more pronounced in the multi-word set-
ting. This highlights the ability of T-T to effectively capture
word boundary information.

6 Conclusion
In this paper, we propose a novel Table-Transformer (T-T)
approach, which uses enhanced transformer layers as the re-
lation encoding module for the table-based ASTE task. To
address the challenges posed by overly long table sequences
and hard local attention interaction, we respectively propose
our stripe attention mechanism and the loop-shift strategy.
The former reduces attention computation costs by focus-
ing on local tokens within the 2D table space, while the lat-
ter facilitates interaction between attention windows through
loop-shift operations. Extensive experiments on four datasets
demonstrate the effectiveness of our T-T over the best base-
lines. In future work, we aim to adapt this method to a broader
range of information extraction tasks, such as relation extrac-
tion and event extraction.
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