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Abstract—Depression is one of the most common mental ill-
nesses, and the symptoms shown by patients are different, making
it difficult to diagnose in the process of clinical practice and
pathological research. Although researchers hope that artificial
intelligence can contribute to the diagnosis and treatment of
depression, the traditional centralized machine learning methods
need to aggregate patient data, and the data privacy of patients
with mental illness needs to be strictly confidential, which hinders
machine learning algorithms’ clinical application. To solve the
problem of medical data privacy with depression, we implement
a study of federated learning to analyze and diagnose depression.
First, we propose a general multi-view federated learning frame-
work using multi-source data, which can extend any traditional
machine learning model to support federated learning across
different institutions or parties. Secondly, we employ later fusion
methods to solve the problem of inconsistent time series of
multi-view data. Finally, we compare the federated framework
with other cooperative learning frameworks in performance and
discuss the related results. The experimental results show that
in the case of participating in federated learning with enough
participants, the prediction accuracy of depression score can
reach 85.13%, which is about 15% higher than local training.
When the number of participants is small and the amount of data
is sufficient, the prediction accuracy of depression score can also
reach 84.32%, and the improvement rate is about 9%.

Index Terms—Federated learning, Depression, Data privacy,
Mobile device.

I. INTRODUCTION

DEPRESSION is a very common disease in real life. More

than 300 million people worldwide suffer from depres-

sion [1]. At present, the diagnosis of depression depends al-

most entirely on the subjective judgment of the doctor through

Manuscript received February 12 2021; revised July 20 2021; accepted
August 31 2021. This work was supported by the National Key R&D
Program of China (No.2018YFC0830804), the National Natural Science
Foundation of China under Grant 62002007, S&T Program of Hebei under
Grant 20310101D, Foundation of State Key Laboratory of Public Big Data
(No.PBD2021-18), and Fundamental Research Funds for the Central Univer-
sities. (Corresponding author: Hao Peng.)

X. Xu is with the State Key Laboratory of Public Big Data, Guizhou
University, Guizhou Guiyang, 550025, and with the School of Cyber Sci-
ence and Technology, Beihang University, Beijing 100191, China. (e-mail:
misslyysy@buaa.edu.cn).

H. Peng and L. Liu are with the School of Cyber Science and Tech-
nology, Beihang University, Beijing 100191, China. (e-mail: {penghao,
lz liu}@buaa.edu.cn).

M. Z. A. Bhuiyan is with the Department of Computer and Information
Sciences Fordham University JMH 334, E Fordham Road, Bronx, NY 10458
USA. (e-mail: mbhuiyan3@fordham.edu).

Z. Hao is with the Department of Mathematics, College of Science, Shantou
University, Guangdong 515063, China. (e-mail: zfhao@gdut.edu.cn).

L. Sun and L. He are with the Department of Computer Science and
Engineering, Lehigh University, Bethlehem, PA 18015 USA. (e-mail: {lis221,
lih319}@lehigh.edu).

communication with the patient and the relevant questionnaires

filled out. Hamilton Depression Rating Scale (HDRS) [2] and

Young Mania Rating Scale (YMRS) [3] are commonly used

evaluation criteria for doctors when diagnosing depression. In

order to better help doctors diagnose depression, researchers

analyze patient data by introducing machine learning technolo-

gies [4], [5]. But when using machine learning technology,

there is a contradiction between the performance of the model

and the protection of data privacy [6].

First, traditionally, the trainer implements centralized train-

ing by collecting a large amount of data [7], [8]. Although

Wang et al. [9] proposed a scheme to avoid data privacy

leakage in centralized learning, hospitals need to protect the

privacy of patients’ diagnosis data, so different medical insti-

tutions cannot gather and share data [10], which greatly affects

the accuracy of the model [11]. For example, in the work of

electrocardiogram [12], because a single medical institution

cannot collect enough high-quality data, the predictive ability

of the model cannot achieve the role of clinical assistance.

Second, although there are many privacy protection machine

learning algorithms [13], [14], which are difficult to achieve

good training results. The privacy protection machine learning

method [15] needs to increase the noise according to the

sensitivity of the algorithm’s intermediate product, so under

the limited privacy budget, the prediction performance of the

privacy algorithm is often poor. Third, due to the huge gap

between various medical institutions, the patient data they have

varies greatly. In order to deal with various situations, algo-

rithms and software are required to have a high generalization

ability, and it is difficult for the model to obtain sufficient

accuracy and specificity without data exchange.

To address the above data privacy leakage, privacy algo-

rithms, and data quality limitations, in 2016, Google proposed

a method called federated learning [16] to break the problem

of data silos due to data privacy. Each participant does not need

to centralize data to train a machine learning model, instead, it

aggregates the trained model in one place and uses federated

averaging technology to continuously optimize the model so

that the data can be available to all participating facilities.

However, Google has not implemented federated learning

in the medical application, most of the research [17], [18]

using the federated learning framework in the medical field

is based on the existing data of hospitals. It mainly includes

the diagnosis of the characteristics of patients with specific

diseases, reducing the cost of diagnosis and treatment, medical

image processing and other issues [11]. As mobile devices

become more and more popular, smart phones, wearable
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devices and other devices are also recording users’ information

all the time, which are a risk of privacy leakage [19], [20].

According to existing researches [21], as one of the most

important tools for information transmission in patients’ lives,

mobile phones can also be an important data source for disease

prediction. We believe that keyboard keystrokes, such as the

interval between two keystrokes, can be used as a form of

biometric identification to predict depression by analyzing the

keystroke habits of patients with depression. The typing speed

of depression patients is usually different from that of normal

people, which may be caused by emotional instability during

the onset of the disease [22].

Our work uses a virtual keyboard customized for mobile

phones to collect metadata (including key letters, special char-

acters, and phone accelerometer values). Using more than 1.3

million key-presses from 20 users, each of whom additionally

completed at least 1 patient health questionnaire. We regard the

user’s key-presses at least five seconds apart as the beginning

and no operation after five seconds of the last keypress as

the end of a session which is usually kept within 1 minute.

We use federated learning architecture at the session level to

model DeepMood [23], a deep learning architecture based on

late data fusion. However, in real application, the amount of

data held by different medical institutions is different, the

number of medical institutions in different regions is also

different. To this end, we divide our work into two parts.

Firstly, we distribute the data to different parties for training

according to the IID (Independent and Identically Distributed)

method, but the amount of data that each party has during

each training is not the same, and the number of parties

participating in the training is also different each time. This

setting simulates the real situation in different regions and

different medical institutions. At the same time, in order to

verify the influence of federated learning on model training, we

simulated a data island environment and set up local training

for each party that did not participate in federated learning.

Furthermore, we assign the data to each party according to

non-IID, and discuss the influence of non-IID on the predic-

tion results. The experimental results show that the model

prediction accuracy reaches 85.13% in the case of IID and

76.95% in the case of non-IID. Our code is open-sourced at

https://github.com/RingBDStack/Fed mood.

The contributions of this work can be included as follows:

• The first multi-source mobile health data application

guided by federated learning is proposed, which makes

full use of multi-view data to achieve privacy-preserving

federated depression detection.

• In the IID setting, increasing the number of parties

and the amount of data owned by parties will improve

the accuracy of the depression diagnosed, but it can

be affected by duplicate data. In the non-IID setting,

the model based on the late data fusion has stronger

robustness.

• Extensive experiments and analysis in medical depression

detection prove that federated learning has the advantage

of accuracy in the tasks of IID and non-IID data settings,

which can improve accuracy 12% averaged.

The rest of this article is organized as follows. The section II

section introduces the background of multi-view learning,

federated learning and privacy protection. At the same time,

we analyzed the principle of the late fusion model. The task

definition and the federated learning framework are described

in Section III. The data sources, experimental settings and

results are outlined in section IV. Finally, we summarize the

paper in section V.

II. BACKGROUND

A. Related Work

In this section, we introduce the related research results of

federated learning and multi-view learning, and discuss the

recent proposed federated multi-view learning.

Multi-View learning. Xu et al. [24] pointed out that multi-

view learning requires the use of one function to model one

perspective and uses other perspectives to jointly optimize

all functions. Cao et al. [25] used tensor product to process

multi-view data. Yao et al. [26] integrated CNN, LSTM, and

graph embedding to tackle the complex nonlinear spatial and

temporal dependency in a multi-view way. Shen et al. [27]

improved the task of accurate left ventricular segmentation

from heterogeneous data with cross-vendor, cross-center, and

multi-view in the ultrasonic telemedicine application combin-

ing IoT (Internet of Things) and ultrasound. Nan et al. [28]

divided the dataset into multi-view data according to the sensor

source and achieved good scalability in medical applications

through the consistency and complementarity of different view

data. Rokni et al. [29] used a wearable device combined

with a multi-view autonomous learning method to monitor

the user’s physical activity or medical complications in a

highly dynamic environment without a large amount of labeled

training data. Serra et al. [30] performed multi-view clustering

to subtype patients and explained how to combine clustering

and classification in a multi-view scenario to automatically

diagnose neurodegenerative diseases. In addition, some work

integrated multi-view into the process of deep learning [31]

and transfer learning [32], so as to help expand samples from

data.

Federated learning. Here we mainly refer to the medical

application of federated learning and some common federated

multi-view deep learning framework. Kim Y et al. [33] used

joint analysis of data from multiple hospitals to discover

the phenotype of a specific patient population under the

condition that no data left the local hospital. In the case

of federated learning, the algorithm can find the ”sickle

cell/chronic pain” characterization that cannot be found within

a single hospital, avoiding deviations in the results due to

population differences and small samples. Lee et al. [34]

proposed a privacy protection platform in the federated en-

vironment, which could find similar patients from different

hospitals without sharing patient-level information. Huang L

et al. [35] improved the performance of federated learning

for predicting mortality and length of stay by using feature

autoencoders and patient clustering. There are also some

studies that combine multi-perspective learning with federated

learning. Adrian Flanagan et al. [36] proposed the federated

https://github.com/RingBDStack/Fed_mood
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(c) Multi-view Machine layer.
Fig. 1. A comparison of different strategies for fusing multi-view data from the perspective of computational graph.

multi-view matrix factorization method and address cold-start

problem. Huang et al. [37] proposed FL-MV-DSSM, which

is the first general content-based joint multi-view framework,

which successfully extended traditional federated learning to

federated multi-view learning. Kang et al. [38] proposed the

FedMVT algorithm for semi-supervised learning, which can

improve the performance of vertical federated learning with

limited overlapping samples. Most current federated multi-

view learning researches focus on the solution of the cold

start of the recommendation system, however, our framework

uses data collected from mobile devices to solve medical mood

prediction problems.

Federated privacy protection. There are three main

ways [39] to protect data privacy in the federated learning

framework: Secure Multi-Party Computing (SMC) and Differ-

ential Privacy Mechanism (DP) and Homomorphic Encryption

(HE). Secure multi-party computing mainly uses secure com-

munication and encryption algorithms to protect the model

aggregation security of different participants in the federated

learning [40]. Since the federated framework does not need

to aggregate data but transmits gradients or model parameters,

SMC only needs to encrypt related parameters, which saves

a lot of encryption calculation cost. However, the improved

strategy based on SMC still adds extra time cost compared

with the traditional federated framework. How to balance the

time cost and the loss of data value over time has become a

problem to be solved. Differential privacy protects data privacy

by adding noise to the data source, while ensuring that the loss

of data quality is controllable [41], [42]. By adding noise to the

models or gradients uploaded by participants, the contribution

of personal data in the dataset is masked to prevent reverse

data leakage. Because of the problem that the data after adding

noise is still close to the original data, Sun et al. [43], [44] used

local differential privacy and noise-free differential privacy

mechanisms to decrease the risk of information exposure.

However, the introduction of differential privacy may reduce

the accuracy of the global model, and it will be difficult for

the central server to measure the contribution of each party

to encourage different parties to participate in the federation.

Homomorphic encryption can calculate the ciphertext data

without decryption [45]. In the federated framework, each

party can homomorphically encrypt the parameters they want

to upload, and the central server can complete the aggregation

process of the federated model without decryption. Since data

and models are not transmitted with plain text, there is no leak-

age of the original data level. However, local encryption and

decryption operations increase computing power consumption,

and the transmission of ciphertext also increases additional

communication cost.

B. Later Fushion Model

Since the dataset we use has the problem that the time series

under three views have different frequencies and cannot be

aligned, in this section, we introduce the later fusion strategy

adopted by the model to make the time series of the data

consistent [46], [25]. We set the output vector at the end of

the p− th view sequence as k(p), and let {k(p) ∈ Rdk}np=1 be

the multi-view data where m is the number of views.

Fully connected layer. We first consider the simplest way to

connect multi-views directly, ie, k = [k(1); k(2); ...; k(n)] ∈
Rd, where d is the total number of multi-view features,

and typically d = (2)ndk for one directional (bidirectional)

GRU. The connected hidden state k is inserted into the fully

connected neural network through a nonlinear function σ(·).
The feature interaction mode of the input unit is as follows:

p = relu(W (1)[k; 1]),

ŷ = W (2)p,
(1)

where W (1) ∈ Rk×(d+1) , W (2) ∈ Rc×h , h is the number of

hidden units, c is the number of classes, and the constant signal

“1” is to model the global bias. To simplify the illustration,

we only set a hidden layer as shown in Fig 1(a).

Factorization Machine layer. As shown in Fig 1(b), instead

of transforming the input with a nonlinear function, we directly

model the features of each input part as follows:

pc = Uck,

bc = WT
c [k; 1],

ŷc = sum([pc ⊙ pc; bc]),

(2)

where Uc ∈ Rf×d , Wc ∈ Rd+1, f is the number of factor

units, c denotes the c-th class, and ⊙ is the element-wise

multiplication.

Multi-view Machine layer. Only considering the second-order

feature interaction of the input data may not be comprehensive

enough. We nest interaction to the m-th order between m
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views to generate the final output ŷc for the c-th class in the

following way:

ŷc = β0+

m∑

v=1

dv∑

iv=1

β
(v)
iv

k
(v)
iv

+ · · ·+

d1∑

i1=1

· · ·

dm∑

im=1

βi(

m∏

p=1

k
(v)
iv

), (3)

where β is the global offset, the second part is the first-order

fusion, and the last part is the m-th order fusion. Next, the

output vector k
(v)
iv

is combined with the constant 1 as an

additional feature. The Eq. 3 can be rewritten as follows:

ŷc =

d1+1∑

i1=1

· · ·

dm+1∑

im=1

ωi1,··· ,im(

m∏

v=1

[k
(v)
iv

: 1]), (4)

where ωd1+1,...,dm+1 = β0 and ωi1,...,im = βi1,...,im , ∀iv ≤
dv . Next, we decompose the m-th order weight tensor ωi1,...,im

into k factors: C × U (1) × · · · × U (m). U (m) ∈ Rk×(dh+1) is

the factor matrix of the m-th view and C ∈ Rk×···×k is the

identity tensor. Finally, we transform Eq. 4 as follows:

ŷc =

dk+1∑

i1=1

· · ·

dk+1∑

im=1

(

h∑

f=1

m∏

v=1

[k
(v)
iv

: 1](iv)). (5)

As shown in the figure 1(c), we can simplify Eq. 5 as follows:

p(v)c = U (v)
c [k(v); 1],

ŷc = sum([p(1)c ⊙ ...⊙ p(m)
c ]).

(6)

where Uv
c ∈ Rh×dk+1 is the factor matrix of the v-th view

for the c-th class. ŷc is the final output for the c-th class.

Finally, we apply the dropout operation before merging

the output of each model to improve the performance of the

deep neural network by preventing the joint action of feature

detectors, thereby preventing overfitting. In the factorization

machine layer and the multi-view machine layer, we can still

directly calculate the gradient of the model parameters like the

operation of the fully connected layer. Thus, the loss function

of the final prediction result can be back-propagated back to

each initial input view after fusion.

III. IOT-DATA SILO ISLAND PROBLEM AND METHODOLOGY

In this section, we introduce how to use IoT-data to train

local and federated learning models. We first discuss the

reasons for task definition, and then introduce the federated

learning framework proposed by Google.

A. Problem Description

In the absence of federated learning frameworks, medical

institutions can only use local datasets without interactive

processes when using machine learning algorithms to build

models for disease diagnosis, medical imaging research, and

so on. We retain the local learning model as a comparison

to measure the improvement effect of the federated learning

algorithm on the multi-views heterogeneous data training

model. We have conceived the following three situations.

At first there were several hospitals in a city {H1, ..., Hm}.
Assuming that patients with bipolar I disorder, bipolar II

disorder, and normal people who are suspected of being sick

Fig. 2. The architecture of federated learning. Firstly, the participating parties
have data on normal people, bipolar I and bipolar II users, and do not interact
with different parties. At the beginning of each communication round, the
server will assign the global model to all participating parties in this round.
Next, all activated parties will train the local model through its own mobile
health data and upload it to the server. Finally, the server updates the global
model according to the uploaded local model.

will go to different hospitals for testing depression scores, the

hospital will also record the patient’s mobile terminal data.

From a certain moment, we stop the collection of data by

hospitals. At this time, each hospital has a fixed amount of

data Dx. Each medical institution will first use its own local

data to train the model and test its effect. The results obtained

at this time are generally difficult to use as a reference for the

diagnosis of depression. Each participant will cooperate with

other medical institutions for federated training, and in this

process, new medical institutions will continue to participate.

Without reducing the total number of communication rounds,

we increase the degree of parallelism to test the changes in

the prediction effect.

At a certain moment, the number of hospitals in a certain

city is constant with n {H1, ..., Hn}, and no new hospitals

will be established in this city for a certain period of time.

Patients will go to different hospitals on average as described

above, and all medical institutions will predict depression

mood through local training and federated learning. Initially,

each hospital has a small amount of data Da. As patients

continue to come to the hospital for treatment and review,

the hospital will continue to increase the amount of data

Dx. When the data added by each hospital reaches a mark

value Df , the participants will restart the training in hopes of

improving the prediction effect.

In the actual medical environment, the data owned by each

hospital must be non-IID. We assume that patients with bipolar

I disorder, bipolar II disorder and normal people who are

suspected of being sick will only go to a specific hospital

Hx for treatment. Each medical institution has a different

amount of patient data, and the serious condition of patients

is inconsistent, resulting in extreme data distribution. On this

basis, we detect the impact of this extreme distribution data for

the accuracy of the model compared to IID data. The specific

data division is introduced in section IV-C1.

B. Federated learning

Due to the privacy issues of patient health data stored

in hospitals, we cannot use these data for centralized ma-

chine learning. So federated learning is a good solution to
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tackle the problem of data privacy, during the training of the

federated learning model, the data owned by each hospital

participating in the model training collaboration can be saved

locally without uploading. Each hospital uses its own data to

download the model from the server for training, and upload

the trained model or gradient to the server for aggregation,

and then the server sends the aggregated model or gradient

information to each hospital. Considering the communication

cost, connection reliability, and other issues, we adopt the

model average method for training. Assuming that there are K
hospitals participating in federated learning when the global

model parameters are updated in the t round, the K-th

participant calculates the local average gradient of the current

model according to Eq. 7, and the server aggregates these

gradients and uses them to update the global model according

to Eq. 8.

gk = ∇Fk(ωt), (7)

ωt+1 ← ωt − η

K∑

k=1

nk

n
gk, (8)

where gk is the average gradient of the current local model

ωt, and η is the learning rate.

According to Eq. 9, each hospital uses local data to perform

one (or more) steps to calculate the gradient descent, the ex-

isting model parameters locally and sends the locally updated

model parameters to the server. The server then calculates the

weighted average of all the transmitted models according to

Eq. 10 and sends the aggregated model parameters to each

hospital.

The literature [16] shows that compared with the purely

distributed SGD, the improved scheme can reduce the amount

of communication used by 10-100 times, and can choose the

update optimizer of the gradient other than SGD.

∀k, ω
(k)
t+1 ← ωt − ηgk, (9)

ωt+1 ←
K∑

k=1

ω
(k)
t+1, (10)

where ωt is the existing model parameter of the local client.

In this work, we use the federated learning framework

to implement the emotion prediction through multi-views

heterogeneous data collected by the mobile terminal and focus

on studying the influence of the number of participants and the

amount of data in IID data and the model accuracy declined of

non-IID data. We first fix the number of parties participating

and change the amount of data owned by each party in the

experiment. Next, we keep the amount of data owned by each

party and increase different parties with the same amount of

data to participate in the federated learning. Finally, we divide

the dataset unequally to form a non-IID scenario to study the

change of model accuracy.

Algorithm 1: Federated Averaging. The K is the total

number of party, M is the local minibatch size, E is

the number of local epochs, and η is the learning rate.

Server executes:

Initialize ω0

for each round t = 1, 2, . . . do

t← random choose(1,K)
Ct ←(random set of t parties)

for each party k ∈ Ct in parallel do

ω
(k)
t+1 ← localtraining(k, ωt)

ωt+1 ←
∑K

k=1
nk

n
ω
(k)
t+1

Localtraining(k, ωt) : //k parties training in parallel

for each local epoch i from 1 to S do

Dm ←(split Dk into batches of size M randomly)

for each batches b from 1 to B = nk

M
do

ω
(k)
b+1 ← ω

(k)
b,i − η∇Fk(ωt)

return ω
(k)
t+1 = ω

(k)
B,S to server

IV. EXPERIMENTS

In this section, we introduce how to use data generated by

personal mobile devices to train deep learning models. We

assume that the hospital allocates a special mobile device to

each user to collect alphanumeric characters, special charac-

ters, and accelerometer values used in the session, and the

hospital performs a weekly HDRS test for patients. Due to

the particularity of the diagnosis of depression, patients may

go to multiple hospitals to try and seek treatment, and some

hospitals may have the same patient data.

A. Dataset

The data used in the experiment comes from a real ob-

servation study based on a free mobile app named BiAffect.

It should be noted that the data source of BiAffect is from

users in the United States. Due to the large differences in

input methods with different languages, it may not apply to

countries that do not use English as their mother tongue. In

the data collection stage, the researchers provide the users with

a special Android smartphone. The special smartphone uses a

customized virtual keyboard to replace the default keyboard, so

as to collect the metadata input by the user without affecting

the operation in the background. The metadata collected by

the keyboard includes the user key input time, the number

of keystrokes, and the phone accelerometer value. The three

types of metadata collected are as follows:

Alphanumeric characters. In order to protect user privacy,

BiAffect did not collect specific alphanumeric characters. It

only collected the duration of the keypress, the duration before

the last keypress was pressed, and the distance from the last

key to the coordinate axis on the horizontal and vertical axes.

Special characters. Due to special characters having far fewer

keystrokes than alphanumeric characters, BiAffect performed

one-hot encoding for operations including space, backspace,

and keyboard switching.
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Accelerometer value. The accelerometer records every 60ms

during every activated session. Because different users have

different typing speeds, the accelerometer values are more

densely recorded than alphanumeric characters.

We define a session as a duration that begins with lasting five

or more seconds since the last keypress and lasting until five

or more seconds passed between keypresses. Due to the user

typing habits, the duration of the session is generally less than

one minute.

All depression patients receive the Hamilton Depression

Rating Scale (HDRS) [2] and the Young Man Mania Scale

(YMRS) [3] which are the effective assessment questionnaire

for bipolar disorder diagnosis once a week. After collecting

all the tested patients, we divide the data with bipolar patients

and the control group data with normal participants. There

are 6 participants suffering from bipolar I disorder, including

severe episodes ranging from bipolar disorder to depression,

6 participants suffering from bipolar II disorder, including

clinical manifestations of mildly elevated mood between mild

manic episodes and severe episodes, and 8 participants are

diagnosed as normal users. Since the evaluation process only

relies on the communication between the patient and the doc-

tor, and the indicators given by the evaluation scale, the results

of the diagnosis are not necessarily reliable. Therefore, we

try to predict the occurrence of depression from an objective

perspective by recording real-time data of patients.

B. Experimental Setup

Our model is implemented using Keras with Tensorflow as

the backend. All experiments are conducted on a 64 core Intel

Xeon CPU E5-2680 v4@2.40GHz with 512GB RAM and 1×
NVIDIA Tesla P100-PICE GPU. We use RMSProp [47] as the

training optimizer. We retain sessions with keypresses between

10 and 100, and finally generate 14960 samples. Each user

contributes the first 80% sessions for training and the rest for

validation.

TABLE I
PARAMETER CONFIGURATION.

Parameter Value

DNN communication rounds 400
DNN local epochs 15

DFM communication rounds 300
DFM local epochs 20

DMVM communication rounds 400
DMVM local epochs 15

Batch size 256
Learning rate 0.001

Dropout fraction 0.1
Maximum sequence length 100
Minimum sequence length 10

We set the parameters based on experience and some exper-

imental comparisons, including the number of communication

rounds, the number of local epochs, batch size, learning rate,

and dropout rate. We consider sessions with the HDRS score

between 0 and 7 (inclusive) as negative samples (normal) and

those with HDRS greater than or equal to 8 as positive samples

(from mild to severe depression).

TABLE II
THE ACCURACY OF THE COMPARED MODELS UNDER DIFFERENT LOCAL

EPOCHS AND COMMUNICATION ROUNDS. WE SHOW THE BEST RESULTS

WITH BOLDFACE.

Communication Rounds
100 200 300 400 500

Model local epochs

DNN

5 79.19 82.95 84.35 85.01 84.42
10 80.05 83.58 84.98 85.25 84.68
15 83.35 86.18 86.35 86.38 85.21
20 84.72 84.72 85.21 83.88 83.72

DFM

5 81.88 84.35 84.91 84.81 84.62
10 81.82 84.32 84.48 84.48 84.65

15 83.38 85.18 84.68 84.48 83.88
20 84.02 85.25 85.31 85.01 84.15

DMVM

5 78.92 84.25 85.31 86.85 85.18
10 81.39 84.68 86.01 85.78 84.72
15 82.61 84.48 85.68 86.95 83.95
20 81.01 81.98 82.88 82.45 82.55

In order to study the influence of local epochs parameters,

we evenly distribute the training dataset to 8 participants for

testing. The results are shown in the Table II, we can find: (1)

As the number of communication rounds increases, the accu-

racy shows a trend of first rising and then a slight decrease.

(2) Our work is different from the results of Zhao et al. [48].

A large number of local epochs can significantly improve the

effect of federated learning. However, when epochs ≡ 20, the

accuracy of DMVM in any communication round shows a

downward trend. These results show that increasing the local

epoch can make the training more stable and speed up the

convergence speed, but it may not make the global model

converge to a higher accuracy level. In other words, over-

optimizing the local datasets may cause performance loss. (3)

In the first 300 epochs, the fusion efficiency of DFM is higher

than that of DNN and DMVM, which shows the improvement

effect of the fusion layer, and DFM achieves better local

minima of loss functions in some results. Compared with

centralized learning, due to the sharp reduction of the amount

of local data, the effect of DMVM fusion of multi-view

and multi-level features will be affected to a certain extent.

Because the three models get different results when the local

epochs are 15 and 20, we perform the parameters separately,

as shown in Table I.

C. IID Experiments

1) Compared Methods: We compare FedAVG with the fol-

lowing methods, each of which represents a different strategy

for data interaction.

Local Training: Local training means that each party only

uses its data for training, without any interaction with other

parties.

CDS [49]: Collaborative data sharing is a traditional central-

ized machine learning strategy, which requires that each party

uploads its patient data to the center server for training.

IIL [49], [50]: Institutional incremental learning is a serial

training method. Each party transfers its model to the next

participant after training finishes, until all have trained once.

CIIL [49], [50]: Cyclic institutional incremental learning

repeats the IIL training process. It keeps consistent with the
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(a) Alphanumeric characters. (b) Special characters. (c) Accelerometer value.

Fig. 3. Visualization of labeling with TSNE for three views

number of federated learning local training epochs and looping

repeatedly through the parties.

In each experiment, the models we compared are summa-

rized as follows:

DMVM: The proposed DeepMood architecture with a multi-

view machine layer for data fusion.

DFM: The proposed DeepMood architecture with a factoriza-

tion machine layer for data fusion.

DNN: The proposed DeepMood architecture with a conven-

tional fully connected layer for data fusion.

In this work, for the IID setting, we randomly assign each

client a uniform distribution of three data types: normal users,

bipolar I disorder patients, and bipolar II disorder patients. The

specific methods as follows: 1. The number of participants

owned data remains unchanged, and the number of parallel

participants is increasing. The amount of data owned by each

party is fixed at 1500, and the number of hospitals participating

in the training gradually increases from 4. We test the training

effect of up to 24 parallel participants. 2. The number of

parallel participants remains unchanged, and the amount of

data owned by each participant is increasing. We set the

number of concurrent participants to 8 to be consistent with

the experiment of setting hyperparameters. The amount of data

owned by each party gradually increases from 100, and we use

about 25% (3000) of the total data as the maximum value of

the experiment. To make the results of the experiment more

stable, we conduct each group of experiments five times and

average the results.

2) Evaluation criteria: In order to evaluate the influence of

federated learning and local training on the prediction results,

we adopt the following measures: Accuracy is one of the

most frequently used criteria, which represents the ratio of

the number of correctly predicted samples to the total number

of predicted samples. In the federated learning experiment, the

central server can test the final global model with its own test

dataset. In the local training experiment, we regard the local

data as a whole and compare the number of samples correctly

predicted by each participant with the test dataset.

3) Experiment Result: Table III shows the mood prediction

effect of increasing parallel parties. Since local training has

no interactive process and the amount of data owned by each

participant is constant, the final result has always been between

73% and 75%. In most cases, CDS can achieve the best

prediction effect, but the best effect of the DMVM model

using CIIL can reach 85.29%, which is about 18% higher

TABLE III
ACCURACY PERFORMANCE OF THE IID EXPERIMENTS I. WE SHOW THE

BEST RESULTS WITH BOLDFACE.

Number of party Metrics DNN DFM DMVM

4

Local Training 74.31±1.96 75.14±0.84 73.43±0.33
CDS 82.21±2.15 81.44±1.03 79.53±0.63

FedAVG 81.14±0.91 82.55±1.22 80.95±0.80
IIL 79.09±0.93 78.51±0.96 77.81±0.55

CIIL 81.12±1.25 81.07±1.13 80.98±0.94

8

Local Training 73.44±0.61 73.37±0.91 72.67±0.72
CDS 82.94±0.28 83.66±1.25 82.95±0.20

FedAVG 82.83±1.23 82.66±0.65 81.56±1.31
IIL 78.99±0.90 77.74±1.08 77.51±1.85

CIIL 82.66±0.68 82.88±1.00 81.84±2.73

12

Local Training 74.06±0.52 74.44±0.44 72.38±0.55
CDS 83.52±0.97 85.26±0.90 83.09±0.38

FedAVG 84.62±0.56 83.04±0.84 82.87±1.80
IIL 79.71±0.60 78.27±1.70 77.03±1.34

CIIL 83.24±2.42 83.60±1.44 84.09±1.49

16

Local Training 73.56±0.22 73.79±0.87 72.48±0.75
CDS 84.63±1.44 85.07±0.52 84.78±1.04

FedAVG 83.83±1.23 83.88±0.65 82.81±1.31
IIL 78.84±0.48 80.39±0.99 78.27±1.12

CIIL 83.52±1.80 83.58±2.56 85.19±1.98

24

Local Training 73.88±0.55 74.55±0.52 72.40±0.52
CDS 86.42±0.54 85.97±0.50 84.79±1.28

FedAVG 85.13±0.53 84.29±0.98 83.74±1.10
IIL 79.45±2.92 81.44±0.72 79.40±1.70

CIIL 84.93±0.47 84.87±0.94 85.29±0.83

than local training without updating model weight. Table IV

shows the accuracy performance of increasing the amount of

data for each participant. The accuracy of the local training

without weight update and FedAvg training is increasing at the

same time. When the amount of data for each party is small

(data<1000), the improvement effect of FedAvg compared

with local training can reach up to 16.7%. When the amount

of data for each participant is large enough (data=3000), the

FedAvg enhancement effect is up to 10.5%, which is a small

difference from the result of CIIL.

4) Discussion: As shown in Table III, when the amount of

data held by each party is constant, we can find that CDS can

always maintain the best effect on DNN and DFM models in

most cases, but in the DMVM model, CIIL has the best result.

We can see from Table IV that when the amount of data is

1000, the data of each party is not repeated, and the federated

learning framework has achieved the best results under the

three models. When the amount of data is 1500, the model

is affected by repeated data, the prediction performance of

FedAVG declined slightly, but the prediction effect of CIIL

is still rising. Since the prediction accuracy of CIIL mostly

depends on the effect of the last trained party model, we
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TABLE IV
ACCURACY PERFORMANCE OF THE IID EXPERIMENTS II. WE SHOW THE

BEST RESULTS WITH BOLDFACE.

Number of data Metrics DNN DFM DMVM

100

Local Training 64.20±0.57 62.30±1.79 61.80±3.40
CDS 74.39±0.48 73.66±1.17 73.19±0.66

FedAVG 71.76±1.76 71.72±1.93 70.26±2.01
IIL 62.95±1.70 67.22±2.41 61.26±3.71

CIIL 69.58±2.44 73.04±1.43 70.43±1.77

500

Local Training 68.78±1.20 68.94±0.66 68.28±0.37
CDS 79.82±1.65 78.36±0.42 78.11±0.85

FedAVG 78.65±0.77 80.44±0.32 78.10±1.21
IIL 73.89±2.92 72.72±2.57 72.44±0.73

CIIL 76.12±0.72 80.58±1.73 77.71±0.42

1000

Local Training 71.92±1.39 72.83±1.42 71.29±0.50
CDS 82.04±1.78 80.98±1.04 81.51±0.85

FedAVG 83.09±1.54 82.59±0.45 82.67±1.02

IIL 76.47±2.35 77.07±0.59 76.42±1.46
CIIL 82.66±0.51 81.83±1.45 81.65±0.61

1500

Local Training 72.67±0.61 73.37±0.91 73.44±0.72
CDS 82.94±0.28 83.66±1.25 82.95±0.20

FedAVG 82.83±1.23 82.66±0.65 81.56±1.31
IIL 78.99±0.90 77.74±1.08 77.51±1.85

CIIL 82.79±0.68 82.88±1.00 81.84±2.73

2000

Local Training 75.16±1.03 75.58±0.61 73.95±0.70
CDS 83.31±1.70 84.90±1.24 83.49±0.48

FedAVG 84.00±0.85 83.59±1.52 83.03±1.08
IIL 80.02±1.95 79.20±1.26 79.68±0.70

CIIL 83.43±0.37 84.70±1.61 83.74±1.29

3000

Local Training 77.26±0.98 78.72±0.55 75.91±0.58
CDS 83.77±0.46 86.12±1.32 85.03±0.35

FedAVG 84.32±1.12 84.30±0.49 83.90±1.38
IIL 81.45±2.35 81.30±1.19 80.18±0.21

CIIL 84.73±2.62 84.43±1.12 85.01±1.11

guess that repeated input data will seriously affect the fusion

interaction mode of the multi-view machine layer. Compared

with CDS, the last participation of CIIL has less repeated data,

and the federated framework will be affected by repeated data

due to the last epoch of global model updates. Therefore, CIIL

has a stronger anti-interference ability, and the best accuracy

result can eventually reach 85.29%. As shown in Table IV,

when the number of data is 1500, since the amount of data

owned by each party exceeds the total amount of data, each

user has duplicate data, which leads to a slight decrease of

accuracy. When the amount of data owned by each party is

1000, the data owned by each participant is unique at this time,

and the improvement effect of federated training is about 15%,

which is the best performance in all experiments. Table II

shows if each participant can average divide into the total

dataset, DMVM can achieve the best result of 86.95%. At the

same time, it can be seen from Table III that when the data

owned by the participants is duplicated, the prediction effect

of DMVM is the worst, and DFM can still maintain a better

prediction performance, but it is slightly lower than DNN.

We consider that repeated input data will seriously affect the

fusion interaction mode of the multi-view machine layer.

D. Non-IID Experiments

In the real medical environment, the data owned by the

hospital should be non-IID. In this subsection we introduce

the methods and results of non-IID experiments.

1) Compared Methods: In the real medical environment,

the data owned by the hospital should be non-IID. In this

subsection, we introduce the methods and results of non-

IID experiments. The models we compared are shown in

TABLE V
ACCURACY PERFORMANCE OF NON-IID EXPERIMENT AND IID. WE

SHOW THE BEST RESULTS WITH BOLDFACE.

Types of data Metrics DNN DFM DMVM

non-IID

CDS 83.93±1.01 82.28±1.04 83.18±0.30

FedAVG 76.95±1.66 71.59±2.97 76.84±1.74
IIL 68.81±3.04 68.81±0.98 70.32±0.23

CIIL 73.16±2.21 74.16±1.53 76.51±1.45

IID

CDS 82.21±2.15 81.44±1.03 79.53±0.63
FedAVG 81.14±0.91 82.55±1.22 80.95±0.80

IIL 79.09±0.93 78.51±0.96 77.81±0.55
CIIL 81.12±1.25 81.07±1.13 80.98±0.94

Sec. IV-C1. For non-IID settings, we totally have 8 normal

users’ personal data, 6 bipolar I disorder patients data, 6 bipo-

lar II disorder patients data. There are 4 hospitals participating

in the training experiment, and each hospital has two normal

users data, one bipolar I disorder patients data, and one bipolar

II disorder patients data. Due to the amount of data generated

by patients is different, so the amount of data owned by

hospitals is also inconsistent.

2) Evaluation criteria: Our evaluation criteria are consis-

tent with Sec. IV-C2, and accuracy is still used as the criterion

for evaluating mood prediction.

3) Experiment Result: As shown in Table V, the prediction

accuracy of CDS under the non-IID setting is far higher than

the distributed cooperative learning method, and the federated

learning prediction accuracy of the three models decreased by

5.2% (DNN), 13.3% (DFM), and 5.1% (DMVM). We analyze

that the nature of the extreme distribution of non-IID data

is the reason for the decline in prediction effect. We also

find that the prediction effects of the two models that do not

use nonlinear functions for feature interaction are significantly

different under the non-IID setting. Due to the large difference

in the number of patient data owned by each party and

the completely different patient data types, the second-order

feature interaction fails to integrate all features well, and the

log also shows that its prediction accuracy fluctuates more than

DMVM.

4) Discussion: For non-IID experiments, CDS can still

maintain about 83% prediction accuracy, while federated

learning and CIIL both show different degrees of accuracy

drop. However, under the non-IID setting, the federated learn-

ing framework surpasses CIIL on the DMVM model, which

proves the superiority of the multi-view machine layer under

the federated framework. At the same time, for the non-IID

experiment, we also find that the accuracy of the validation

set is distributed between 50% and 75% during the training

process in the first hospital, while the training logs of other

hospitals show that the accuracy of the validation set is almost

above 90% after each epoch of local training. Furthermore, in

order to test the influence of different views on the model

prediction accuracy, as shown in Fig 3, we visualize the data

of each view. We find that the distribution of Spec. is too

scattered, and it is difficult to distinguish normal people from

patients in special operations such as backspace, space, and

keyboard switching. Alph. and Accel. have better categorizable

results from a single view. These also illustrate from the other

hand that there are obvious differences in typing patterns
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between normal people and depressed patients, including the

duration of keystrokes. And judging from the distribution of

accelerometer values, the way depression patients use mobile

phones is also different. In summary, it is necessary to merge

data from different views as input.

V. CONCLUSION

Due to the fact that the patient’s medical data must be kept

strictly confidential, the limitation of sharing data has led to

the problem of data islands, and federated learning plays a

key role in solving the problem of data islands. In this work,

we use the data records generated by the user when typing

on the mobile phone and the user’s HDRS score to predict

depression through the DeepMood architecture. For IID data,

with different amounts of data, the accuracy of federated

learning is about 10%-15% higher than that of local training

without weight update. For non-IID data, accuracy is only

reduced by 13% at most. In order to protect the privacy of

patients, the slight decline of model accuracy is completely

acceptable. However, we have not yet dealt with the weights

of participants with poor performance in the training. Our

next work is to consider constructing an appropriate incentive

mechanism to weaken the influence of participants with poor

contribution on the overall prediction effect, so as to fully

reduce the influence of non-IID data on the model.
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