
Enhanced Pre-training for Recommendation via Hypergraph
Structural Entropy

JINGYUN ZHANG, Beihang University, China
HAO PENG∗, Beihang University, China
MINGDAI YANG, University of Illinois at Chicago, USA
PHILIP S. YU, University of Illinois at Chicago, USA

Research on recommender systems plays a crucial role in alleviating information overload amid the current proliferation of data
while diminishing user decision-making and transaction costs within intricate environments. The prevailing recommendation
models currently rely on graph-based methods, such as GCN, GAT, HGNN, etc., which are constrained by the sparsity of
training data and the underutilization of graph structures. In this work, we present EPRHSE, an Enhansed Pre-training
framework for Recommendation based on Hypergraph Structural Entropy, which encodes the topology of the recommender
system. We begin by designing two forms of pre-training tasks to capture the heterogeneous relationships among users or
items. These pre-training tasks build multiple auxiliary task hypergraphs, compensate for the sparse interactions between
users and items, and unveil latent information. Secondly, we introduce a new method for optimizing the hypergraph structure
entropy. The method involves converting the hyperedge information in the hypergraph to form a high-dimensional encoding
tree. Hypergraph structure entropy helps decode the essential structure of the recommendation bipartite graph and enables
hierarchical clustering of users or items. Thirdly, we propose a hypergraph pooling trainingmethodology incorporating pooling
and unpooling layers into the hypergraph convolutional network to amalgamate high-order information. By transferring
advanced community insights to primary users or items, the process of social diffusion is enhanced, consequently refining node
embedding quality. Compared with thirteen representative recommendation approaches on five real datasets, comprehensive
experiments demonstrate the advantages of the effectiveness of EPRHSE.

CCS Concepts: • Information systems→ Recommender systems; • Computing methodologies→ Artificial intelli-
gence.

Additional Key Words and Phrases: Recommender System, Structure Entropy, Hypergraph Learning, Multitask Pre-training,
Hypergraph Pooling

ACM Reference Format:
Jingyun Zhang, Hao Peng, Mingdai Yang, and Philip S. Yu. 2025. Enhanced Pre-training for Recommendation via Hypergraph
Structural Entropy. 1, 1 (October 2025), 47 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗This is the corresponding author.

Authors’ addresses: J. Zhang, School of Cyber Science and Technology, Beihang University, No. 37 Xue Yuan Road, Haidian District, Beijing,
100191, China; email: zhangjingyun@buaa.edu.cn; H. Peng, School of Cyber Science and Technology, Beihang University, No. 37 Xue Yuan
Road, Haidian District, Beijing, 100191, China; email: penghao@buaa.edu.cn; Mingdai Yang, Department of Computer Science, University of
Illinois at Chicago, IL 60607, USA; e-mail: myang72@uic.edu; P. S. Yu, Department of Computer Science, University of Illinois at Chicago,
Chicago 60607, IL; email: psyu@uic.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2025/10-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • J. Zhang et al.

1 INTRODUCTION
Information and communication technologies have intensified the impact of information overload. The prolifer-
ation of multiple platforms disseminating the same content overwhelms individuals with abundant available
information, making it challenging to utilize relevant information effectively [23, 38]. Due to a lack of control
over information, individuals are prone to being overwhelmed by the sheer volume of information, leading to
information fatigue, conflicts, stress, and anxiety, ultimately impacting productivity and innovation [37, 64, 74].
With the rapid advancement of e-commerce and social media, recommender systems are widely utilized in various
industries such as e-commerce websites [13, 49], audio-visual platforms [17], and social media enterprises [30, 82].
Recommender systems leverage historical data on user interests, behaviors (purchases, searches, clicks, views,
etc.), and item evaluations to recommend suitable products to users, filtering out essential information fragments.
The core of recommender systems lies in retrieving items from user interaction history and context and modeling
user interest preferences [47, 100]. Hence, researching recommender systems is of paramount importance in
alleviating issues related to information overload [1, 2, 6], information cocoons [16, 46], reducing transaction
costs for users when selecting products in complex big data environments, and enhancing the quality of user
decision-making [2, 15].

Effective and accurate recommendations require thoroughly understanding, modeling, and analyzing user-item
interaction data and user interests [24, 49, 89, 94]. Early methods rely on similarities between items or users,
such as content-based filtering [45, 52, 66, 68] and collaborative filtering [18, 26, 72, 122]. The fundamental
concept behind these methods is that individuals with similar preferences in the past are likely to have similar
choices in the future. Whether based on user similarity or item similarity, these methods are constrained
by simple low-dimensional features, e.g., rating information, attribute information, etc., as well as primary
classification or ranking algorithms [5, 20, 22], limiting their expressive power. While methods based on matrix
factorization [39, 61, 71] and logistic regression [65, 81, 92] have improved handling and generalization in
sparse data scenarios by learning latent feature vectors from social networks, these representative models are
ineffective in making recommendations when lacking user historical behavioral data. Graph neural network
models [14, 24, 101] capture intricate user-item topological structures to learn item attributes and optimize simple
collaborative filtering mechanisms. Although these models are considered sufficient, they require large amounts
of user-item historical interaction data, posing a risk to their generalization in the cold-start scenario [44, 94].
Therefore, pre-training is essential for recommender systems. Training on diverse datasets enables the model to
learn more general features, compensating for the limited data available for specific recommendation tasks.

Although Graph Neural Networks (GNNs) can capture node information and partial topological structure, they
rely on pairwise interactions and overlook complex higher-order relationships. Recent studies have incorporated
hypergraphs into recommender systems and developed hypergraph convolutional network-based models [43,
88, 106]. Additionally, since incorporating social information plays a crucial role in cold-start recommendation
scenarios, attention mechanisms are commonly employed to aggregate information from different graphs and
domains [8, 87, 120]. Consequently, the "pre-training + hypergraph + attention" paradigm has become a prominent
research focus, applied to various specific tasks such as sequential recommendation, point-of-interest (POI)
recommendation, and group recommendation. For instance, UPRTH [108] proposes a Unified Pre-training
framework for Recommendation via Task Hypergraphs. To establish a unified learning framework capable of
handling the diverse requirements and nuances of various pretext tasks, UPRTH incorporates task hypergraphs
to generalize pretext tasks as hyperedge prediction. A Transitional Attention layer (TA layer) is designed to
learn the relevance between each pretext task and recommendation discrimination. However, we argue that such
models still face the following challenges:

• In the context of hypergraph learning, current research has not fully leveraged the topological struc-
ture of hypergraphs, which is a critical factor for effective recommendations [89]. Existing studies further

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 3

emphasize that the potential of hypergraphs in modeling higher-order user relationships remains underuti-
lized [114]. Prior work has also demonstrated that topological structure significantly influences information
retrieval, processing, and decision-making [59]. Consequently, effectively learning the topological structure
of hypergraphs remains a key research challenge.
• In the context of model architecture, simply employing hypergraph neural networks fails to capture
global dependency relationships adequately. First, hypergraph convolutional networks (HGCNs) rely
excessively on local high-order neighborhood structures, limiting their ability to model social influence
diffusion processes across the global network [98]. Second, both indirect social connections and historical
user-item interactions play significant roles in identifying user preference groups [55]. Therefore, capturing
the dependency relationships between direct neighbors and learning the group representations from the
global network [29] for target users or items is crucial.
• The complexity and abstraction introduced by information integration remain a persistent challenge.
Most existing models following the “pre-training + hypergraph + attention” paradigm rely on attention
mechanisms or similar strategies to integrate heterogeneous types of social information. However, this
integration process is inherently built upon diverse GCN architectures, which introduces excessive com-
plexity and abstraction, thereby undermining model interpretability. Taking UPRTH as an example, it
employs an attention mechanism to fuse auxiliary-task embeddings into the hyperedge embeddings of the
primary-task hypergraph. Yet, this integration is intrinsically subjective, since the hyperedge embeddings
in the item graph are not semantically equivalent to the user embeddings derived from auxiliary tasks.
Specifically, while hyperedge embeddings encode shared co-purchasing patterns among items, they fail to
comprehensively capture user-specific attributes.

In this work, we propose EPRHSE, a novel Enhanced Pre-training framework for Recommendation based
on Hypergraph Structural Entropy. Our framework systematically addresses three key challenges through
innovative hypergraph learning techniques and architectural advancements. The proposed approach strategi-
cally incorporates auxiliary social information structures to enhance representation learning while avoiding
non-interpretable cross-hypergraph information fusion. The framework operates through three main compo-
nents. First, we design dual pre-training tasks that model users (items) as nodes and social commonalities as
hyperedges, constructing multiple auxiliary task hypergraphs. This design effectively captures heterogeneous
relationships among users (items), uncovers latent user/item information through auxiliary task constraints, and
alleviates interaction sparsity issues. Second, building upon structural information theory [48], we develop a
novel hypergraph structural entropy optimization method that generalizes homogeneous structural entropy to
hypergraphs. This involves constructing and optimizing high-dimensional encoding trees to establish hierarchical
node clusters, thereby improving information structure comprehension. Hierarchical partitioning helps capture
both global and local dependencies, allowing our model to generate more informative user and item embed-
dings by reflecting group-level patterns while preserving individual-specific information. Third, we augment
the conventional HGCN encoder with hypergraph pooling and unpooling layers. While the original encoder
captures direct dependencies from primary and auxiliary task hypergraphs, these new layers extract global
community representations from the encoding tree. Specifically, the pooling layer aggregates low-level node
representations into high-level community representations, which are then propagated back through unpooling to
refine individual node embeddings. This dual mechanism significantly enhances the modeling of social diffusion
processes. This enhanced structured pre-training framework sufficiently leverages auxiliary social information to
constrain representation learning while simultaneously reducing both model complexity and interpretability
issues arising from multi-level hypergraph fusion.
We conduct extensive experiments on five datasets, Steam, XMrec-CN, XMrec-MX, XMrec-AU, and XMrec-

BR, to demonstrate the effectiveness of EPRHSE. First, the overall experimental results indicate that EPRHSE

, Vol. 1, No. 1, Article . Publication date: October 2025.

4 • J. Zhang et al.

demonstrates superior overall performance compared to ten baseline models. Second, a series of ablation studies
are conducted to analyze the rationale and effectiveness of the hypergraph pooling layer and the exclusion of
hypergraph representation fusion (i.e., the TA layer) in EPRHSE. Thirdly, hyperparameter experiments analyze
the sensitivity and selection of four parameters in EPRHSE on different datasets. Then, the experiment in the cold-
start scenario further illustrates the high performance and stability of EPRHSE. Finally, we conduct computational
efficiency analysis by comparing the time consumption and training curves of EPRHSE with baseline methods.
The codes for all baseline models and EPRHSE, along with all datasets, are publicly accessible on GitHub1.

The main contributions of this work are summarized as follows:
• A new Enhanced Pre-training framework for Recommendation based on Hypergraph Structural Entropy is
proposed with high effectiveness and encodes the topology of recommender systems.
• A new hypergraph structure entropy optimization method is proposed to achieve hierarchical community
division of users and items by transferring edge information from the node-hyperedge bipartite graph to
the node adjacency matrix.
• A new global information aggregation method is developed, which improves the HGCN model architecture
through hypergraph pooling and unpooling layers to learn better node representations.
• A novel design omitting the hypergraph fusion paradigm (like the TA layer used in UPRTH) is demonstrated
to preserve recommendation accuracy while reducing model complexity and improving interpretability.
• A series of comparative analysis experiments show that EPRHSE achieves higher recommendation quality
and strong stability even in the cold-start scenario.

The structure of this paper is as follows. Section 2 outlines the background and preliminaries of our work. In
Section 3, we describe the technical details of the proposed framework, named EPRHSE. Section 4 presents the
experimental setup, and Section 5 discusses the experiment’s results. Section 6 provides an overview of related
works. Finally, we conclude the paper in Section 7.

2 PRELIMINARY
In this section, we first provide the fundamental definition and concepts of the recommendation task (Sub-
section 2.1). Next, we elaborate on the hypergraph encoder’s structure and information aggregation methods
(Subsection 2.2). Then, we introduce the application of structural information theory in the recommendation
framework and elaborate on the basic concepts of structural entropy (Subsection 2.3). Finally, we deliver a detailed
description of the hypergraph fusion mechanism (TA layer), which will be added to EPRHSE in ablation studies
for discussion (Subsection 2.4). The comprehensive list of the primary symbols used throughout this paper is
presented in Table 1.

2.1 Recommendation Task
The recommendation task aims to determine the optimal ranking of items for each user based on the given
user-item interaction information. This information includes two separate sets of nodes (a user set 𝑈 and an
item set 𝐼) and user-item interactive edges 𝐸𝑢,𝑖 . Therefore, the graph representing user-item interactions can
be 𝐺 = (𝑈 , 𝐸𝑢,𝑖 , 𝐼). In a personalized recommendation task 𝑇𝑟𝑒𝑐 for a user, the goal is to predict a list of items
{𝑖1, 𝑖2, ..., 𝑖𝑚} in graph 𝐺 that the user has not yet interacted with. The higher the ranking, the more likely the
user will interact with those items.

2.2 Hypergraph Encoder
The hypergraph is composed of a node setV and a hyperedge set Eℎ𝑦𝑝𝑒𝑟 , represented asH = (V, Eℎ𝑦𝑝𝑒𝑟). Unlike
a regular graph, its hyperedges can connect multiple nodes, indicating the relevance among a group of nodes
1https://github.com/SELGroup/EPRHSE

, Vol. 1, No. 1, Article . Publication date: October 2025.

https://github.com/SELGroup/EPRHSE

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 5

Table 1. Forms and interpretations of notations.

Symbol Definition

𝐺 ; G;H User-item interaction graph; Homogeneous graph; Hypergraph.
𝐸𝑢,𝑖 ;𝑈 ; 𝐼 ;V User-item interaction edge set; User set; Item set; Node set.

𝐶1; 𝐶2 Preliminary community set; Final community set.
Eℎ𝑦𝑝𝑒𝑟 ; E Hyperedge set; Homogeneous edge set.
D𝑟𝑒𝑐 Set of user-item interaction pairs in the training data.

𝐴𝐺 ; 𝐴H Bipartite graph matrix; Hypergraph adjacent matrix.
𝑖; 𝑢; 𝑣 ; 𝑒; 𝑐 Item; User; Node; Hyperedge; Community.

𝐷𝑒 ; 𝐵𝑣 Degree matrix of hyperedges; Degree matrix of nodes.
Eu; Ei Representations of users; Representations of items.
Ev; Ee Representations of nodes, Representations of hyperedges.

Ec Representations of communities.
𝑆1; 𝑆2 Community division matrix for layer 1; Community division matrix for layer 2.
𝑑 ; 𝑑𝑚𝑒 Embedding size; The degree of the m-th hyperedge.

𝑇𝑟𝑒𝑐 ; 𝑇𝑎 Recommendation task; Auxiliary task.
𝑤𝑡 Attention diagonal matrix for the t-th auxiliary task 𝑇𝑎𝑡 .
𝛾1 The fusion hyperparameter between the main and auxiliary tasks.
𝛾2 The fusion hyperparameter between the original and auxiliary task fusion embedding.

𝛽ℎ𝑝𝑢 The weight hyperparameter of the previous embedding in hypergraph unpooling.
𝜆𝑟𝑒𝑐 The hyperparameter to balance the losses between recommendation and auxiliary tasks.
𝜆Θ The hyperparameter for regularization.
T ; 𝜆 Encoding tree; The root node of the encoding tree.
T𝑚𝑔 Encoding tree after Merging operator.
𝛼 ; 𝑇𝛼 Node on encoding tree; Label of encoding tree node 𝛼 .
𝛼𝑖 ; 𝛼− 𝑖-th child node of encoding tree node 𝛼 ; Parent of encoding tree node 𝛼 .
𝑑𝑖 ; 𝑔𝛼 Degree of node 𝑣𝑖 ; Number of cutting edges of encoding tree node 𝛼 .

𝑣𝑜𝑙 (G); 𝑣𝑜𝑙 (𝛼) Volume of Graph G; Volume of encoding tree node 𝛼 .
𝐻 T (G) The structural entropy of G under encoding tree T .

𝐻 T (H ;𝛼) The structural entropy of subtree 𝛼 in hypergraphH under encoding tree T .
𝐻𝑘 (G) The 𝑘-dimensional structure entropy.

Δ
𝑀𝑔

H Difference of Structural entropy after merging.
T𝑚𝑔 (𝛼, 𝛽) Merging operator between node 𝛼 and node 𝛽 .

𝑄 Maximum number of pairs in merge operator.

, Vol. 1, No. 1, Article . Publication date: October 2025.

6 • J. Zhang et al.

�0 �1 �2 �3

�0 1 1 0 0

�1 1 1 0 0

�2 0 1 1 0

�3 1 1 1 1

�4 0 1 1 1

Bipartite graph matrix ��Hypergraph �

��
�

��
� ��

�+1

Hyper encoder ����

�0

�1

�2

�3

�4

�0

�1 �2

�3

Fig. 1. An illustration of a hypergraph, bipartite matrix, and HGCN.

rather than just a pairwise relationship. Typically, the relationship between nodes and hyperedges in a hypergraph
is characterized using a bipartite graph matrix 𝐴𝐺 , specifically denoted as 𝐴𝐺 = (𝑎𝑖, 𝑗) ∈ {0, 1} |V |× | Eℎ𝑦𝑝𝑒𝑟 | , where
𝑎𝑖, 𝑗 indicates whether node 𝑣𝑖 and hyperedge 𝑒 𝑗 are connected. Hypergraph neural networks have been proposed
for representation learning in hypergraph data. For each node in the hypergraph, the Hypergraph Convolutional
Neural Network (HGCN) encoder iteratively updates its representation by combining information from its
adjacent hyperedges. In contrast, the information from hyperedges is represented by combining information from
adjacent nodes. This way, information is transferred through hyperedges to learn representations incorporating
information from one-hop neighboring nodes, which can be propagated by stacking multiple encoders. The
hypergraph encoder used in our model can be represented as:

El+1v = (De)−1 · AG · Ele = (De)−1 · AG · (Bv)−1 · AG
⊺ · Elv, (1)

where Elv and El+1v are the input and output embedding representations of the node set in a hypergraph encoder.
𝐴𝐺 is the bipartite graph matrix of nodes and hyperedges,𝐷𝑒 is the degree matrix of hyperedges, and Ele represents
the embedding representations of the set of hyperedges in the current iteration. Through dot product operations,
the embedding representation of the node set is updated as the weighted sum of the embedding representations
of its adjacent hyperedges. The more nodes a hyperedge is connected to, the smaller the influence on each
node. Furthermore, the embedding representation of the set of hyperedges Ele can be obtained through the
operation (𝐵𝑣)−1 · 𝐴𝐺⊺ · Elv,, where 𝐵𝑣 is the degree matrix of nodes in the hypergraph. Similarly, through dot
product operations, the embedding representation of the set of hyperedges is updated as the weighted sum of the
embedding representations of its connected nodes. The more hyperedges a node is connected to, the smaller the
influence on each hyperedge.

2.3 Structural Information Theory
Structural information theory [48] is originally proposed for measuring the structural information contained
within a graph. Specifically, this theory aims to calculate the structural entropy of the homogeneous graph
G = (V, E), which reflects its uncertainty when undergoing hierarchical division. In our work, the hierarchical
partitions are represented by a tree structure known as the encoding tree. We introduce encoding trees and
𝑘-dimensional structural entropy in undirected graphs below.

Encoding tree. An encoding tree of a graph G is defined as a rooted tree T with the following properties:

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 7

(1) For each node 𝛼 in the encoding tree T , there is a subset 𝑇𝛼 ∈ V of vertices in the graph G corresponding
to it.

(2) For the root node 𝜆 in the encoding tree, 𝑇𝜆 = V .
(3) The children of node 𝛼 are denoted as 𝛼𝑖 and sorted from left to right as 𝑖 increases. The parent node of 𝛼𝑖

is denoted as 𝛼−𝑖 = 𝛼 .
(4) If node 𝛼 has 𝐿 children, then the vertex subset 𝑇𝛼𝑖 of child nodes is mutually exclusive, and 𝑇𝛼 = ∪𝑇𝛼𝑖 .
(5) Each leaf node 𝑣 in the tree, 𝑣 corresponds to a single vertex in the vertex setV in the graph G.
The 𝑘-dimensional encoding tree has a height of 𝑘 (the height of the root node is 0). Intuitively, the encoding

tree embodies the hierarchical community division of graph vertices; the parent node is a large community, and
the child nodes are small communities in the large community.

Structure entropy. The structural information of the homogeneous graph G determined by the encoding tree
T is defined as:

𝐻 T (G) = −
∑︁

𝛼∈T,𝛼≠𝜆

𝑔𝛼

𝑣𝑜𝑙 (G) 𝑙𝑜𝑔
𝑣𝑜𝑙 (𝛼)
𝑣𝑜𝑙 (𝛼−) , (2)

where 𝑣𝑜𝑙 (G) is the sum of the degrees of all vertices in the graph G. 𝑣𝑜𝑙 (𝛼) is the volume of 𝑇𝛼 and is the sum
of the degrees of all vertices in the vertex subset 𝑇𝛼 . 𝑔𝛼 is the sum of weights of all edges from vertex subset 𝑇𝛼
to vertex subsetV/𝑇𝛼 , which can be understood as the total weight of the edges from the vertices outside the
vertex subset 𝑇𝛼 to the vertices inside the vertex 𝑇𝛼 , or the total weight of the cut edges.

𝑔𝛼
𝑣𝑜𝑙 (G) represents the

probability that the random walk enters 𝑇𝛼 . The structural entropy 𝐻 (G) of graph G is the minimum 𝐻 T (G).
Let T𝑘 be encoding trees whose height is not greater than 𝑘 , then the 𝑘-dimensional structural entropy of G is
defined as follows:

𝐻𝑘 (G) =𝑚𝑖𝑛(𝐻 T𝑘 (G)). (3)
Furthermore, one-dimensional structural entropy is special as there are only root nodes and leaf nodes in
the encoding tree of one layer. All the vertices in the graph G belong to a large community 𝜆 under the one-
dimensional encoding tree, which is unique in terms of community division so that the one-dimensional structural
entropy can be directly expressed as:

𝐻1 (G) = −
𝑛∑︁
𝑖=1

𝑑𝑖

𝑣𝑜𝑙 (G) 𝑙𝑜𝑔
𝑑𝑖

𝑣𝑜𝑙 (G) , (4)

where 𝑑𝑖 is the sum of weights of all edges connected to vertex 𝑣𝑖 in graph G and is called the degree of vertex 𝑣𝑖 .
One-dimensional structural entropy measures the uncertainty of graph G without layering.

2.4 Hypergraph Fusion Mechanism (TA layer)
In this section, we introduce a hypergraph fusion mechanism, analogous to the TA layer in UPRTH [108], not as a
component of our proposed model but as a variant employed for comparative analysis in subsequent discussions
and experiments. This approach posits that, during the fusion process, each auxiliary task exerts varying levels of
influence on the recommendation gains; hence, it is designed to adaptively learn the degree of correlation between
auxiliary tasks and the main task. This transitional layer allocates appropriate attention to each auxiliary task,
enabling the fusion of embeddings learned from auxiliary tasks into the embeddings of the main task via a single
round of HGCN, thus facilitating effective knowledge transfer. To illustrate, taking the main task hypergraph
"items bought by the same user" as an example, we represent the item node embeddings learned from the primary
task as Ei. As depicted in Figure 2, through the aggregation of node representations in HGCN, the initial hyperedge
embeddings can be denoted as Ee. Since in this main task hypergraph, hyperedges represent bought by the same
user, Ee is equivalent to the commonality of the initial embeddings representing user purchases. Subsequently,

, Vol. 1, No. 1, Article . Publication date: October 2025.

8 • J. Zhang et al.

�� ��

… …

��
′��

′

��
��� ∗ �1+ ��

��� ∗ �2

�1

��
�2

…… …

�������

Fig. 2. An illustration of TA layer.

we compute the attention between the user features Ejobu (Eageu) learned from the auxiliary task and the initial
hyperedge embeddings Ee, generating auxiliary task hyperedge embeddings. Take 𝐸 𝑗𝑜𝑏𝑢 as an example:

𝑤2 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑑𝑖𝑎𝑔(Ejobu · (Ee)⊺)√

𝑑
), Eae = w1E

age
u +w2E

job
u , (5)

where Eae represents the embedding of auxiliary task hyperedges, which is obtained by weighting the attention
of user features from all the auxiliary tasks. Ejobu denotes the user features from the auxiliary task "users with
same jobs", and Eageu denotes the user features from the auxiliary task "users with same ages". 𝑑 signifies the
feature dimension.𝑤1 and𝑤2 are attention diagonal matrixes, representing the attention allocated to the user for
each auxiliary task. Subsequently, the initial hyperedge embedding is fused with the auxiliary task hyperedge
embedding through addition:

Ee
′
= Ee + 𝛾1Eae = Ee + 𝛾1 (w1E

age
u +w2E

job
u), (6)

where Ee
′ denotes the fused hyperedge embedding, and 𝛾1 represents the fusion hyperparameter. Finally, we

update the item embeddings to E
′
i by aggregating hyperedge embeddings in HGCN and fuse it into the original

item embedding Ei with fusion hyperparameter 𝛾2:

Ei = Ei + 𝛾2E
′
i . (7)

The TA layer includes two hyperparameters, 𝛾1 and 𝛾2, which control the weights in the two-step embedding
fusion process, one for hyperedges and one for nodes.

3 THE PROPOSED MODEL
This section will introduce the main component of the recommender framework EPRHSE. This new work aims to
learn better representations of fused structures to enhance recommender systems. As shown in Figure 3, EPRHSE
consists of three key modules: pre-training process, hypergraph structural entropy module, and hypergraph
pooling module. Specifically, the pre-training process (Section 3.1) defines two types of auxiliary tasks. It outlines
the model’s entire pre-training and recommendation process, utilizing an optimized HGCN layer to learn
item or user node embeddings in different hypergraphs. Then, the hypergraph structural entropy module and
the hypergraph pooling module collectively elaborate on how HGCN is optimized from the perspectives of

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 9

hypergraph structural learning and global information capture. This is the first work to extend the structural
information theory to hypergraph, referred to as hypergraph structural entropy (Section 3.2). The node-hyperedge
bipartite graph is converted into an adjacency matrix of nodes, and the hypergraph structural entropy is designed
by transferring hyperedge information. Subsequently, the optimal high-dimensional community division is
formed under the guidance of the principle of structural entropy minimization. The Hypergraph pooling module
(Section 3.3) adds two pooling layers and two unpooling layers after the Hypergraph encoder HGCN, respectively.
The group features are integrated into node embeddings for recommendation by aggregating and transferring
community embeddings. Finally, all modules are integrated to optimize the recommendation task (Section 3.4),
and the time complexity of the model was analyzed in detail (Section 3.5).

��
� ��

� ��
� ��

� ��
�

���� ����
�� ��

��
� ��

� ��
� ��

� ��
����� ����

��� ���

����

…… … …

��
0 ��

1

…… … …

��
2 ��

3

…

…

…

…

��
4 ��

5

…… …

…

��
6 + �ℎ����

3��
7

…… … …

��
8 + �ℎ����

1��
9

�2
�3

�1

�1

�2

�3

�4

ℋ0

ℋ1

�2

��
4

��
3 ��

6

��
5

�2

�1

�1

��
1

��
2 ��

7

��
8

�1

�

attributes

users

items

attributes

�5 �4

�1 �2 �3

�1 �2 �3 �4

�1 �2 �3 �4 �5

auxiliary tasks

main tasks

items
with same category

users
with same age

items
bought by same user

users
buying same item

��
����

��

��
���

��

Optimized
HGCN

Optimized
HGCN

Optimized
HGCN

Optimized
HGCN

…

… …

a. Pre-training Process

c. Hypergraph Poolingb. Hypergraph SE

�1

�2

�3

�4

�5

�6
�7

�1

�2

�3

�1

�2

�3

�4

�5

�6
�7

�1

�2

�3

�1

�2

�3

�4

�5

�6
�7

�1

�2

�3

�1�2�3�4�5�6�7

�1

�2�4

�3�5

�6�7

�1�3�2�4

�5

�6�7

�1�3�2�4�5�6�7

�1 �2�3 �4
node

hyperedge

����

�����

����

…

�����

�����

��

����

����

����

1 − ����

Fig. 3. The overall framework of EPRHSE.

, Vol. 1, No. 1, Article . Publication date: October 2025.

10 • J. Zhang et al.

3.1 Pre-training Process
This subsection will introduce the step-by-step methodology of the entire pre-training process. Pre-training aims
to acquire prior knowledge from auxiliary and main tasks and build better user/item embeddings for downstream
recommendation models. Throughout the pre-training process, we learn two embedding matrices, Ei and Eu,
where rows denote the representations of items and users.

Hypergraph construction. We begin by constructing a hypergraph for each auxiliary task to unify the
handling of various auxiliary tasks. These tasks may involve specific attributes, such as age, occupation, price,
category, etc., about users and items and may also include relationships, such as substitutes and complements.
Using users’ age attributes as an example, we represent users as nodes in the hypergraph, connecting groups of
users within the same age bracket with hyperedges. This step yields the hypergraph illustrated in the upper part
of Figure 3.a, denoted as "users same age". Similarly, we can also construct auxiliary task hypergraphs, such as
"items with the same category, "items with the same rate, "items bought together," "items compared together," and
"users with the same job. More details of auxiliary tasks for different datasets are presented in Table 2. Then, two
other hypergraphs are constructed for the main task, with nodes representing users and items separately with
direct item-user interactions, denoted as "users buying same item" and "items bought by same user", as shown in
the lower part of Figure 3.a.
Hypergraph learning. All auxiliary task hypergraphs and the main task hypergraphs are fed into the

optimized HGCN layer for training, producing the corresponding representations for item and user nodes. For
instance, Ei denotes the embeddings of item nodes in the main task hypergraph "items bought by same user", Eu
denotes the embeddings of user nodes in the main task hypergraph "users buying same item", Ecatei represents
the embeddings of item nodes in the auxiliary hypergraph for "items with same category," and Eageu represents
the embeddings of user nodes in the auxiliary hypergraph for "users with same age". The optimized HGCN
incorporates the learning of hypergraph topology (as discussed in Subsection 3.2) and captures global relationships
(as discussed in Subsection 3.3), enhancements to the initial HGCN, which will be elaborated upon in subsequent
chapters.

Pre-training loss and recommendation. The representations above are utilized as optimization objectives
during pre-training, with individual losses computed for each. The losses from auxiliary tasks are aggregated
to form the auxiliary loss L𝑎 , while those from main tasks are combined to derive the recommendation loss
L𝑟𝑒𝑐 . The final pre-training loss is obtained by applying a weighted combination of these two components. The
recommendation sequence is generated during the recommendation phase by comparing the two main task
representations, Ei and Eu. The detailed calculation of the loss function will be introduced in Subsection 3.4.

3.2 Hypergraph Structural Entropy
Structural information theory shows stronger adaptability in learning graph structure and clustering. However,
this method is limited to simple homogeneous graphs and multi-relational graphs. To solve the challenges
of constructing encoding trees and dividing communities on hypergraphs, we first transform the hyperedge
information in the hypergraph’s bipartite graph matrix to build the node adjacency matrix. Then, we construct
the optimal encoding tree for the hypergraph to partition the node community effectively.
Hypergraph structural entropy. The definition of traditional structural entropy is given in Section 2.3.

After constructing the main and auxiliary task hypergraphs, our objective is to classify users/items with close
connections into the same community using structural information theory. Structural information theory de-
termines structural uncertainty based on random walks of nodes in the graph through connected edges. Since
a hyperedge in a hypergraph can connect multiple nodes, it expresses the relationship between groups rather
than one-to-one relationships. This is the most significant difference between hypergraphs and homogeneous

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 11

graphs/multi-relationship graphs. Therefore, the key to generalizing the structural entropy concept to a hy-
pergraph is to transform the group relationships (i.e., hyperedges) in the hypergraph into abstract one-to-one
relationships between nodes (i.e., node adjacency matrix) while preserving the hypergraph’s characteristics.
We perform the following operations on the bipartite graph matrix 𝐴𝐺 of the hypergraph to obtain the node
adjacency matrix 𝐴H :

𝐴H = 𝐴𝐺 · (𝐷𝑒)−1 · 𝐴𝐺⊺ = (
| Eℎ𝑦𝑝𝑒𝑟 |∑︁
𝑚=1

𝑎𝑖,𝑚 · 𝑎 𝑗,𝑚 ·
1

𝑙𝑜𝑔2𝑑
𝑚
𝑒

), (8)

where 𝐷𝑒 represents the hyperedge degree matrix, the same as Eq. 1. 𝑑𝑚𝑒 represents the degree of the m-th
hyperedge. And 𝑎𝑖,𝑚 represents whether there is a connection relationship between node 𝑣𝑖 and hyperedge 𝑒𝑚 ,
which is the same as in Section 2.2. The above formula assigns a value to the adjacency relationship of nodes by
calculating the weighted sum of the hyperedges shared between two nodes. The function of (𝐷𝑒)−1 is to amplify
the influence of hyperedges with fewer connected nodes.
After obtaining the adjacency matrix of the hypergraph node, the hypergraph structure entropy can be

calculated through Eq. 2- 4. Specifically, the degrees of all nodes are represented by the corresponding row sums
of the adjacency matrix:

(𝑑1, 𝑑2, ..., 𝑑𝑁)⊺ = (𝐴H − 𝑑𝑖𝑎𝑔(𝐴H)) · 1|V| , (9)

where 𝑑𝑖𝑎𝑔(·) represents taking the diagonal elements of the matrix, |V| is the num of nodes in the hypergraph
H , and 1|V| is a column vector of length |V| that is all 1, i.e. (1, 1, ..., 1)⊺ . In the calculation process of the above
formula, the adjacent items from the node itself to itself are removed.
Optimized encoding tree.We construct the optimal three-dimensional encoding tree by constructing the

optimal two-dimensional encoding tree twice. After forming the optimal two-dimensional encoding tree, we
use these community nodes as hypergraph nodes to construct a two-dimensional encoding tree again. The
construction process of the two-dimensional encoding tree is as follows. The initial one-dimensional encoding
tree represents the simplest two-level structure, where the leaf nodes in the graph are directly connected to the
root node. The Merge operator combines the nodes, and a greedy search strategy is employed to construct an
optimal encoding tree. The Merge operator combines two subtrees under the same parent node, resulting in a
single subtree. This is visualized in the graph as the merging of two small communities. In the optimal encoding
tree, the graph structure exhibits minimal uncertainty, and the nodes achieve a balanced and stable state, leading
to the optimal partitioning of nodes. Recording T𝑚𝑔 (𝛼, 𝛽) as the encoding tree after T runs 𝑀𝑔(T ;𝛼, 𝛽), the
difference in structural entropy of the graph Gℎ𝑦𝑝𝑒𝑟 determined by the two encoding trees T𝑚𝑔 (𝛼, 𝛽) and T is:

Δ
𝑀𝑔

H (𝑇 ;𝛼, 𝛽) = 𝐻
T𝑚𝑔 (𝛼,𝛽) (H ;𝛼) +

∑︁
𝛿−=𝛼

𝐻 T𝑚𝑔 (𝛼,𝛽) (H ;𝛿)) − 𝐻 T (H ;𝛼) − 𝐻 T (H ; 𝛽) −
∑︁

𝛿−=𝛼 𝑜𝑟 𝛿−=𝛽

𝐻 T (H ;𝛿), (10)

where 𝐻 T (H ;𝛼) is the structural information of subtree 𝛼 , 𝐻 T (H ; 𝛽) is the structural information of subtree 𝛽 ,
𝐻 T (H ;𝛿) is the structural information of 𝛼 ’s and 𝛽’s subtree 𝛿 ; 𝐻 T𝑚𝑔 (𝛼,𝛽) (H ;𝛼) is the structural information of
subtree 𝛼 after merging subtree 𝛽 into 𝛼 ; Similarly, 𝐻 T𝑚𝑔 (𝛼,𝛽) (H ;𝛿) is the structure information of the subtree
𝛿 after merging subtree 𝛽 into 𝛼 . Eq. 10 calculates the change in the related subtree structure entropy before
and after running the Merge operator on nodes 𝛼 and 𝛽 . If Δ𝑀𝑔H (𝑇 ;𝛼, 𝛽) ≤ 0, then the Merging operator runs
successfully, denoted as𝑀𝑔(T ;𝛼, 𝛽) ↓.
The initial one-dimensional encoding tree implies that each node 𝑣𝑖 forms an independent community. Next,

we calculate the difference in structural entropy before and after executing the Merge operator on any two nodes
and select no more than the maximum number of pairs, denoted as 𝑄 , from the pairs of nodes whose structural
entropy is reduced the most to run the Merge operator. Continue this process until no pair of nodes is found that

, Vol. 1, No. 1, Article . Publication date: October 2025.

12 • J. Zhang et al.

Algorithm 1: Optimized 3-dimensional Encoding Tree on Hypergraph.
Input: bipartite graph matrix of the hypergraph: 𝐴𝐺 ; hyperparameter for parallel Merge Operators: 𝑝 .
Output: Three-dimensional community division: 𝑆1 and 𝑆2.

1 calculate 𝐴H with 𝐴𝐺 via Eq. 8;
2 𝑛𝑐𝑢𝑟 ← 𝑙𝑒𝑛(𝐴H), 𝑆1 ← the initial division;
3 Initial 𝐿𝑒𝑑𝑔𝑒 with node pairs in 𝐴H , 𝑓 𝑙𝑎𝑔𝑚 ← 𝐹𝑎𝑙𝑠𝑒;
4 while not 𝑓 𝑙𝑎𝑔𝑚 do
5 𝑄 ← 𝑐𝑒𝑖𝑙 ((𝑛𝑐𝑢𝑟 − 1) ∗ 𝑝) via Eq. 11;
6 for (𝑢, 𝑣) in 𝐿𝑒𝑑𝑔𝑒 do
7 𝑑𝐻 (𝑢, 𝑣) ← Δ

𝑀𝑔

H (𝑇 ;𝑢, 𝑣) via Eq. 10;
8 // Node pairs that can be merged

9 𝐿𝑜𝑝 ← (𝑢, 𝑣) with 𝑑𝐻 (𝑢, 𝑣) > 𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝐻 > 0);
10 if 𝑙𝑒𝑛(𝐿𝑜𝑝) > 𝑄 then
11 𝐿𝑜𝑝 ← (𝑢, 𝑣) with top 𝑄 𝑑𝐻 ;
12 if 𝑙𝑒𝑛(𝐿𝑜𝑝) = 0 then
13 𝑓 𝑙𝑎𝑔𝑚 ← 𝑇𝑟𝑢𝑒;
14 // Update the number of communities

15 𝑛𝑐𝑢𝑟 ← 𝑛𝑐𝑢𝑟 − 𝑙𝑒𝑛(𝐿𝑜𝑝);
16 // Running Merge Operator on node pairs in 𝐿𝑜𝑝

17 update 𝐿𝑒𝑑𝑔𝑒 and 𝑆1;
18 calculate 𝐴𝐺 ← 𝑆1

⊺ · 𝐴𝐺 via Eq. 12; repeat Line 1-14;

allows the Merge operator to execute successfully. The value of 𝑄 for each iteration is determined as follows:

𝑄 = 𝑐𝑒𝑖𝑙 ((𝑛𝑐𝑢𝑟 − 1) × 𝑝), (11)

where 𝑛𝑐𝑢𝑟 represents the current number of communities/nodes, and 𝑝 is a hyperparameter between 0 and 1 that
controls the speed of parallel operations for the Merge operator. The operator 𝑐𝑒𝑖𝑙 is a mathematical function that
rounds a given number up to the nearest integer. The final community division can be expressed mathematically
as 𝑆1. Therefore, by treating the community set as a new set of nodes, we can obtain the bipartite graph matrix
𝐴′
𝐺
of the community hypergraph:

𝐴′𝐺 = 𝑆1
⊺ · 𝐴𝐺 , 𝑆1 = (𝑠𝑖, 𝑗) ∈ {0, 1} |V |× |𝐶1 | , (12)

where 𝐶1 is the preliminary community set, 𝑠𝑖, 𝑗 indicates whether node 𝑣𝑖 belongs to community 𝑐 𝑗1, and 𝐴𝐺
is the bipartite graph matrix of the initial hypergraph. The 𝐴′

𝐺
obtained in this way represents the connection

relationship of the hyperedges between communities, and there will be self-loops. As outlined in Algo. 1, by
repeating the calculation of Eq. 8- 10 and the above two-dimensional encoding tree construction algorithm, the
final community set 𝐶2 with a higher-level community division 𝑆2 can be obtained. The construction of the
three-dimensional optimal encoding tree and the corresponding community division is completed at this point.

3.3 Hypergraph Pooling
The three-dimensional encoding tree successfully learns the topological structure of the hypergraph, dividing
nodes into two hierarchical communities. Building upon this foundation, this subsection introduces a method for

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 13

capturing node group characteristics. We introduce pooling and unpooling layers after the hypergraph encoder
to enhance the diffusion process of node information.

Pooling and unpooling. The pooling operation aggregates information embedded at low-level nodes to form
representations of high-level communities. In contrast, the unpooling operation, conversely, propagates the ob-
tained representations of high-level communities back to low-level nodes. These operations can be mathematically
expressed as:

Ec = 𝑆⊺ · Ev, (13)
Ev = 𝑆 · Ec. (14)

Eq. 13 is the pooling operation, and Eq. 14 is the unpooling operation, where 𝑆 is the community division matrix,
which is the same as in Subsection 3.2. Ec and Ev are the embedding representations of community sets and node
sets, respectively.

Encoder-decoder for hypergraph pooling. In the hypergraph pooling encoder (HP), two upward abstraction
modules are employed, each composed of an HGCN layer and a pooling layer. In the hypergraph unpooling
decoder(HPU), two downward feedback modules are utilized, each consisting of an unpooling layer and an
HGCN layer. Another HGCN layer is also inserted between the encoder and decoder to facilitate the diffusion of
information of the highest-level communities. To simultaneously capture global community representations and
direct neighbor dependencies, the HGCN layer in the decoder does not directly utilize the output of the unpooling
layer. Instead, it combines the representations from the HGCN layer output in the corresponding encoder and
the unpooling layer output through weighting. This encoder-decoder skip-connection operation enables the
embedding of upper-level community information into the embeddings of lower-level nodes. Otherwise, each
bottom-level node will ultimately receive feedback that only differs slightly in terms of community embedding.
The detailed process of hypergraph pooling is depicted in Algo. 2

Specifically, as illustrated in Figure 3, for the initial hypergraph H0, we first randomize a |V| × 𝑑 node
embedding matrix E0v. Then, after one round of information propagation through the HGCN layer, we obtain
an embedding matrix E1v of the same size. Subsequently, based on the community division matrix 𝑆1 on the
encoding tree in Subsection 3.2, we perform embedding pooling to abstract upwards and obtain a preliminary
community embeddingmatrix E2v of size |C1 |×𝑑 . The updated hypergraph after node aggregation is the community
hypergraph H1. After the second round of HGCN information propagation, we obtain an embedding matrix
E3v of size |𝐶1 | × 𝑑 . Next, based on the community division matrix 𝑆2 in Subsection 3.2, we perform preliminary
community pooling to abstract upwards and obtain the final community embedding matrix E4v of size |𝐶2 | × 𝑑 . At
this point, the work of the encoder is complete. The updated hypergraph after preliminary community aggregation
is the final community hypergraphH2, and after one round of HGCN information propagation, we obtain an
embedding matrix E5v of size |𝐶2 | ×𝑑 . Then, start the work of the decoder. Firstly, based on the community division
matrix 𝑆2, the final community unpooling is performed to provide the preliminary community embedding matrix
E6v of size |𝐶1 | × 𝑑 . Subsequently, E6v is weighted with the preliminary community embedding matrix 𝛽ℎ𝑝𝑢E3v
at the corresponding level in the encoder, input into the HGCN layer, and after one round of propagation, an
embedding matrix E7v of size |𝐶1 | ×𝑑 is obtained. Next, based on the community division matrix 𝑆1, the preliminary
community unpooling is carried out to provide a node embedding matrix E8v of size |𝑉 | ×𝑑 . Finally, E8v is weighted
with the node embedding matrix 𝛽ℎ𝑝𝑢E1v in the encoder and passed into the HGCN layer to obtain the final node
embedding matrix E9v of size |V| × 𝑑 . Essentially, the pooling and unpooling processes described above aim to
obtain upper-level community embeddings E8v of nodes. For the original hypergraphH0, this is equivalent to
performing two rounds of hypergraph encoding: 1) The initial node embeddings E0v, following a round of HGCN
propagation, yield new node embeddings E1v with direct neighbor dependencies; 2) the new node embeddings E1v
are weighted with the corresponding upper-level community embeddings E8v. After the second round of HGCN

, Vol. 1, No. 1, Article . Publication date: October 2025.

14 • J. Zhang et al.

Algorithm 2: Hypergraph Pooling and Unpooling via 3-dimensional Encoding Tree.
Input: community divisions: 𝑆1 and 𝑆2; bipartite graph matrix of initial hypergraph: 𝐴0

G ; initial node
embedding: E0v, the weight of the previous embedding in HPU: 𝛽ℎ𝑝𝑢 .

Output: final node embedding: E9v.
1 calculate 𝐴1

G with 𝑆1 and 𝐴0
G via Eq. 12;

2 calculate 𝐴2
G with 𝑆2 and 𝐴1

G via Eq. 12;
3 initial 𝐿𝐸 ← 𝑒𝑚𝑝𝑡𝑦;
4 for 𝑖 = 0, 1 do
5 // HGCN

6 calculate E2∗i+1v with 𝐴𝑖G and E2∗iv via Eq. 1;
7 𝐿𝐸 append E2∗i+1v ;
8 // HP

9 calculate E2∗i+2v with 𝑆𝑖+1 and E2∗i+1v via Eq. 13;
10 for 𝑖 = 2, 1 do
11 // HGCN

12 calculate E9−2∗iv with 𝐴𝑖G and E8−2∗iv via Eq. 1;
13 // HPU

14 calculate E10−2∗iv with 𝑆𝑖 and E9−2∗iv via Eq. 14;
15 E10−2∗iv ← E10−2∗iv + 𝛽hpu ∗ LE [i − 1];
16 calculate E9v with 𝐴0

G and E8v via Eq. 1;

propagation, the final node embeddings E9v are obtained with both direct neighbor dependencies and global
collective representations.

3.4 Recommendation and Optimization
The entire recommendation process in EPRHSE is depicted as Algo. 3. Initially, it involves constructing hyper-
graphs for both primary and auxiliary tasks. Subsequently, for each hypergraph, the 3-dimensional encoding tree
is built using hypergraph structural entropy (Algo. 1) to partition node communities hierarchically. Based on
these community node mapping relationships, hypergraph pooling and unpooling (Algo. 2) are performed to
enhance the aggregation process of the hypergraph encoder. We conduct pre-training optimization based on
different task types. For the main task, i.e., the recommendation task, we compute the ranking score 𝑌𝑟𝑒𝑐 for the
user-item pair using inner product calculation:

𝑌𝑟𝑒𝑐 = Eu · Ei⊺, (15)

where Eu and Ei represent the user and item embedding matrices outputted by the optimized HGCN layer from
main tasks, respectively. 𝑌𝑟𝑒𝑐 is a score matrix of dimensions |𝑈 | × |𝐼 |, where each element 𝑦𝑟𝑒𝑐 (𝑢, 𝑖) signifies the
likelihood of recommendation for user 𝑢 and item 𝑖 . We employ alignment loss to optimize the recommendation
task:

L𝑟𝑒𝑐 =
1
|D𝑟𝑒𝑐 |

∑︁
(𝑢,𝑖) ∈D𝑟𝑒𝑐

∥eu − ei∥22 + 𝜆Θ · ∥Θ∥22, (16)

where D𝑟𝑒𝑐 represents the set of user-item interaction pairs in the training set, while eu and ei denote the
embedding vectors for user 𝑢 and item 𝑖 respectively. Θ represents all trainable parameters in the EPRHSE,

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 15

Algorithm 3: Recommendation and Optimization.

Input: hypergraphs for main and auxiliary tasks: {𝐴𝑢G, 𝐴
𝑖
G, 𝐴

𝑎𝑔𝑒

G , 𝐴
𝑗𝑜𝑏

G , 𝐴𝑐𝑎𝑡𝑒G , 𝐴𝑟𝑎𝑡𝑒G }.
Output: Recommendation sequence.

1 // 3-dimensional community divisions

2 construct {(𝑆𝑢1 , 𝑆𝑢2), (𝑆𝑐𝑎𝑡𝑒1 , 𝑆𝑐𝑎𝑡𝑒2), (𝑆𝑟𝑎𝑡𝑒1 , 𝑆𝑟𝑎𝑡𝑒2)} for {𝐴𝑢G, 𝐴
𝑖
G, 𝐴

𝑎𝑔𝑒

G , 𝐴
𝑗𝑜𝑏

G , 𝐴𝑐𝑎𝑡𝑒G , 𝐴𝑟𝑎𝑡𝑒G } via Algo. 1;
3 initial Eu and Ei;
4 // Pre-training

5 for 𝑒𝑝𝑜𝑐ℎ = 1, 2, 3, ... do
6 // main tasks

7 update Eu and Ei via Algo. 2;
8 // auxiliary tasks

9 update {Eageu , Ejobu } and {Ecatei , Eratei } via Algo. 2;
10 // pre-training loss

11 calculate L𝑝𝑟𝑒 via Eq. 19;
12 L𝑝𝑟𝑒 backward;
13 // Fine-tuning

14 for 𝑒𝑝𝑜𝑐ℎ = 1, 2, 3, ... do
15 update Eu and Ei via Algo. 2;
16 calculate L𝑟𝑒𝑐 via Eq. 16;
17 L𝑟𝑒𝑐 backward;
18 Recommend via Eq. 15;

encompassing the initial user and item embeddings, denoted as Θ = {Eu ∪ Ei}. Regularization is carried out using
𝜆Θ.
For auxiliary tasks, take "items with the same cate" as an example. Since hyperedges represent relations

and attributes, we utilize the inner product between the embeddings representing this relation (or attribute)
hyperedges and the corresponding item (or user) node embeddings as the prediction score:

𝑌𝑐𝑎𝑡𝑒 = Ei · Ecatee
⊺
, (17)

where Ecatee and Ei represent the embeddings of specific hyperedges for the auxiliary task and the embeddings of
task-relevant nodes, respectively. 𝑌𝑐𝑎𝑡𝑒 is a score matrix, where each element 𝑦𝑐𝑎𝑡𝑒 (𝑖, 𝑒) denotes the likelihood of
association between item node 𝑖 and attribute hyperedge 𝑒 . Subsequently, we employ the Bayesian Personalized
Ranking (BPR) loss to optimize the auxiliary task:

L𝑐𝑎𝑡𝑒 =
∑︁

(𝑖,𝑒,𝑒′) ∈D𝑐𝑎𝑡𝑒

−𝑙𝑜𝑔𝜎 (𝑦𝑐𝑎𝑡𝑒 (𝑖, 𝑒) − 𝑦𝑐𝑎𝑡𝑒 (𝑖, 𝑒′)), (18)

where D𝑐𝑎𝑡𝑒 represents the set of node-hyperedge interaction pairs in the training set of auxiliary task "items
with same cate", and each node 𝑖 is connected to a positive example attribute hyperedge 𝑒 and a negative example
attribute hyperedge 𝑒′.𝑦𝑐𝑎𝑡𝑒 (𝑖, 𝑒) and𝑦𝑐𝑎𝑡𝑒 (𝑖, 𝑒′) denote the prediction scores for the positive and negative example
attribute hyperedges with node, respectively. 𝜎 refers to the Sigmoid function defined as 𝜎 (𝑥) = 1

1+exp (−𝑥) .
Finally, we jointly optimize the pre-trained using both recommendation main tasks and auxiliary tasks:

L𝑝𝑟𝑒 = 𝜆𝑟𝑒𝑐 · L𝑟𝑒𝑐 + (1 − 𝜆𝑟𝑒𝑐) · L𝑎,L𝑎 = L𝑐𝑎𝑡𝑒 + ... + L𝑎𝑔𝑒 , (19)

, Vol. 1, No. 1, Article . Publication date: October 2025.

16 • J. Zhang et al.

where 𝜆𝑟𝑒𝑐 serves as the coefficient to balance the losses between main tasks and auxiliary tasks. L𝑎 represents
the auxiliary loss added by all auxiliary tasks. During fine-tuning, only the main task from pre-training is
retained. Specifically, during optimization, only the information on the optimized hypergraph encoder for the
user-item hypergraph and item-user hypergraph is aggregated. The loss calculation remains partially the same as
in pre-training L𝑟𝑒𝑐 .

3.5 Time complexity analysis
Hypergraph Structural Entropy. The enhanced HGCN in EPRHSE is extended by hypergraph structure entropy.
Constructing one 3-dimensional hypergraph structural entropy encoding tree takes 𝑂 (∥𝐴H ∥0 · (1 + 𝑙𝑜𝑔|V|)),
where 𝐴H is the initial hypergraph adjacent matrix calculate by Eq. 8 andV is the node set in hypergraph. ∥ · ∥0
is zero norm, representing the number of non-zero elements. Specifically, the number of Megre attempts per
round is ∥𝐴H ∥0. When the parallel rate is 𝑝 , the maximum number of rounds required for merging is 𝑙𝑜𝑔1−𝑝

1−𝑝
|V |−1 .

Consequently, the time complexity of constructing a 2-dimensional encoding tree is 𝑂 (∥𝐴H ∥0 · 𝑙𝑜𝑔1−𝑝
1−𝑝
|V |−1),

which can be simplified to 𝑂 (∥𝐴H ∥0 · (1 + 𝑙𝑜𝑔 |V|)). Similarly, the time complexity of adding one layer of a
2-dimensional encoding tree is𝑂 (∥𝐴H′ ∥0 · (1 + 𝑙𝑜𝑔 |𝐶1 |)), where𝐶1 is the set of community nodes in the previous
2-dimensional encoding tree, and 𝐴H′ is the adjacency matrix of the hypergraph updated by Eq. 12 and Eq. 8.
Thus, the time complexity of constructing a 3-dimensional encoding tree is 𝑂 (∥𝐴H ∥0 · (1 + 𝑙𝑜𝑔 |V|) + ∥𝐴H′ ∥0 ·
(1 + 𝑙𝑜𝑔 |𝐶1 |)), which can be simplified to 𝑂 (∥𝐴H ∥0 · (1 + 𝑙𝑜𝑔|V|)). Incorporated into our model EPRHSE, we
construct a 3-dimensional encoding tree for tasks of user-item, i-cate, and i-rate. Therefore, the added time
complexity is𝑂 (∥𝐴𝑢H ∥0 · (1 + 𝑙𝑜𝑔|𝑈 |) + (∥𝐴

𝑐𝑎𝑡𝑒
H ∥0 + ∥𝐴

𝑟𝑎𝑡𝑒
H ∥0) · (1 + 𝑙𝑜𝑔|𝐼 |)), where𝐴

𝑢
H ,𝐴

𝑐𝑎𝑡𝑒
H , and𝐴𝑟𝑎𝑡𝑒H represent

the hypergraph adjacent matrix for three tasks, respectively.𝑈 is the user set and 𝐼 is the item set.
Optimized HGCN and pre-training. The time complexity of a single layer in an HGCN is 𝑂 (|V|2 · 𝑑 +

𝑛𝑛𝑧 (𝐴𝐺) · |V|), where |V| denotes the number of nodes in the hypergraph, and 𝐴𝐺 represents the bipartite
graph matrix of the hypergraph. When 𝐴𝐺 is sparse, the time complexity of the HGCN can be approximated
as 𝑂 (|V|2 · 𝑑). The time complexity of HP or HPU is 𝑂 (|𝐶 | · |V| · 𝑑). Therefore, the time complexity of an
optimized HGCN is 𝑂 (2 · |V|2 · 𝑑 + 2 · |𝐶1 | · |V| · 𝑑 + 2 · |𝐶1 |2 · 𝑑 + 2 · |𝐶1 | · |𝐶2 | · 𝑑 + |𝐶2 |2 · 𝑑), where |𝐶1 | and
|𝐶2 | are the number of communities of two layers. Since |𝐶1 | and |𝐶2 | are typically much smaller compared
to |V|, the time complexity of optimized HGCN can be simplified to 𝑂 (2 · |V|2 · 𝑑). Since the hypergraph
structural entropy can be precomputed and does not need to be repeatedly involved during pre-training, the
overall time complexity only considers the optimized HGCN for all tasks. Thus, it can be approximated as
𝑂 (2 · |𝑈 |2 · 𝑑) + 𝑂 (|𝐼 |2 · 𝑑) + 𝑂 (2 · |𝐼 |2 · 𝑑) + 𝑂 (2 · |𝐼 |2 · 𝑑) + 𝑂 (|𝑈 |2 · 𝑑) + 𝑂 (|𝑈 |2 · 𝑑), representing two main
tasks and four auxiliary tasks respectively. After simplifying the constant term, it can be further expressed as
𝑂 (|𝑈 |2 · 𝑑 + |𝐼 |2 · 𝑑), where |𝑈 | is the number of users and |𝐼 | is the number of items.

3.6 Space complexity analysis
We next analyze the space complexity of the proposed framework EPRHSE from three perspectives: hypergraph
structural entropy (Algo. 1), hypergraph pooling/unpooling (Algo. 2), and the overall pre-training and optimization
procedure (Algo. 3).
Hypergraph structural entropy. The adjacency matrix 𝐴H derived from Eq. 8 has 𝑛𝑛𝑧 (𝐴H) non-zero

elements. Storing this sparse structure requires 𝑂 (𝑛𝑛𝑧 (𝐴H)) memory. During the construction of the encoding
tree, candidate node pairs 𝐿𝑜𝑝 are generated. In the worst case, the number of candidate pairs is𝑂 (|V|2); however,
by parallel merging with parameter 𝑝 , only 𝑄 = 𝑂 ((1 − 𝑝) |V|) pairs are retained in each round, leading to an
effective peak memory of𝑂 (𝑛𝑛𝑧 (𝐴H) +𝑄). Thus, the space complexity of structural entropy is𝑂 (𝑛𝑛𝑧 (𝐴H) + |V|).
Hypergraph pooling and unpooling. In Algo. 2, the major memory usage comes from storing node and

community embeddings. Each layer requires embeddings of size |V| × 𝑑 , |𝐶1 | × 𝑑 , and |𝐶2 | × 𝑑 , together with the

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 17

bipartite graph matrices 𝐴0
G, 𝐴

1
G, 𝐴

2
G . Since |𝐶1 |, |𝐶2 | ≪ |V|, the worst overall space complexity of hypergraph

pooling/unpooling is 𝑂 (|V| · 𝑑 + 𝑛𝑛𝑧 (𝐴G)).
Recommendation and optimization. During pre-training and fine-tuning (Algo. 3), we construct encoding

trees and learn embeddings for bothmain and auxiliary tasks. The total memory required for hypergraph structural
entropy is𝑂 (𝑛𝑛𝑧 (𝐴𝑢H) +𝑛𝑛𝑧 (𝐴

𝑐𝑎𝑡𝑒
H) +𝑛𝑛𝑧 (𝐴

𝑟𝑎𝑡𝑒
H) + |𝑈 | + |𝐼 |). The memory for hypergraph pooling and unpooling

is𝑂 (|𝑈 |𝑑 +𝑛𝑛𝑧 (𝐴𝑢G)) +𝑂 (|𝐼 |𝑑 +𝑛𝑛𝑧 (𝐴
𝑖
G)) +𝑂 (|𝑈 |𝑑 +𝑛𝑛𝑧 (𝐴

𝑎𝑔𝑒

G)) +𝑂 (|𝑈 |𝑑 +𝑛𝑛𝑧 (𝐴
𝑗𝑜𝑏

G)) +𝑂 (|𝐼 |𝑑 +𝑛𝑛𝑧 (𝐴
𝑐𝑎𝑡𝑒
G)) +

𝑂 (|𝐼 |𝑑 + 𝑛𝑛𝑧 (𝐴𝑟𝑎𝑡𝑒G)). However, since these tasks are optimized sequentially, only one task’s embeddings and
adjacency structure need to reside in memory at a time. Therefore, the effective peak memory is dominated by
the two main tasks: 𝑂 (|𝑈 |𝑑 + 𝑛𝑛𝑧 (𝐴𝑢G) + |𝐼 |𝑑 + 𝑛𝑛𝑧 (𝐴

𝑖
G)). Thus, the total memory requirement can be expressed

as 𝑂 ((|𝑈 | + |𝐼 |)𝑑 + 𝑛𝑛𝑧 (𝐴𝑢G) + 𝑛𝑛𝑧 (𝐴
𝑖
G) + 𝑛𝑛𝑧 (𝐴

𝑢
H) + 𝑛𝑛𝑧 (𝐴

𝑐𝑎𝑡𝑒
H) + 𝑛𝑛𝑧 (𝐴

𝑟𝑎𝑡𝑒
H)), which in the worst case can be

simplified to 𝑂 (|𝑈 | |𝐼 | + |𝑈 |2 + |𝐼 |2).
In practice, the memory consumption is dominated by the hypergraph structural entropy computation. Since

the community partition of the hypergraph is determined solely by the input graph and does not change across
training epochs, it can be precomputed once on the CPU and stored to alleviate GPU memory pressure. During
training, the precomputed community structure can be efficiently loaded on the GPU as needed. This strategy
significantly reduces GPU memory usage and allows the model to scale to large graphs.

4 EXPERIMENT SETUP
In this section, we present the foundational setup of the experiments, including detailed information about the
datasets (Section 4.1), the baselines (Section 4.2), variations of EPRHSE (Section 4.3), as well as the calculation of
evaluation metrics (Section 4.4).

4.1 Datasets
We conduct experiments on five real-world datasets: Steam, XMrec-CN, XMrec-MX, XMrec-AU, and XMrec-BR.
Steam [63] includes users’ transaction records on the Steam online game store. In auxiliary tasks, "items with same
category" (i-cate), "items with same rate" (i-rate), "users with same age" (u-age), and "users with same job" (u-job) are
used. XMarket [7] is a publicly available large-scale dataset obtained from Amazon. We use the data from China,
Mexico, Australia, and Brazil for our experiments. In auxiliary tasks for these four datasets, "items with same
category" (i-cate), "items with same rate" (i-rate), and "items bought together" (i-bT) are used. In addition, substitute
relations between "items compared together" (i-cpr) are predicted as homogeneous edges for XMrec-MX. Since
the other three datasets do not support this data, there is no such auxiliary task. Beyond auxiliary tasks, we also
define two main tasks that directly reflect the essence of recommendation: user–item task (“users buying the same
item”), which models the similarity between users who share common purchases, thereby capturing collective
preference patterns on the user side; item–user task (“items bought by the same user”), which models the similarity
between items co-consumed by the same user, thereby capturing substitutable or complementary relations on
the item side. These two tasks correspond to the “user–item” and “item–user” entries in Table 6. Together, they
constitute the fundamental prediction objectives, while auxiliary tasks provide additional heterogeneous social
and attribute information. For each user, we select one user-item interaction for pre-training and fine-tuning,
and the remaining user-item interactions for user-data fine-tuning testing.
The statistics of the five datasets are shown in Table 2. The columns "#user", "#item", "#u-i edges", and

"split" are the number of users, the number of items, the number of user-item interactions, and the number of
training and test users in the dataset, respectively. The "#sparsity" column indicates the sparsity of the user-item
interaction. The “#auxiliary tasks” column indicates the type of auxiliary tasks used for each dataset. For each
auxiliary task, we construct a corresponding hypergraph, where each attribute or relationship is modeled as

, Vol. 1, No. 1, Article . Publication date: October 2025.

18 • J. Zhang et al.

a hyperedge. The number reported in this column (“hyperedges number”), therefore, corresponds to the total
number of hyperedges in the constructed hypergraph. We only adopt the enhanced HGCN encoder for tasks
where community aggregation is relatively obvious, explicitly referring to the "users buying same item" main task
and the i-cate, i-rate auxiliary task. However, for i-bT, i-cpr, u-age, and u-job auxiliary tasks where community
aggregation is not obvious, we retain the original HGCN encoder, and the specific community aggregation can
be seen in Table 6.

Table 2. The statistics of datasets.

Dataset #user #item #u-i edges #sparsity #auxiliary tasks split

Steam 50,292 1,809 65,379 0.00072

i-cate: 20
i-rate: 486
u-age: 5,186
u-job: 11,198

train: 50,292
test: 15,087

XMrec-CN 18,806 5,937 23,065 0.00021
i-cate: 12
i-rate: 9
i-bT: 155

train: 18,806
test: 4,259

XMrec-MX 221,890 35,235 305,569 0.00004

i-cate: 14
i-rate: 9
i-bT: 4221
i-cpr: 2309

train: 221,890
test: 83,679

XMrec-AU 86,975 42,094 213,086 0.00006
i-cate: 14
i-rate: 9
i-bT: 3,339

train: 86,975
test: 126,111

XMrec-BR 25,059 11,327 37,072 0.00013
i-cate: 13
i-rate: 9
i-bT: 1,758

train: 25,059
test: 12,013

4.2 Baselines
To verify the effectiveness of EPRHSE, we compare the performances of graph-based recommendation models
with and without using user and item embeddings pre-trained by EPRHSE, including LightGCN, DirectAU,
UltraGCN, HGNN, HCCF, and DHCF.
• LightGCN [32]. This graph convolution network simplifies the design of GCN with only neighborhood
aggregation for the recommendation and weighted all layer embeddings.
• DirectAU [84]. This graph encoder improves LightGCN by directly optimizing the alignment and uniformity
learning objective.
• UltraGCN [62]. This is an ultra-simplification of GCN that skips infinite layers of message passing with a
constraint loss to approximate the limit of graph convolutions directly.
• HGNN [25]. This hypergraph neural network uses hypergraph convolution operations to encode high-order
data correlation.
• HCCF [102]. This is a self-supervised hypergraph contrastive collaborative filtering framework to jointly
capture local and global collaborative relations.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 19

• DHCF [40]. This is a variant of HGCN that introduces a dual-channel learning strategy and jump hypergraph
convolution method.

We also compare with pre-training baselines, including GCC, SGL, AttriMask, and UPRTH.

• GCC [69]. This pre-trained graph contrast encoding model based on HGCN leverages contrastive learning
with random walks to capture graph structure information.
• SGL [97]. This self-supervised graph-learning model based on LightGCN drops edges for contrastive
learning in pre-training.
• AttriMask [34]. This method applies HGCN and adds a linear model to predict masked attributes during
pre-training.
• UPRTH [108]. This unified pre-training framework uses HGCN to learn node embeddings and designs a
transitional attention layer to fuse the results of different tasks.

In addition to pre-training models, we further incorporate state-of-the-art graph contrastive learning baselines.
These models leverage various data augmentation strategies to perform contrastive learning, thereby addressing
the data sparsity issue in recommendation. Representative methods include NCL, XSimGCL, and LightGCL.

• NCL [53]. This method incorporates the neighborhood of users (or items) from both the graph structure and
the semantic space, and introduces a novel structural adversarial objective that treats structural neighbors
as positive contrastive pairs.
• XSimGCL [113]. This extremely simple graph contrastive learning method discards ineffective graph
augmentations and instead employs a simple yet effective noise-based embedding perturbation to generate
contrastive learning views.
• LightGCL [9]. This simple yet effective graph contrastive learning paradigm leverages singular value
decomposition for contrastive augmentation, thereby enabling unconstrained structural enhancement
through global relational modeling.

4.3 Variations
To demonstrate the effectiveness of some modules and prove that good results can be achieved without the hyper-
graph fusion mechanism, we construct some variants and compare them with EPRHSE by ablation experiments.

• EPRHSE+TA𝑎𝑡𝑡 (in Section 5.2.2). This is a variation of EPRHSE with the TA layer introduced in Section 2.4
to integrate the node representations obtained from auxiliary tasks into the main task through an attention
mechanism.
• EPRHSE+TA𝑠𝑢𝑚 (in Section 5.2.2). This is a variation of EPRHSE in which the TA layer is incorporated,
where the embeddings from the auxiliary task are directly added to the hyperedges of the main task.
• EPRHSE+TA𝑐𝑜𝑛𝑐𝑎𝑡 (in Section 5.2.2). This is a variation of EPRHSE that incorporates the TA layer, where
the embeddings of the auxiliary task are concatenated and merged into the hyperedges of the main task
through a linear layer.
• EPRHSE_w/o_auxiliary (in Section 5.4). This is a variation of EPRHSE without all auxiliary tasks,
including i-cate, i-rate, i-bT, i-cpr, u-age, and u-job.

4.4 Evaluation Metrics
We evaluate the recommendation framework by ranking the test items with all non-interacted users during fine-
tuning. 𝑅𝑎𝑐𝑎𝑙𝑙@{10, 20} and 𝑁𝐷𝐶𝐺@{10, 20} are adopted as evaluation metrics. In the subsequent tables, we use
R@10, R@20, N@10, and N@20 for shorthand. Recall@K represents the proportion of correctly predicted items

, Vol. 1, No. 1, Article . Publication date: October 2025.

20 • J. Zhang et al.

within the top K recommended items relative to the total number of items that should have been recommended:

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
𝑇𝑃@𝐾

𝑇𝑃@𝐾 + 𝐹𝑁@𝐾
, (20)

where 𝑇𝑃@𝐾 is True Positive when recommending the first K items, and 𝐹𝑁@𝐾 is False Negative when
recommending the first K items. NDCG is Normalized Discounted Cumulative Gain, which takes into account
the order of recommended items:

𝑁𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺@𝐾
𝐼𝐷𝐶𝐺@𝐾

, 𝐷𝐶𝐺@𝐾 =

𝐾∑︁
𝑖=1

𝑦𝑟𝑒𝑐 (, 𝑖)
𝑙𝑜𝑔2 (𝑖 + 1)

, 𝐼𝐷𝐶𝐺@𝐾 =

𝑚𝑖𝑛{𝐾, |𝑌 | }∑︁
𝑖=1

1
𝑙𝑜𝑔2 (𝑖 + 1)

, (21)

where 𝑌𝑟𝑒𝑐 is the score matrix between users and items calculated by Eq. 15, and 𝑦𝑟𝑒𝑐 (, 𝑖) is one element in
𝑌𝑟𝑒𝑐 representing the relevance score of item 𝑖 for a user. 𝑌 is a list of real recommended items for a user. The
Discounted Cumulative Gain (DCG) is a metric that increases the gain for items ranked higher in the predicted
order while discounting the gain for items ranked lower. The Ideal Discounted Cumulative Gain (IDCG) represents
the DCG in the best possible item ranking.

5 RESULTS AND DISCUSSION
This section conducts several experiments to evaluate the performance of EPRHSE. We mainly answer the
following questions:
• Q1: (Section 5.1) How does EPRHSE perform compared to 13 baseline models across different datasets?
Additionally, what advantages does the pre-training architecture of EPRHSE offer over the latest baseline
model in terms of algorithmic effectiveness?
• Q2: (Section 5.2) How does the hypergraph pooling layer contribute to overall performance? Additionally,
how does the performance change when incorporating the hypergraph fusion mechanism (TA layer)?
• Q3: (Section 5.3) How do four key hyperparameters (learning rate for pre-training 𝑙𝑟𝑝𝑟𝑒 , learning rate
for fine-tuning 𝑙𝑟 , weight for recommendation 𝜆𝑟𝑒𝑐 , and regularization 𝜆Θ) impact the performance and
stability of EPRHSE?
• Q4: (Section 5.4) How does EPRHSE work in the cold-start scenario compared to pre-trained baselines, and
which part plays a key role in EPRHSE?
• Q5: (Section 5.5) How efficient can different baselines and EPRHSE be? And what are the advantages
of EPRHSE in operation?
• Q6: (Section 5.6) How do the visualization results demonstrate the hierarchical communities formed through
structural entropy? And how do the embeddings learned by different models appear when visualized?

5.1 Overall Effectiveness
Table 3 reports the overall results of EPRHSE and thirteen baselines across five datasets. The first six columns
correspond to baselines without pre-training, the next three columns correspond to graph contrastive learning
baselines, and the following four columns correspond to pre-training-based baselines. After these, we present the
results of EPRHSE. The final column (Improv.) reports the percentage improvement and the p-value from the
t-test of our model compared with the best-performing baseline. In addition, the standard deviations (std) are
reported in a smaller font beneath each row. From these results, we draw the following conclusions:
(1) Overall, the EPRHSE model, which incorporates the topological structure and global dependency rela-

tionships, achieves the best recommendation performance across the five datasets. Specifically, except
for NDCG@10 and NDCG@20 on the XMrec-MX dataset, which are suboptimal, all other metrics are
optimal and show varying degrees of improvement compared to the best baseline. The Recall@10 on

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 21
Ta
bl
e
3.

C
om

pa
ri
so
n
of

th
e
R
ec
al
l@

10
,R

ec
al
l@

20
,N

D
C
G
@
10
,a
nd

N
D
C
G
@
20

ac
ro
ss

di
ffe

re
nt

m
et
ho

ds
on

fiv
e
da

ts
et
s.
Th

e
op

ti
m
al
re
su
lts

ar
e
bo

ld
ed
,

an
d
th
e
su
bo

pt
im

al
re
su
lt
s
ar
e
un

de
rl
in
ed
.

M
et
ho

d
Li
gh

tG
C
N

D
ir
ec
tA

U
U
lt
ra
G
C
N

H
G
N
N

H
C
C
F

D
H
C
F

N
C
L

X
Si
m
G
C
L

Li
gh

tG
C
L

G
C
C

SG
L

A
tt
ri
M
as
k

U
PR

T
H

EP
R
H
SE

Im
pr

ov
.

SteamR
@
10

0.
00
69

0.
05
74

0.
04
16

0.
07
80

0.
09
76

0.
12
14

0.
09
49

0.
11
21

0.
11
55

0.
13
64

0.
11
20

0.
13
98

0.
17
21

0.
17

31
0.
59
%

st
d

±
0.
00
01

±
0.
00
55

±
0.
00
11

±
0.
00
12

±
0.
00
07

±
0.
00
21

±
0.
00
10

±
0.
00
13

±
0.
00
47

±
0.
00
13

±
0.
00
28

±
0.
00
25

±
0.
00
12

±
0.
00
02

p=
4.
1e
-2

R
@
20

0.
01
03

0.
08
60

0.
07
87

0.
11
04

0.
14
53

0.
19
59

0.
14
48

0.
17
29

0.
17
75

0.
22
88

0.
17
96

0.
22
47

0.
27
04

0.
28

26
4.
50
%

st
d

±
0.
00
01

±
0.
00
51

±
0.
00
23

±
0.
00
17

±
0.
00
08

±
0.
00
30

±
0.
00
17

±
0.
00
13

±
0.
00
69

±
0.
00
12

±
0.
00
26

±
0.
00
10

±
0.
00
10

±
0.
00
08

p=
6.
4e
-4

N
@
10

0.
00
34

0.
02
90

0.
02
06

0.
04
18

0.
04
89

0.
05
66

0.
04
83

0.
05
57

0.
05
75

0.
06
49

0.
05
37

0.
07
14

0.
08
41

0.
08

48
0.
83
%

st
d

±
0.
00
01

±
0.
00
29

±
0.
00
07

±
0.
00
06

±
0.
00
05

±
0.
00
11

±
0.
00
03

±
0.
00
07

±
0.
00
23

±
0.
00
07

±
0.
00
24

±
0.
00
13

±
0.
00
07

±
0.
00
01

p=
4.
8e
-2

N
@
20

0.
00
42

0.
03
62

0.
02
99

0.
05
02

0.
06
09

0.
07
53

0.
06
09

0.
07
10

0.
07
31

0.
08
82

0.
07
08

0.
09
29

0.
10
88

0.
11

22
3.
11
%

st
d

±
0.
00
01

±
0.
00
28

±
0.
00
06

±
0.
00
08

±
0.
00
03

±
0.
00
13

±
0.
00
04

±
0.
00
06

±
0.
00
26

±
0.
00
07

±
0.
00
23

±
0.
00
10

±
0.
00
06

±
0.
00
02

p=
3.
1e
-3

XMrec-CNR
@
10

0.
00
36

0.
00
30

0.
00
31

0.
00
61

0.
00
23

0.
00
33

0.
00
53

0.
00
34

0.
00
46

0.
01
12

0.
00
62

0.
05
51

0.
08
01

0.
08

64
7.
85
%

st
d

±
0.
00
04

±
0.
00
04

±
0.
00
02

±
0.
00
10

±
0.
00
02

±
0.
00
05

±
0.
00
10

±
0.
00
06

±
0.
00
07

±
0.
00
07

±
0.
00
04

±
0.
00
06

±
0.
00
15

±
0.
00
04

p=
7.
0e
-4

R
@
20

0.
00
68

0.
00
40

0.
00
53

0.
00
74

0.
00
38

0.
00
47

0.
00
82

0.
00
74

0.
00
61

0.
01
77

0.
00
65

0.
07
84

0.
10
93

0.
12

20
11
.5
7%

st
d

±
0.
00
08

±
0.
00
05

±
0.
00
06

±
0.
00
09

±
0.
00
07

±
0.
00
07

±
0.
00
14

±
0.
00
04

±
0.
00
06

±
0.
00
08

±
0.
00
03

±
0.
00
07

±
0.
00
18

±
0.
00
07

p=
1.
4e
-4

N
@
10

0.
00
15

0.
00
14

0.
00
17

0.
00
29

0.
00
08

0.
00
22

0.
00
23

0.
00
14

0.
00
21

0.
00
68

0.
00
38

0.
02
69

0.
04
28

0.
04

51
5.
44
%

st
d

±
0.
00
01

±
0.
00
02

±
0.
00
02

±
0.
00
04

±
0.
00
02

±
0.
00
02

±
0.
00
04

±
0.
00
02

±
0.
00
03

±
0.
00
04

±
0.
00
02

±
0.
00
03

±
0.
00
08

±
0.
00
03

p=
3.
9e
-3

N
@
20

0.
00
24

0.
00
17

0.
00
23

0.
00
33

0.
00
12

0.
00
26

0.
00
29

0.
00
24

0.
00
25

0.
00
86

0.
00
39

0.
03
36

0.
05
06

0.
05

51
8.
81
%

st
d

±
0.
00
02

±
0.
00
02

±
0.
00
02

±
0.
00
04

±
0.
00
03

±
0.
00
03

±
0.
00
05

±
0.
00
02

±
0.
00
03

±
0.
00
03

±
0.
00
02

±
0.
00
03

±
0.
00
08

±
0.
00
02

p=
1.
4e
-4

XMrec-MXR
@
10

0.
01
41

0.
01
33

0.
00
34

0.
00
95

0.
00
77

0.
03
41

0.
02
35

0.
02
49

0.
01
89

0.
02
98

0.
04
57

0.
05
00

0.
08
22

0.
08

34
1.
44
%

st
d

±
0.
00
03

±
0.
00
13

±
0.
00
03

±
0.
00
06

±
0.
00
06

±
0.
00
09

±
0.
00
19

±
0.
00
26

±
0.
00
21

±
0.
00
53

±
0.
00
04

±
0.
00
03

±
0.
00
03

±
0.
00
03

p=
1.
2e
-2

R
@
20

0.
02
08

0.
01
96

0.
00
59

0.
01
54

0.
01
22

0.
04
89

0.
03
90

0.
04
21

0.
02
74

0.
05
27

0.
05
40

0.
07
48

0.
09
66

0.
09

76
0.
98
%

st
d

±
0.
00
02

±
0.
00
21

±
0.
00
02

±
0.
00
08

±
0.
00
07

±
0.
00
12

±
0.
00
19

±
0.
00
34

±
0.
00
25

±
0.
00
65

±
0.
00
04

±
0.
00
06

±
0.
00
13

±
0.
00
06

p=
4.
1e
-3

N
@
10

0.
00
82

0.
00
81

0.
00
17

0.
00
46

0.
00
43

0.
02
11

0.
01
21

0.
01
27

0.
01
05

0.
01
30

0.
02
33

0.
02
61

0.
05

74
0.
05
02

-
st
d

±
0.
00
05

±
0.
00
06

±
0.
00
01

±
0.
00
04

±
0.
00
02

±
0.
00
07

±
0.
00
07

±
0.
00
11

±
0.
00
12

±
0.
00
37

±
0.
00
03

±
0.
00
02

±
0.
00
04

±
0.
00
02

N
@
20

0.
01
00

0.
00
98

0.
00
23

0.
00
62

0.
00
55

0.
02
51

0.
01
60

0.
01
70

0.
01
28

0.
01
87

0.
02
56

0.
03
27

0.
06

12
0.
05
37

-
st
d

±
0.
00
04

±
0.
00
05

±
0.
00
02

±
0.
00
04

±
0.
00
03

±
0.
00
08

±
0.
00
06

±
0.
00
10

±
0.
00
13

±
0.
00
37

±
0.
00
02

±
0.
00
02

±
0.
00
02

±
0.
00
03

XMrec-AUR
@
10

0.
00
42

0.
00
28

0.
00
16

0.
00
48

0.
00
34

0.
00
92

0.
01
28

0.
01
31

0.
01
01

0.
01
07

0.
00
69

0.
01
48

0.
01
65

0.
02

12
28
.7
8%

st
d

±
0.
00
01

±
0.
00
02

±
0.
00
02

±
0.
00
03

±
0.
00
04

±
0.
00
10

±
0.
00
05

±
0.
00
04

±
0.
00
07

±
0.
00
23

±
0.
00
03

±
0.
00
21

±
0.
00
05

±
0.
00
07

p=
8.
1e
-3

R
@
20

0.
00
65

0.
00
51

0.
00
31

0.
00
74

0.
00
56

0.
01
40

0.
02
05

0.
02
07

0.
01
46

0.
01
61

0.
01
05

0.
02
28

0.
01
85

0.
02

58
13
.0
7%

st
d

±
0.
00
04

±
0.
00
02

±
0.
00
03

±
0.
00
05

±
0.
00
03

±
0.
00
22

±
0.
00
07

±
0.
00
05

±
0.
00
07

±
0.
00
32

±
0.
00
08

±
0.
00
14

±
0.
00
08

±
0.
00
09

p=
1.
1e
-2

N
@
10

0.
00
32

0.
00
21

0.
00
11

0.
00
35

0.
00
23

0.
00
65

0.
00
71

0.
00
68

0.
00
63

0.
00
82

0.
00
49

0.
00
98

0.
01
59

0.
01

82
14
.0
6%

st
d

±
0.
00
03

±
0.
00
01

±
0.
00
02

±
0.
00
02

±
0.
00
06

±
0.
00
13

±
0.
00
03

±
0.
00
02

±
0.
00
03

±
0.
00
09

±
0.
00
03

±
0.
00
09

±
0.
00
03

±
0.
00
03

p=
1.
3e
-2

N
@
20

0.
00
38

0.
00
27

0.
00
15

0.
00
42

0.
00
30

0.
00
78

0.
00
90

0.
00
87

0.
00
76

0.
00
97

0.
00
59

0.
01
21

0.
01
64

0.
01

93
18
.0
8%

st
d

±
0.
00
02

±
0.
00
01

±
0.
00
02

±
0.
00
02

±
0.
00
02

±
0.
00
18

±
0.
00
03

±
0.
00
02

±
0.
00
03

±
0.
00
11

±
0.
00
07

±
0.
00
10

±
0.
00
04

±
0.
00
03

p=
1.
2e
-2

XMrec-BRR
@
10

0.
02
32

0.
02
57

0.
00
40

0.
04
31

0.
07
82

0.
06
30

0.
06
29

0.
04
35

0.
06
70

0.
08
30

0.
08
43

0.
08
79

0.
13
65

0.
14

02
2.
72
%

st
d

±
0.
00
06

±
0.
00
26

±
0.
00
04

±
0.
00
17

±
0.
00
05

±
0.
00
33

±
0.
02
10

±
0.
01
93

±
0.
02
85

±
0.
00
45

±
0.
00
12

±
0.
00
22

±
0.
00
12

±
0.
00
06

p=
4.
9e
-3

R
@
20

0.
02
93

0.
03
90

0.
00
63

0.
08
60

0.
08
74

0.
08
20

0.
08
15

0.
09
17

0.
08
97

0.
09
11

0.
09
55

0.
09
52

0.
14
63

0.
15

09
3.
17
%

st
d

±
0.
00
08

±
0.
00
15

±
0.
00
05

±
0.
00
11

±
0.
00
14

±
0.
00
27

±
0.
02
28

±
0.
01
97

±
0.
02
82

±
0.
00
38

±
0.
00
09

±
0.
00
11

±
0.
00
08

±
0.
00
02

p=
2.
1e
-3

N
@
10

0.
00
96

0.
01
06

0.
00
22

0.
01
45

0.
03
73

0.
02
20

0.
03
71

0.
01
74

0.
02
98

0.
06
08

0.
06
51

0.
05
88

0.
06
96

0.
09

39
34
.7
6%

st
d

±
0.
00
03

±
0.
00
09

±
0.
00
03

±
0.
00
07

±
0.
00
06

±
0.
00
16

±
0.
01
78

±
0.
00
69

±
0.
01
19

±
0.
00
56

±
0.
00
21

±
0.
00
07

±
0.
00
46

±
0.
00
28

p=
7.
8e
-3

N
@
20

0.
01
14

0.
01
41

0.
00
28

0.
02
51

0.
03
98

0.
02
73

0.
04
20

0.
02
97

0.
03
57

0.
06
58

0.
06
81

0.
06
08

0.
07
23

0.
09

68
33
.8
3%

st
d

±
0.
00
02

±
0.
00
04

±
0.
00
02

±
0.
00
05

±
0.
00
05

±
0.
00
24

±
0.
01
75

±
0.
00
63

±
0.
01
13

±
0.
00
16

±
0.
00
14

±
0.
00
15

±
0.
00
35

±
0.
00
26

p=
8.
1e
-3

, Vol. 1, No. 1, Article . Publication date: October 2025.

22 • J. Zhang et al.

five datasets is increased by 0.59%, 7.85%, 1.44%, 28.78%, and 2.72%, while the Recall@20 is increased by
4.50%, 11.57%, 0.98%, 13.07%, and 3.17% respectively. The NDCG@10 on four datasets (except XMrec-MX) is
increased by 0.83%, 5.44%, 14.06%, and 34.76%, while the NDCG@20 is increased by 3.11%, 8.81%, 18.08%,
and 33.83%, respectively. Moreover, all 18 p-values are below 0.05, with 9 of them smaller than 0.005,
indicating that the superiority of EPRHSE is statistically significant. We attribute these improvements to
the use of hypergraph structural entropy in EPRHSE, which integrates topological structures and global
dependency relationships during pre-training, thereby enabling the learned embeddings to better capture

Table 4. Recall results of adding EPRHSE for pre-training on baselines without pre-training. (↑ indicates which method
(“+UPRTH” or “+ EPRHSE”) achieves greater improvement, while red denotes performance drop after pre-training. Cells with
light orange highlight results superior to UPRTH, dark orange highlights results superior to EPRHSE, and the best results are
highlighted in bold.)

Dataset Steam XMrec-CN XMrec-MX XMrec-AU XMrec-BR
Metric R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20

EPRHSE 0.1731 0.2826 0.0864 0.1220 0.0834 0.0976 0.0212 0.0258 0.1402 0.1509
UPRTH 0.1721 0.2704 0.0801 0.1093 0.0822 0.0966 0.0165 0.0185 0.1365 0.1463

LightGCN 0.0069 0.0103 0.0036 0.0068 0.0141 0.0208 0.0042 0.0065 0.0232 0.0293
+UPRTH 0.0097 0.0165 0.0353 0.0716 ↑0.0593 ↑0.0717 0.0192 0.0244 0.1302 0.1380
+ EPRHSE ↑0.0250 ↑0.0345 ↑0.0656 ↑0.1126 0.0582 0.0705 ↑0.0195 ↑0.0252 ↑0.1317 ↑0.1400
DirectAU 0.0574 0.0860 0.0030 0.0040 0.0133 0.0196 0.0028 0.0051 0.0257 0.0390
+UPRTH 0.0601 0.0898 0.0614 0.1076 ↑0.0550 0.0681 0.0198 0.0247 0.1305 0.1447
+ EPRHSE ↑0.0762 ↑0.1086 ↑0.0695 ↑0.1139 0.0545 ↑0.0690 ↑0.0207 ↑0.0261 ↑0.1366 ↑0.1475
UltraGCN 0.0416 0.0787 0.0031 0.0053 0.0034 0.0059 0.0016 0.0031 0.0040 0.0063
+UPRTH 0.0702 0.1370 0.0526 0.0791 ↑0.0559 ↑0.0706 0.0194 0.0213 0.1279 0.1363
+ EPRHSE ↑0.1232 ↑0.2106 ↑0.0609 ↑0.0845 0.0483 0.0596 ↑0.0201 ↑0.0227 ↑0.1303 ↑0.1403
HGNN 0.0780 0.1104 0.0061 0.0074 0.0095 0.0154 0.0048 0.0074 0.0431 0.0860
+UPRTH ↑0.1334 ↑0.2289 0.0678 0.1078 0.0530 0.0623 0.0188 0.0228 0.0999 0.1462
+ EPRHSE 0.1239 0.2191 ↑0.0808 ↑0.1129 ↑0.0587 ↑0.0704 ↑0.0207 ↑0.0270 ↑0.1381 ↑0.1483

HCCF 0.0976 0.1453 0.0023 0.0038 0.0077 0.0122 0.0034 0.0056 0.0782 0.0874
+UPRTH 0.1450 0.2460 ↑0.0461 ↑0.0715 0.0364 0.0515 0.0132 0.0142 0.1307 0.1381
+ EPRHSE ↑0.1483 ↑0.2488 0.0391 0.0625 ↑0.0580 ↑0.0678 ↑0.0168 ↑0.0194 ↑0.1340 ↑0.1436

DHCF 0.1214 0.1959 0.0033 0.0047 0.0341 0.0489 0.0092 0.0140 0.0630 0.0820
+UPRTH 0.1472 0.2567 ↑0.0744 ↑0.1172 0.0334 0.0508 0.0171 0.0193 0.1104 0.1226
+ EPRHSE ↑0.1652 ↑0.2676 0.0697 0.1134 ↑0.0438 ↑0.0562 ↑0.0190 ↑0.0241 ↑0.1205 ↑0.1363

NCL 0.0949 0.1448 0.0053 0.0082 0.0235 0.0390 0.0128 0.0205 0.0629 0.0815
+UPRTH 0.0725 0.1163 0.0285 0.0409 ↑0.0457 ↑0.0605 0.0171 0.0243 0.0631 0.0708
+ EPRHSE ↑0.1194 ↑0.1976 ↑0.0297 ↑0.0453 0.0448 0.0594 ↑0.0206 ↑0.0292 ↑0.0677 ↑0.1287
XSimGCL 0.1121 0.1729 0.0034 0.0074 0.0249 0.0421 0.0131 0.0207 0.0435 0.0917
+UPRTH 0.0706 0.1122 0.0363 0.0458 0.0449 0.0554 0.0165 0.0217 ↑0.0923 ↑0.0993
+ EPRHSE 0.1023 0.1520 ↑0.0384 ↑0.0546 ↑0.0492 ↑0.0643 ↑0.0186 ↑0.0252 0.0590 0.0677
LightGCL 0.1155 0.1775 0.0046 0.0061 0.0189 0.0274 0.0101 0.0146 0.0670 0.0897
+UPRTH 0.0884 0.1140 0.0278 0.0549 0.0472 0.0599 0.0128 0.0184 ↑0.1714 ↑0.1838
+ EPRHSE ↑0.1196 ↑0.1986 ↑0.0357 ↑0.0597 ↑0.0511 ↑0.0611 ↑0.0141 ↑0.0198 0.1649 0.1745

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 23

the characteristics of users and items. Furthermore, in Section 5.2.1, we conduct an ablation study on the
hypergraph pooling layers, which confirms that an appropriate number of hypergraph structural entropy
pooling layers contributes to enhanced recommendation performance. This indicates that enhancing the
performance of recommendations from the perspective of hypergraph learning and model architecture is
effective.

(2) Among the baselines, models enhanced with pre-training or graph contrastive learning (GCL) generally
outperform the basic models. Within the subset of pre-trained baselines, those employing auxiliary tasks

Table 5. NDCG results of adding EPRHSE for pre-training on baselines without pre-training. (↑ indicates which method
(“+UPRTH” or “+ EPRHSE”) achieves greater improvement, while red denotes performance drop after pre-training. Cells with
light orange highlight results superior to UPRTH, dark orange highlights results superior to EPRHSE, and the best results are
highlighted in bold.)

Dataset Steam XMrec-CN XMrec-MX XMrec-AU XMrec-BR
Metric N@10 N@20 N@10 N@20 N@10 N@20 N@10 N@20 N@10 N@20

EPRHSE 0.0848 0.1122 0.0451 0.0551 0.0502 0.0537 0.0182 0.0193 0.0939 0.0968
UPRTH 0.0841 0.1088 0.0428 0.0506 0.0574 0.0612 0.0159 0.0164 0.0696 0.0723

LightGCN 0.0034 0.0042 0.0015 0.0024 0.0082 0.0100 0.0032 0.0038 0.0096 0.0114
+UPRTH 0.0047 0.0064 0.0263 0.0371 0.0315 0.0347 0.0174 0.0187 0.0736 0.0757
+EPRHSE ↑0.0127 ↑0.0151 ↑0.0380 ↑0.0514 ↑0.0439 ↑0.0472 ↑0.0177 ↑0.0192 ↑0.1181 ↑0.1203
DirectAU 0.0290 0.0362 0.0014 0.0017 0.0081 0.0098 0.0021 0.0027 0.0106 0.0141
+UPRTH 0.0254 0.0329 0.0349 0.0480 0.0259 0.0295 0.0178 0.0190 ↑0.0827 ↑0.0865
+EPRHSE ↑0.0359 ↑0.0441 ↑0.0404 ↑0.0527 ↑0.0365 ↑0.0404 ↑0.0183 ↑0.0197 0.0676 0.0706
UltraGCN 0.0206 0.0299 0.0017 0.0023 0.0017 0.0023 0.0011 0.0015 0.0022 0.0028
+UPRTH 0.0291 0.0459 0.0344 0.0427 ↑0.0376 ↑0.0415 0.0185 0.0188 ↑0.0846 ↑0.0867
+EPRHSE ↑0.0582 ↑0.0802 ↑0.0405 ↑0.0476 0.0325 0.0356 ↑0.0187 ↑0.0192 0.0748 0.0773
HGNN 0.0418 0.0502 0.0029 0.0033 0.0046 0.0062 0.0035 0.0042 0.0145 0.0251
+UPRTH ↑0.0648 ↑0.0888 0.0368 0.0479 0.0259 0.0284 0.0171 0.0181 0.0594 0.0713
+EPRHSE 0.0586 0.0825 ↑0.0497 ↑0.0588 ↑0.0269 ↑0.0300 ↑0.0180 ↑0.0197 ↑0.1192 ↑0.1220
HCCF 0.0489 0.0609 0.0008 0.0012 0.0043 0.0055 0.0023 0.0030 0.0373 0.0398

+UPRTH 0.0715 0.0968 ↑0.0277 ↑0.0351 0.0233 0.0279 0.0129 0.0130 ↑0.0843 ↑0.0863
+EPRHSE ↑0.0728 ↑0.0980 0.0246 0.0311 ↑0.0335 ↑0.0361 ↑0.0153 ↑0.0159 0.0714 0.0740
DHCF 0.0566 0.0753 0.0022 0.0026 0.0211 0.0251 0.0065 0.0078 0.0220 0.0273

+UPRTH 0.0736 0.1010 ↑0.0458 ↑0.0580 0.0167 0.0213 0.0163 0.0167 0.0514 0.0548
+EPRHSE ↑0.0805 ↑0.1061 0.0398 0.0524 ↑0.0227 ↑0.0260 ↑0.0171 ↑0.0185 ↑0.0601 ↑0.0643

NCL 0.0483 0.0609 0.0023 0.0029 0.0121 0.0160 0.0071 0.0090 0.0371 0.0420
+UPRTH 0.0380 0.0491 ↑0.0173 ↑0.0209 0.0254 0.0293 0.0140 0.0160 ↑0.0467 ↑0.0489
+EPRHSE ↑0.0572 ↑0.0769 0.0162 0.0204 ↑0.0298 ↑0.0336 ↑0.0155 ↑0.0179 0.0432 0.0588
XSimGCL 0.0557 0.0710 0.0014 0.0024 0.0127 0.0170 0.0068 0.0087 0.0174 0.0297
+UPRTH 0.0368 0.0473 0.0203 0.0231 0.0258 0.0286 ↑0.0144 0.0157 ↑0.0663 ↑0.0682
+EPRHSE 0.0505 0.0631 ↑0.0214 ↑0.0261 ↑0.0291 ↑0.0329 0.0143 ↑0.0160 0.0423 0.0446
LightGCL 0.0575 0.0731 0.0021 0.0025 0.0105 0.0128 0.0063 0.0076 0.0298 0.0357
+UPRTH 0.0378 0.0441 0.0159 0.0236 0.0269 0.0302 0.0087 0.0103 0.1088 0.1122
+EPRHSE 0.0568 ↑0.0767 ↑0.0174 ↑0.0237 ↑0.0314 ↑0.0340 ↑0.0099 ↑0.0115 ↑0.1129 ↑0.1172

, Vol. 1, No. 1, Article . Publication date: October 2025.

24 • J. Zhang et al.

such as GCC, AttriMask, and UPRTH achieve better results than SGL, which does not incorporate auxiliary
tasks. Among the basic models, those using HGCN as the encoder (HGNN, HCCF, and DHCF) perform
better than those relying solely on LightGCN (LightGCN and DirectAU). This highlights the importance of
pre-training with auxiliary tasks and employing graph contrastive learning for recommendation systems
under sparse user–item interactions, as they help augment data under limited knowledge. Furthermore,
our EPRHSE improves HGCN by incorporating hypergraph structural entropy, thus overcoming its inability
to capture global dependencies and yielding better recommendation performance.

(3) EPRHSE achieves greater improvement in Recall@20 andNDCG@20 compared to Recall@10 andNDCG@10,
with the effect being particularly pronounced on the Steam and XMrec-CN datasets. This indicates
that EPRHSE is especially effective in enhancing the relevance of items ranked lower in the recommendation
list. Consequently, it contributes to recommendation stability, ensuring that relevant suggestions extend
beyond just the top-ranked items.

Comparing a pre-trained model with a non-pre-trained model may be inherently unfair. To ensure a fair
comparison, we apply EPRHSE’s pre-training to the six basic baseline models and three GCL models, using the
pre-trained embeddings from EPRHSE as their initial embeddings. Additionally, to validate the effectiveness of our
model’s pre-training architecture, we conduct the same procedure on the best-performing baseline (UPRTH). The
results are presented in Table 4 and Table 5, where the first row of each group represents the original baseline, the
second row "+UPRTH" indicates the baseline pre-trained with UPRTH, and the third row "+EPRHSE" represents
the baseline pre-trained with EPRHSE. For ease of comparison, we also report the results of EPRHSE and UPRTH,
highlighted with a gray background. In the table, ↑ indicates the method ("+UPRTH" or "+EPRHSE") that achieves
the larger performance improvement within each group, while a red background indicates that pre-training leads
to performance degradation. Cells with a light orange background mark results superior to UPRTH, and those
with a dark orange background highlight results superior to EPRHSE. The best results are further emphasized
in bold. Both tables demonstrate that the pre-trained embeddings generated by EPRHSE substantially enhance
the performance of almost all models, with improvements that are more significant and consistent than those
achieved by the best baseline, UPRTH. The only exceptions occur in the steam dataset experiments with XSimGCL
and LightGCL, where EPRHSE does not provide performance gains. In contrast, UPRTH exhibits performance
degradation across four baselines-DHCF, NCL, XSimGCL, and LightGCL. Moreover, after incorporating EPRHSE
for pre-training, many models even surpass the best baseline UPRTH, and in some cases, exceed EPRHSE itself.
For example, with EPRHSE pre-training, HGNN achieves higher NDCG scores than EPRHSE on the XMrec-CN,
XMrec-AU, and XMrec-BR datasets, establishing new state-of-the-art results. These findings highlight the strong
generalization capacity of EPRHSE, enabling it to adapt to diverse downstream models and to deliver remarkable
performance advantages in sparse-data scenarios.

5.2 Ablation Study
In this section, we perform ablation experiments on the hypergraph pooling layer (Section 5.2.1), which corre-
sponds to the dimensionality of encoding trees, and examine the impact of incorporating the TA layer in EPRHSE
(Section 5.2.2). These experiments aim to validate the contribution and effectiveness of each component.

5.2.1 Hypergraph pooling layer. To validate that the number of layers in the Hypergraph Pooling of EPRHSE
is appropriate, we employ the approach outlined in Section 3.2 to construct higher-dimensional encoding trees
and augment the corresponding pooling and unpooling layers in EPRHSE. The experimental results, as depicted
in Figure 4 and Figure 5, where each subplot with a dual y-axis illustrates the recommendation performance at the
top 10 or 20 across different layers under a dataset. In Figure 4, the blue bar chart corresponding to the left y-axis
represents Recall@20 and the red line chart corresponding to the right y-axis represents Recall@10. In Figure 5,
the purple bar chart corresponding to the left y-axis represents NDCG@20, and the red line chart corresponding

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 25

0 1 2 3 426
.0

27
.0

28
.0

Re
ca

ll@
20

 (
%

) 27.86 27.84

28.26
28.00 27.95

Steam

17
.0

17
.5

18
.0

Re
ca

ll@
10

 (
%

)

17.09
17.23

17.31 17.27
17.12

0 1 2 3 411
.5

12
.0

12
.5

Re
ca

ll@
20

 (
%

)

12.30
12.20 12.20

12.43 12.40
XMrec-CN

8.
0

8.
5

9.
0

Re
ca

ll@
10

 (
%

)

8.03

8.24

8.64

8.11
8.19

0 1 2 3 47.
5

8.
5

9.
5

Re
ca

ll@
20

 (
%

)

8.67 8.54

8.91

9.76

9.05

XMrec-MX

7.
0

7.
5

8.
0

8.
5

Re
ca

ll@
10

 (
%

)

7.25
7.15

7.40

8.24

7.56

0 1 2 3 4

1.
6

2.
1

2.
6

Re
ca

ll@
20

 (
%

)

1.65

2.20

2.58
2.49 2.44

XMrec-AU

1.
5

1.
8

2.
1

Re
ca

ll@
10

 (
%

)

1.56

1.92

2.12
2.06 2.04

0 1 2 3 4

7
11

15
Re

ca
ll@

20
 (

%
) 13.54

10.51

15.09

10.51

13.40

XMrec-BR

9.
5

12
.0

14
.5

Re
ca

ll@
10

 (
%

)

12.70

9.93

14.02

9.65

12.62
layer0
layer1
layer2

layer3
layer4

Fig. 4. Recall performance of EPRHSE with Hypergraph Pooling Layer from 0 to 4 layers.

0 1 2 3 410
.0

10
.5

11
.0

N
D

CG
@

20
 (

%
)

11.06 11.09
11.22

11.12 11.13

Steam

7
8

9
10

N
D

CG
@

10
 (

%
)

8.36 8.43 8.48 8.44 8.41

0 1 2 3 44.
0

4.
5

5.
0

5.
5

N
D

CG
@

20
 (

%
)

5.50
5.34

5.51
5.32

5.42

XMrec-CN

4.
0

4.
5

5.
0

N
D

CG
@

10
 (

%
)

4.31
4.22

4.51

4.11
4.23

0 1 2 3 43.
0

4.
0

5.
0

N
D

CG
@

20
 (

%
)

4.18 4.21 4.28

5.37

4.87

XMrec-MX

4.
0

5.
0

N
D

CG
@

10
 (

%
)

3.80 3.84 3.86

5.02

4.47

0 1 2 3 41.
0

1.
5

2.
0

N
D

CG
@

20
 (

%
)

1.53

1.81
1.93 1.95

1.85

XMrec-AU

1.
5

1.
7

1.
9

N
D

CG
@

10
 (

%
)

1.52

1.75
1.82 1.84

1.75

0 1 2 3 4

3.
5

6.
5

9.
5

N
D

CG
@

20
 (

%
)

6.79
5.96

9.68

6.13
7.01

XMrec-BR

5.
5

7.
5

9.
5

N
D

CG
@

10
 (

%
)

6.57

5.81

9.39

5.91

6.80

layer0
layer1
layer2

layer3
layer4

Fig. 5. NDCG performance of EPRHSE with Hypergraph Pooling Layer from 0 to 4 layers.

, Vol. 1, No. 1, Article . Publication date: October 2025.

26 • J. Zhang et al.

Table 6. Number of communities on different layers of the encoding tree for five datasets.

Dataset task type task name Layer0 Layer1 Layer2&3&4

Steam

main user-item 50,292 1,726 1,726
item-user 1,809 1,809 1,809

auxiliary
i-cate 1,809 387 381
i-rate 1,809 666 658
u-age 50,292 47,159 47,156
u-job 50,292 23,292 23,030

XMrec-CN
main user-item 18,806 5,413 5,413

item-user 5,937 5,937 5,937

auxiliary
i-cate 5,937 13 12
i-rate 5,937 10 9
i-bT 5,937 5,802 5,802

XMrec-MX

main user-item 221,890 31,222 31,222
item-user 35,235 35,235 35,235

auxiliary
i-cate 35,235 14 14
i-rate 35,235 10 9
i-bT 35,235 31,425 31,417
i-cpr 35,235 32,879 32,867

XMrec-AU
main user-item 86,975 28,090 28,090

item-user 42,094 42,094 42,094

auxiliary
i-cate 42,094 15 14
i-rate 42,094 10 9
i-bT 42,094 39,414 39,409

XMrec-BR
main user-item 25,059 7,837 7,837

item-user 11,327 11,327 11,327

auxiliary
i-cate 11,327 14 13
i-rate 11,327 10 9
i-bT 11,327 9,904 9,899

to the right y-axis represents NDCG@10. For different levels, for example, "𝐿𝑎𝑦𝑒𝑟𝑖" indicates that EPRHSE
constructs a (i+1)-dimensional encoding tree to form an i-layer community for pooling and unpooling.

We observe that as the number of layers increases, both Recall@{10,20} and NDCG@{10,20} initially improve
and then deteriorate. Except for Recall@20 on the XMrec-CN dataset, NDCG@10, NDCG@20 on the XMrec-AU
dataset, and Recall@10, Recall@20, NDCG@10, and NDCG@20 on the XMrec-MX dataset peaking at 𝐿𝑎𝑦𝑒𝑟3,
all other metrics across the datasets peak at 𝐿𝑎𝑦𝑒𝑟2, which is the optimal configuration for the model discussed
in EPRHSE. This phenomenon may be related to the number of communities in the encoding tree. Therefore,
in Table 6, we report the number of nodes for each task in each dataset, as well as the number of communities
obtained after several layers of hypergraph structural entropy partitioning. As seen in Table 6, there is a significant
aggregation of nodes from 𝐿𝑎𝑦𝑒𝑟0 to 𝐿𝑎𝑦𝑒𝑟1, whereas from 𝐿𝑎𝑦𝑒𝑟1 to 𝐿𝑎𝑦𝑒𝑟2, only a small portion of nodes
aggregate to form communities. Even at 𝐿𝑎𝑦𝑒𝑟3 and 𝐿𝑎𝑦𝑒𝑟4, no new communities are formed. This indicates that
a three-layer encoding tree (𝐿𝑎𝑦𝑒𝑟2) is sufficient to learn an adequate hierarchical structure for capturing the
global structure. This phenomenon aligns with the results shown in Figure 4 and Figure 5. During the transition
from 𝐿𝑎𝑦𝑒𝑟0 to 𝐿𝑎𝑦𝑒𝑟2, the hierarchical global structure is utilized to update the embeddings of items and users,

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 27

significantly improving recommendation performance. However, 𝐿𝑎𝑦𝑒𝑟3 and 𝐿𝑎𝑦𝑒𝑟4 do not uncover deeper
global dependencies, and the repeated pooling and unpooling processes from 𝐿𝑎𝑦𝑒𝑟2 result in overfitting of the
embeddings. Consequently, the recommendation performance deteriorates.

Table 7. Recall@10, Recall@20, NDCG@10, and NDCG@20 results of comparison on TA Layer. The best results are bolded,
and the second-best results are underlined.

Dataset Steam XMrec-CN XMrec-MX XMrec-AU XMrec-BR

Metric R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20

UPRTH 0.1721 0.2704 0.0801 0.1093 0.0822 0.0966 0.0165 0.0185 0.1365 0.1463
EPRHSE+TA𝑎𝑡𝑡 0.1727 0.2815 0.0844 0.1175 0.0824 0.0967 0.0212 0.0258 0.1392 0.1483
EPRHSE+TA𝑠𝑢𝑚 0.1719 0.2781 0.0846 0.1178 0.0832 0.0957 0.0212 0.0258 0.1390 0.1490
EPRHSE+TA𝑐𝑜𝑛𝑐𝑎𝑡 0.1723 0.2797 0.0802 0.1131 0.0826 0.0961 0.0212 0.0258 0.1393 0.1481

EPRHSE 0.1731 0.2826 0.0864 0.1220 0.0834 0.0976 0.0212 0.0258 0.1402 0.1509

Improv. 0.23% 0.39% 2.12% 3.56% 0.24% 0.93% - - 0.64% 1.27%

Metric N@10 N@20 N@10 N@20 N@10 N@20 N@10 N@20 N@10 N@20

UPRTH 0.0841 0.1088 0.0428 0.0506 0.0574 0.0612 0.0159 0.0164 0.0696 0.0723
EPRHSE+TA𝑎𝑡𝑡 0.0849 0.1118 0.0467 0.0563 0.0477 0.0515 0.0182 0.0193 0.0886 0.0909
EPRHSE+TA𝑠𝑢𝑚 0.0841 0.1107 0.0470 0.0565 0.0481 0.0515 0.0182 0.0193 0.0910 0.0936
EPRHSE+TA𝑐𝑜𝑛𝑐𝑎𝑡 0.0845 0.1114 0.0424 0.0520 0.0500 0.0537 0.0182 0.0193 0.1018 0.1042

EPRHSE 0.0848 0.1122 0.0451 0.0551 0.0502 0.0537 0.0182 0.0193 0.0939 0.0968

Improv. - 0.35% - - - - - - - -

5.2.2 TA Layer. We compare EPRHSE with models that aggregate differently in the TA Layer as well as the
best baseline model UPRTH. Three aggregation variations are denoted as EPRHSE+TA𝑎𝑡𝑡 , EPRHSE+TA𝑠𝑢𝑚 ,
and EPRHSE+TA𝑐𝑜𝑛𝑐𝑎𝑡 , respectively. As shown in Table 7, the experimental results indicate that EPRHSE without
hypergraph fusion mechanism generally performs best, achieving optimal recommendation results in 13 out of 20
metrics and achieving optimal or suboptimal results in 18 out of 20 scenarios. Moreover, in most cases, employing
various aggregation methods, including not aggregating, has improved Recall@{10,20} and NDCG@{10,20} over
the best baseline UPRTH, and the differences with EPRHSE are not significant. Even EPRHSE+TA𝑎𝑡𝑡 achieves
optimal or suboptimal results in 11 out of 20 scenarios, EPRHSE+TA𝑠𝑢𝑚 achieves optimal or suboptimal results in
10 out of 20 scenarios, and EPRHSE+TA𝑐𝑜𝑛𝑐𝑎𝑡 achieves optimal or suboptimal results in 8 out of 20 scenarios. We
speculate that this may be because EPRHSE leverages topological structures and global dependencies within
its graph encoder to some extent, compensating for the impact of different aggregation methods and thereby
reducing the importance of the hypergraph fusion mechanism. Given the limited performance improvement
the TA layer provides and its added complexity to the model, we consider not using the hypergraph fusion
mechanism in EPRHSE.

5.3 Hyperparameter Sensitivity
In this section, we conduct a sensitivity analysis on four key hyperparameters of EPRHSE: the pre-training
learning rate (𝑝𝑟𝑒_𝑙𝑟), fine-tuning learning rate (𝑙𝑟), the weight of the recommendation task in the aggregation
loss (𝜆𝑟𝑒𝑐), and the regularization weight (𝜆Θ). Figure 6 to Figure 10 present the results of EPRHSE on five datasets
under different hyperparameter settings. The left-side plots display Recall@10, while the right-side plots show

, Vol. 1, No. 1, Article . Publication date: October 2025.

28 • J. Zhang et al.

6

9

12

15
17

17
.02

17.24

17.31

17.12

17.00

13.81
15.7016.3117.09

17.3116
.9

916
.8816

.80
17.07

17.13

17.31

17.20

17.12

17.31

16.30
14.78 11.93

8.56

0.001 0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01

0.05
0.1

0.2
0.3

0.4

0.5
0.6

0.7
0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss

reg

R10

(a) Steam Recall@10

3

5

7
8

8.3
6

8.43

8.48

8.36

8.38

6.76
7.698.038.37

8.488.
278.2

58.1
18.39

8.42

8.48

8.43

8.37

8.48

7.85
7.28

4.87 4.13

0.001 0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01
0.05

0.1
0.2

0.3

0.4
0.5

0.6
0.7

0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss
reg

N10

(b) Steam NDCG@10

Fig. 6. Hyperparameter analysis on the Steam dataset (’pre’ represents the learning rate for pre-training 𝑝𝑟𝑒_𝑙𝑟 , ’fine’
represents the learning rate for fine-tuning 𝑙𝑟 , ’loss’ represents the weight for recommendation task in loss 𝜆𝑟𝑒𝑐 , and ’reg’
represents the weight for regularization 𝜆Θ).

2

4

6

8

6.7
8

7.04

6.27
8.64

5.19

3.61

8.648.30

5.16
2.76

5.
665.6

7

7.2
67.98

8.29

8.64

7.84
0.48

1.04

5.20
6.14

8.64

3.15
0.001

0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01

0.05
0.1

0.2
0.3

0.4

0.5
0.6

0.7
0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss

reg

R10

(a) XMrec-CN Recall@10

1

2

3

4

3.8
5

3.85

3.56

4.51

2.98
2.48

4.514.23

3.07

1.52

2.
973.1

1

3.9
64.43

4.48

4.51

4.49
0.33

0.77

2.63
3.33

4.51

1.83

0.001 0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01
0.05

0.1
0.2

0.3

0.4

0.5
0.6

0.7
0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss

reg

N10

(b) XMrec-CN NDCG@10

Fig. 7. Hyperparameter analysis on the XMrec-CN dataset (’pre’ represents the learning rate for pre-training 𝑝𝑟𝑒_𝑙𝑟 , ’fine’
represents the learning rate for fine-tuning 𝑙𝑟 , ’loss’ represents the weight for recommendation task in loss 𝜆𝑟𝑒𝑐 , and ’reg’
represents the weight for regularization 𝜆Θ).

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 29

2

4

6

8

4.5
0 6.12

8.34

5.31
6.79

4.36

7.11

8.34

7.08

6.566.
726.5

46.8
67.42

6.99
7.21

8.34

2.61

4.50

3.15
7.44

8.34
2.22

0.001 0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01
0.05

0.1
0.2

0.3

0.4

0.5
0.6

0.7
0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss

reg

R10

(a) XMrec-MX Recall@10

1

2

3

4

5

2.7
0 3.69

5.02

2.95
3.60

1.91
3.68

5.02

3.51
3.563.

563.4
83.6

54.11
3.74

3.91

5.02

1.58
2.46

1.72
3.89

5.02
1.25

0.001 0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01

0.05
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss
reg
N10

(b) XMrec-MX NDCG@10

Fig. 8. Hyperparameter analysis on the XMrec-MX dataset (’pre’ represents the learning rate for pre-training 𝑝𝑟𝑒_𝑙𝑟 , ’fine’
represents the learning rate for fine-tuning 𝑙𝑟 , ’loss’ represents the weight for recommendation task in loss 𝜆𝑟𝑒𝑐 , and ’reg’
represents the weight for regularization 𝜆Θ).

0.5

1.0

1.5

2.0

1.7
9

2.12

2.03

1.71

1.85

2.122.041.98

1.17
0.45

2.
12

1.8
51.9

1
1.77

1.71
1.63

1.46

0.05

1.41
1.94

2.09

2.12 1.92 0.001 0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01
0.05

0.1
0.2

0.3

0.4

0.5
0.6

0.7
0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss

reg

R10

(a) XMrec-AU Recall@10

0.5

1.0

1.5

1.6
9

1.82

1.82

1.61

1.63

1.821.771.67

0.84

0.38

1.
82

1.7
21.7

2
1.64

1.62
1.56

1.46

0.03

1.03

1.63
1.79

1.82

1.74 0.001 0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01
0.05

0.1
0.2

0.3

0.4

0.5
0.6

0.7
0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss

reg

N10

(b) XMrec-AU NDCG@10

Fig. 9. Hyperparameter analysis on the XMrec-AU dataset (’pre’ represents the learning rate for pre-training 𝑝𝑟𝑒_𝑙𝑟 , ’fine’
represents the learning rate for fine-tuning 𝑙𝑟 , ’loss’ represents the weight for recommendation task in loss 𝜆𝑟𝑒𝑐 , and ’reg’
represents the weight for regularization 𝜆Θ).

, Vol. 1, No. 1, Article . Publication date: October 2025.

30 • J. Zhang et al.

5
7

9
11

13

9.4
1
10.71

8.92
13.69

14.02

13.9513.7214.02

11.81

11.05

13
.9

5

14
.23

14
.02

14.02
13.49

10.07

13.56

8.96

6.60

14.02

5.67
4.22
4.44

0.001 0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01

0.05
0.1

0.2
0.3

0.4

0.5
0.6

0.7
0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss

reg

R10

(a) XMrec-BR Recall@10

3

5

7

9

4.2
7
4.79

5.05
7.64

9.39

7.827.32

9.39

6.10
5.27

7.
567.8

8

9.3
9

9.39
9.77

5.36
6.85

3.54
2.84

9.39

4.41 3.50
3.74

0.001 0.005
0.01

0.05
0.1

0.0
01

0.0
05

0.01
0.05

0.1
0.2

0.3

0.4
0.5

0.6
0.7

0.8

10
e-3

10
e-4

10e-5 10e-6 10e-7 0

pre

fine

loss
reg

N10

(b) XMrec-BR NDCG@10

Fig. 10. Hyperparameter analysis on the XMrec-BR dataset (’pre’ represents the learning rate for pre-training 𝑝𝑟𝑒_𝑙𝑟 , ’fine’
represents the learning rate for fine-tuning 𝑙𝑟 , ’loss’ represents the weight for recommendation task in loss 𝜆𝑟𝑒𝑐 , and ’reg’
represents the weight for regularization 𝜆Θ).

NDCG@10. Each circular bar chart includes four colors representing the adjustment of a single hyperparameter
while keeping others constant. The outer ring values indicate the hyperparameter settings and the inner bars’
numerical values represent the corresponding test results.

5.3.1 Learning rate for pre-training 𝑝𝑟𝑒_𝑙𝑟 . For the pre-training learning rate 𝑝𝑟𝑒_𝑙𝑟 , we set the selection
range to { 0.001, 0.005, 0.01, 0.05, 0.1 } and conduct repeated experiments. As shown in Figure 6 to Figure 10, the
optimal choice of 𝑝𝑟𝑒_𝑙𝑟 is dataset-dependent. 𝑝𝑟𝑒𝑙𝑟 has minimal impact on the Steam dataset, whereas an optimal
value or range exists for the other four datasets. For example, on the XMrec-CN dataset, 0.05 is the best choice
for both Recall and NDCG, with other values leading to a sharp decline in recommendation performance. In the
XMrec-MX dataset, 0.01 is the optimal choice since larger and smaller values significantly degrade performance.
In the XMrec-AU dataset, 0.005 is the best choice. However, NDCG is more robust to changes in 𝑝𝑟𝑒_𝑙𝑟 than
Recall, exhibiting stable performance within the range of 0.001 to 0.01. Similarly, on the XMrec-BR dataset, 0.1 is
the optimal choice, but Recall is more robust to variations in 𝑝𝑟𝑒𝑙𝑟 than NDCG, performing well at both 0.05 and
0.1.

5.3.2 Learning rate for fine-tuning 𝑙𝑟 . For the fine-tuning learning rate 𝑙𝑟 , we set the selection range to {
0.001, 0.005, 0.01, 0.05, 0.1 } and conduct repeated experiments. Selecting an intermediate learning rate is generally
beneficial for EPRHSE’s recommendation performance; however, the optimal choice remains dataset-dependent.
In Figure 6, the Steam dataset exhibits a positive correlation between 𝑙𝑟 and recommendation performance, where
a higher learning rate leads to better performance, although the overall fluctuation is relatively small. In Figure 7,
the XMrec-CN dataset shows stable performance at 𝑙𝑟 = 0.01 and 𝑙𝑟 = 0.005, while performance drops sharply
under other settings. In Figure 8, the XMrec-MX dataset achieves its best performance at 𝑙𝑟 = 0.01. In Figure 9 and
Figure 10, the XMrec-AU and XMrec-BR datasets exhibit a negative correlation between 𝑙𝑟 and recommendation

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 31

performance, with lower learning rates leading to better results. However, for the XMrec-BR dataset, NDCG@10
performs particularly well at 𝑙𝑟 = 0.01.

5.3.3 Weight for recommendation task 𝜆𝑟𝑒𝑐 . For the weight for the recommendation task in loss 𝜆𝑟𝑒𝑐 , we set
the selection range to { 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 } and conduct repeated experiments. The recommendation
performance remained relatively stable and favorable during the pre-training phase across most main task loss
weight ranges. In particular, the Steam dataset is almost unaffected by variations in this weight. For the XMrec-CN
and XMrec-MX datasets, while smaller weight allocations lead to a decline in recommendation performance,
performance stabilizes and remains strong when the weight exceeds approximately 0.5. Conversely, for the
XMrec-AU and XMrec-BR datasets, larger weight allocations—especially those exceeding 0.6—result in a sharp
decline in recommendation performance. However, within the remaining range, performance remains relatively
strong.

5.3.4 Weight for regularization 𝜆Θ. For the weight for regularization 𝜆Θ, we set the selection range to { 10e-3,
10e-4, 10e-5, 10e-6, 10e-7, 0 } and conduct repeated experiments. We found that the choice of regularization weight
has a unique and significant impact on different datasets, with each dataset exhibiting a distinct "preferred"
value. For the Steam dataset in Figure 6, 10e-4 is the optimal choice. Smaller values lead to a sharp decline in
performance, while slightly larger values cause a minor performance drop. For the XMrec-CN, XMrec-MX, and
XMrec-AU datasets in Figures 7 to Figure 9, 10e-7 is the optimal choice. Despite being an extremely small weight,
it remains crucial. Setting it to zero resulted in a substantial decline in recommendation performance. For the
XMrec-BR dataset in Figure 10, 10e-5 is the best choice, as both slightly larger and smaller values lead to a
near-complete loss of recommendation performance.

5.4 Cold-start
EPRHSE incorporates auxiliary tasks involving attributes and relations during pre-training, enabling it to address
the cold-start problem. To demonstrate this, we conceal all relevant user-item interactions for varying proportions
of users and then rerun our model. We compare the results of EPRHSEwith a variant that is without auxiliary tasks
named EPRHSE_w/o_auxiliary, and four pre-trained baselines (GCC, SGL, AttriMask, UPRTH). The experimental
results are presented in Figure 11, where the red line represents EPRHSE. Each row corresponds to the results
for a specific dataset, with the four columns from left to right representing Recall@10, Recall@20, NDCG@10,
and NDCG@20. We conducted experiments using five selected points { 0.1 0.2, 0.3, 0.4, 0.5 }, which indicate the
proportion of users without historical interaction data. This proportion can also be interpreted as the fraction
of isolated nodes. We find that: (1) Overall, EPRHSE (red line) maintains strong performance in the cold-start
scenario, which we attribute to the auxiliary tasks. Notably, on the XMrec-AU dataset, as the proportion of
cold-start users increases, Recall@10,20 and NDCG@10,20 exhibit a clear upward trend, even surpassing the
performance in scenarios where user-item interaction information is not masked. On the XMrec-BR dataset,
EPRHSE does not significantly outperform the best baseline UPRTH, especially when the cold-start user ratio is
20%. However, its overall performance remains stable and is not heavily affected by changes in the inductive ratio.
When all auxiliary tasks are disabled (green line), the recommendation performance of EPRHSE_w/o_auxiliary
drops sharply compared to both EPRHSE and UPRTH, yet it remains comparable to the other baselines. (2) For
the Steam dataset, both EPRHSE and its variant EPRHSE_w/o_auxiliary are mainly unaffected by the proportion
of cold-start users and achieve strong recommendation performance. In contrast, AttriMask and UPRTH exhibit
a slight downward trend, albeit with minimal fluctuation. This suggests that incorporating the hypergraph
structural entropy pooling module provides more excellent benefits for improving performance on the Steam
dataset than adding auxiliary tasks.

, Vol. 1, No. 1, Article . Publication date: October 2025.

32 • J. Zhang et al.

0.1 0.2 0.3 0.4 0.5
Inductive ratio@Steam

0
6

12
18

Re
ca

ll@
10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@Steam

0
10

20
30

Re
ca

ll@
20

0.1 0.2 0.3 0.4 0.5
Inductive ratio@Steam

0
3

6
9

N
D

CG
@

10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@Steam

0
4

8
12

N
D

CG
@

20

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-CN

0
2

4
6

7
Re

ca
ll@

10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-CN

0
3

6
9

Re
ca

ll@
20

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-CN

0
1

2
3

4
N

D
CG

@
10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-CN

0
1

2
3

4
5

N
D

CG
@

20

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-MX

0
2

4
6

Re
ca

ll@
10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-MX

0
2

4
6

8
Re

ca
ll@

20

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-MX

0
1

2
3

N
D

CG
@

10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-MX

0
1

2
3

4
N

D
CG

@
20

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-AU

0
1

2
3

Re
ca

ll@
10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-AU

0
1

2
3

4
Re

ca
ll@

20

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-AU

0
1

2
N

D
CG

@
10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-AU

0
1

2
3

N
D

CG
@

20

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-BR

0
2

4
6

8
10

Re
ca

ll@
10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-BR

0
2

4
6

8
10

Re
ca

ll@
20

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-BR

0
2

4
6

N
D

CG
@

10

0.1 0.2 0.3 0.4 0.5
Inductive ratio@XMrec-BR

0
2

4
6

N
D

CG
@

20

Attrimask GCC SGL EPRHSE_w/o_auxiliary UPRTH EPRHSE

Fig. 11. Recall@{10,20} and NDCG{10,20} performance on the cold-start scenario for five datasets.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 33

5.5 Time analysis
We assess efficiency by measuring the average runtime of EPRHSE and other models. To ensure fairness, we set
the number of pre-training epochs for all pre-trained models to 800 and the number of fine-tuning epochs to
200. The total number of epochs for models without pre-training is set to 1000. For EPRHSE, we also report the
runtime required to construct three-dimensional encoding trees for the user-item, item-category, and item-rating
tasks. This process can be considered part of the data preparation stage, but it is not included in the model runtime
mentioned earlier. As shown in Table 8, the "encoding tree" construction for the XMrec-MX and XMrec-AU
datasets is executed on the CPU, as the GPU memory of our server is insufficient to handle these large datasets.
Due to the addition of pooling and unpooling layers in the encoder, EPRHSE performs more extensive information
aggregation per epoch compared to other HGCN-based models like HGNN, AttriMask, and UPRTH, resulting
in increased runtime. Overall, the increase in runtime remains within an acceptable range. Compared to all
baselines, EPRHSE exhibits a moderate runtime, being slower than LightGCN, DirectAU, UltraGCN, HGNN, HCCF,
AttriMask, and UPRTH but faster than DHCF, NCL, XSimGCL, LightGCL, GCC, and SGL. Furthermore, EPRHSE
outperforms all baseline models. We believe sacrificing some computational time for enhanced recommendation
performance is a worthwhile trade-off.

Table 8. Average time per run for EPRHSE and all baselines. The italicized results represent the time taken on the CPU, while
the regular font indicates the time taken on the GPU. (Unit: Second)

Datasets Steam XMrec-CN XMrec-MX XMrec-AU XMrec-BR

encoding tree 25.2 7.4 1138.5 1468.4 26.1
EPRHSE 77.2 60.1 321.9 197.1 106.3

LightGCN 37.3 15.8 72.2 128.5 51.7
DirectAU 81.1 34.6 115.5 203.6 119.6
UltraGCN 31.8 14.8 62.2 103.8 44.8
HGNN 29.7 15.4 55.0 113.7 33.0
HCCF 53.8 29.7 259.1 244.0 73.6
DHCF 273.6 120.1 568.6 777.5 292.4
NCL 468.3 205.7 2113.6 948.3 501.6

XSimGCL 172.1 75.3 1179.1 510.6 194.8
LightGCL 100.8 111.2 1876.9 692.7 132.8

GCC 255.1 207.8 300.8 290.6 212.4
SGL 508.4 433.7 434.0 516.8 435.1

AttriMask 44.1 30.7 84.3 110.8 35.0
UPRTH 68.3 43.6 248.2 174.4 94.8

The analysis of model runtime not only considers the execution time per epoch but also the convergence
speed. Therefore, we compared the fine-tuning curves of five pre-trained models, including EPRHSE, to further
investigate this aspect. Figure 12 illustrates the performance variation of Recall@10 and NDCG@10 over 250
fine-tuning epochs on the XMrec-BR dataset. The inset magnifies the first 50 epochs, highlighting key results for
a more detailed examination. Our key findings are as follows: (1) Overall, EPRHSE exhibits a fast convergence
rate while maintaining long-term stability. In contrast, UPRTH converges the slowest and experiences significant
performance drops in later stages. While GCC, SGL, and AttriMask quickly reach their peak performance, their

, Vol. 1, No. 1, Article . Publication date: October 2025.

34 • J. Zhang et al.

0 50 100 150 200 250
Epoch

0

2

4

6

8

10

12

14

Re
ca

ll@
10

 (
%

)

EPRHSE UPRTH AttriMask GCC SGL

0 10 20 30 40 50
0

2

4

6

8

10

12

14

4.9

10.3

13.9

3.3

9.6

0.1

7.6

3.7

0.1

4.1

0.7

8.1

(a) Recall@10 on XMrec-BR

0 50 100 150 200 250
Epoch

0

2

4

6

8

10

N
D

CG
@

10
 (

%
)

EPRHSE UPRTH AttriMask GCC SGL

0 10 20 30 40 50
0

2

4

6

8

3.9

7.8
9.2

2.3

5.6

0.1
1.4

0.1

5.7 6.2

3.8

0.4

7.8

7.8

7.7

(b) NDCG@10 on XMrec-BR

Fig. 12. Recall@10 and NDCG@10 results on the XMrec-BR dataset during fine-tuning of 250 epochs.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 35

overall effectiveness remains low. For example, NDCG@10 exhibits sharp fluctuations in the latter half of training.
(2) EPRHSE, UPRTH, and SGL demonstrate a clear upward trend in the early fine-tuning stages, whereas GCC and
AttriMask follow a spiral-like ascent characterized by sharp rises and falls during training. For instance, GCC’s
Recall@10 initially climbs to 4.1 at epoch 10 but then abruptly drops to approximately 0.7 before recovering
to 8.1 around epoch 21. (3) EPRHSE starts with the highest initial performance, indicating the effectiveness of
pre-training. Specifically, its Recall@10 reaches 4.9, and NDCG@10 reaches 3.9 immediately after pre-training,
whereas SGL, GCC, and AttriMask only achieve around 0.1, and UPRTH achieves 3.3 and 2.3.

5.6 Visualization on Graph and Embedding

(a) 387 comms on Layer1 (Cl) (b) nodes in all 7 connected comms (Cl) (c) nodes in one comm (Cl)

(d) 387 comms on Layer1(Fd) (e) nodes in all 7 connected comms (Fd) (f) nodes in one comm (Fd)
Fig. 13. Visualization on the Steam dataset with "item-cate" task.

5.6.1 Graph visualization. In this section, we visualize the results of hierarchical community partitioning using
hypergraph structural entropy on the Steam dataset, focusing on three types of tasks: "item-cate", "item-rate",
and "user-item". As shown in Figure 13, we present the visualization results for the "item-cate" task. The first
row of subfigures displays the layout generated using the "Circular" layout method, while the second row
shows the results using the "Force-directed" layout. Figure 13(a) illustrates the inter-community connections
among the 387 communities obtained after one level of partitioning via hypergraph structural entropy. Each
node represents a community, corresponding to Layer 1 in Table 6. Figure 13(b) shows the intra-community
connections of all items within the seven connected communities in Figure 13(a), where each node represents
an individual item. Figure 13(c) provides a zoomed-in view of a single community from Figure 13(a), depicting
the internal structure among items within that community. This can be regarded as a local magnification of
Figure 13(b). Figure 13(d), Figure 13(e), and Figure 13(f) present the same content as Figure 13(a), Figure 13(b),
and Figure 13(c), respectively, but rendered using a ’Force-directed’ layout strategy. Figure 14 presents the

, Vol. 1, No. 1, Article . Publication date: October 2025.

36 • J. Zhang et al.

(a) 666 comms on Layer1 (Cl) (b) nodes in all 9 connected comms (Cl) (c) nodes in one comm (Cl)

(d) 666 comms on Layer1 (Fd) (e) nodes in all 9 connected comms (Fd) (f) nodes in one comm (Fd)
Fig. 14. Visualization on the Steam dataset with "item-rate" task.

(a) nodes in 5 connected comms (Cl) (b) nodes in one comm (Cl)

(c) nodes in 5 connected comms (Fd) (d) nodes in one comm (Fd)
Fig. 15. Visualization on the Steam dataset with "user-item" task.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 37

results for the "item-rate" task, constructed using the same methodology as Figure 13, and is therefore not
discussed in detail. Figure 15 illustrates the results for the "user-item" task. As shown in Table 6, Layer 1 produces
1,726 communities, which are too numerous for direct visualization. To enhance clarity, we selected the user
nodes from 5 interconnected communities for visualization in Figure 15(a) and Figure 15(c). Additionally, one of
these communities is magnified to generate Figure 15(b) and Figure 15(b). The three sets of visualizations also
intuitively demonstrate the effectiveness of hypergraph structural entropy in hierarchical community partitioning.
It successfully groups closely connected nodes together, which facilitates the subsequent learning of group-level
representations for users and items, ultimately benefiting recommendation performance.

150 100 50 0 50 100

100

50

0

50

100

User
Item

(a) EPRHSE pre
100 50 0 50 100

100

50

0

50

100

User
Item

(b) UPRTH pre
20 10 0 10 20 30 40 50 60

60

40

20

0

20

User
Item

(c) AttriMask pre

100 50 0 50 100

100

50

0

50

100

User
Item

(d) EPRHSE final
100 50 0 50 100

100

50

0

50

100

User
Item

(e) UPRTH final
150 100 50 0 50 100 150

150

100

50

0

50

100

150

User
Item

(f) AttriMask final
Fig. 16. t-SNE visualization of user and item embeddings on the XMrec-BR dataset.

5.6.2 Embedding visualization. We compare the embedding distributions learned by EPRHSE, UPRTH, and
AttriMask across five datasets, using t-SNE for two-dimensional visualization. As shown in Figure 16-Figure 20,
the three small plots in the first row correspond to the embeddings obtained after pre-training, while the three
plots in the second row show the final embeddings. Orange nodes represent users, and blue nodes represent items.
We make the following observations: First, the embeddings obtained from EPRHSE pre-training exhibit more
hierarchical community structures compared to the other two models. Specifically, they contain communities of
varying sizes, relatively dispersed points, and differing proximities between communities. This is desirable, as the
pre-training stage aims to integrate information from different tasks to form representative embeddings for both
users and items. In contrast, UPRTH embeddings tend to be overly clustered within communities, which may
result in loss of individualized information or overfitting, likely due to the TA layer fusion. AttriMask embeddings,
on the other hand, show user and item embeddings that are excessively dispersed—either forming dense clusters
or isolated points—resulting in extreme distributions. Second, considering the final embeddings, EPRHSE not
only preserves the hierarchical community structure established during pre-training but also aligns user and

, Vol. 1, No. 1, Article . Publication date: October 2025.

38 • J. Zhang et al.

100 50 0 50 100

100

50

0

50

100

User
Item

(a) EPRHSE pre
100 50 0 50 100

100

50

0

50

100

User
Item

(b) UPRTH pre
40 30 20 10 0 10

20

10

0

10

20

30

40 User
Item

(c) AttriMask pre

100 50 0 50 100

100

50

0

50

100
User
Item

(d) EPRHSE final
100 50 0 50 100

100

50

0

50

100

User
Item

(e) UPRTH final
150 100 50 0 50 100 150

150

100

50

0

50

100

150
User
Item

(f) AttriMask final
Fig. 17. t-SNE visualization of user and item embeddings on the XMrec-CN dataset.

150 100 50 0 50 100 150

150

100

50

0

50

100

150 User
Item

(a) EPRHSE pre
60 40 20 0 20 40

40

20

0

20

40

60 User
Item

(b) UPRTH pre
60 40 20 0 20

60

40

20

0

20

User
Item

(c) AttriMask pre

200 150 100 50 0 50 100 150

200

150

100

50

0

50

100

150
User
Item

(d) EPRHSE final
200 150 100 50 0 50 100 150 200

150

100

50

0

50

100

150

User
Item

(e) UPRTH final
150 100 50 0 50 100 150

150

100

50

0

50

100

150
User
Item

(f) AttriMask final
Fig. 18. t-SNE visualization of user and item embeddings on the XMrec-AU dataset.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 39

150 100 50 0 50 100

150

100

50

0

50

100

150
User
Item

(a) EPRHSE pre
150 100 50 0 50 100 150

150

100

50

0

50

100

150
User
Item

(b) UPRTH pre
75 50 25 0 25 50 75

80

60

40

20

0

20

40

60

User
Item

(c) AttriMask pre

150 100 50 0 50 100 150

150

100

50

0

50

100

150

User
Item

(d) EPRHSE final
150 100 50 0 50 100 150

150

100

50

0

50

100

150 User
Item

(e) UPRTH final
200 100 0 100 200

200

100

0

100

200

User
Item

(f) AttriMask final
Fig. 19. t-SNE visualization of user and item embeddings on the Steam dataset.

200 100 0 100 200

200

100

0

100

200

User
Item

(a) EPRHSE pre
200 100 0 100 200

200

100

0

100

200

User
Item

(b) UPRTH pre
200 150 100 50 0 50 100 150 200

200

150

100

50

0

50

100

150

200
User
Item

(c) AttriMask pre

200 100 0 100 200

200

100

0

100

200
User
Item

(d) EPRHSE final
200 100 0 100 200

200

100

0

100

200

User
Item

(e) UPRTH final
200 150 100 50 0 50 100 150 200

200

100

0

100

200
User
Item

(f) AttriMask final
Fig. 20. t-SNE visualization of user and item embeddings on the XMrec-MX dataset.

, Vol. 1, No. 1, Article . Publication date: October 2025.

40 • J. Zhang et al.

item embeddings at the group level. This alignment facilitates top-k group-level recommendations and helps
explain why EPRHSE achieves superior performance at @20. By contrast, the final embeddings of UPRTH and
AttriMask either remain overly compact (forming a single dense cluster) or exhibit overly discrete, point-to-point
alignment between users and items, which is detrimental for recommendation tasks.
Based on the above observations, we summarize the desirable properties of embedding distributions: good

embeddings should form hierarchical communities that reflect group-level profiles without overly merging nodes
so as to lose individual-specific information. Within each community, points should not be too tightly clustered,
as high intra-cluster similarity can lead to redundancy. Finally, the alignment between user and item embeddings
should occur at the group level rather than on a one-to-one basis, since one-to-one alignment may also introduce
excessive redundancy.

6 RELATED WORK
In this section, we summarize the related literature, baselines, and approaches related to the proposed framework.
It is primarily divided into three parts: recommender systems (Section 6.1), hypergraph learning (Section 6.2),
and structural information theory based applications (Section 6.3).

6.1 Recommender Systems
Recurrent neural networks [33, 51, 77] are widely used for session-based recommendations due to their unique
handling of time-series data. Convolutional neural networks [32, 78, 83] enhance expressive power by capturing
local and global latent features. Additionally, transformers [42, 75] facilitate information interaction and transmis-
sion through attention mechanisms, modeling dependencies between users and items. Existing methods typically
optimize their models by leveraging social recommendations, pre-training techniques, and knowledge graphs (KG)
to address data sparsity and cold-start problems. Social recommendations involve constructing heterogeneous
graphs [98, 115], hypergraphs [114], and star-structured graphs [41], etc., to predict unknown user preferences
using direct or indirect social relationships and group interests [55, 79, 99, 105]. This approach helps mitigate
the problem of sparse user-item interaction data [91], ultimately enhancing the quality of recommendations.
Pre-training methods often supplement user representations with rich unlabeled domain content [57, 70] and
fine-tune them for specific tasks to improve recommendation performance in the cold-start scenario [31, 58, 80].
Accurate recommendations require surpassing the modeling of user-item interactions and considering side
information. Knowledge graphs, due to their inherent semantic relationships between entities, are often uti-
lized as a source of side information [86, 109]. By linking items with attributes, knowledge graphs break the
assumption of independent interactions [89] and facilitate fine-grained, structured relationship modeling [85, 90].
Furthermore, knowledge graphs are also used for visual reasoning to enhance the interpretability of recommen-
dations [12, 50, 103]. New technologies like diffusion [60], LLM [54] and agent [119] nowadays are also applied
for recommendation.

6.2 Hypergraph Learning
Due to its ability to connect any number of nodes with hyperedges, hypergraphs have an advantage in modeling
associations and high-order relationships in data, as real-world data correlations are often more complex than
pairwise relationships [27, 112]. Therefore, hypergraphs have been widely used in tasks such as classification [76],
biology [28], group dynamics [19], disease prediction [73], and recommender systems [108]. Hypergraphmodeling
can be divided into explicit and implicit methods. Explicit modeling directly utilizes the information contained in
the dataset as hyperedges, such as attribute-based and network-based methods. Implicit modeling, on the other
hand, requires computational processing to obtain hyperedges, such as distance-based and representation-based

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 41

methods. This paper adopts an explicit modeling approach. Hypergraph learning aims to preserve structural
and semantic information in low-dimensional vectors ideally. It can be categorized into three types: spectral
learning, neighborhood preserving, and neural network-based methods. Most cases involve learning based on
known hypergraph structures and node features. Dynamic hypergraph structure learning updates the hypergraph
structure while optimizing the target task [121]. Additionally, research on geometric hypergraph learning [21],
distributed hypergraph learning [35], hypergraph attribute learning [36], hypergraph convolution and atten-
tion [4], and pre-trained hypergraph learning [107] has enhanced representation learning capabilities. However,
existing hypergraph learning faces the challenge of capturing group relationships [3]. Each hyperedge represents
an indivisible relationship among a group of nodes, and such high-order relationships are difficult to capture
during the embedding learning process. The proposed EPRHSE addresses this issue by learning the hierarchical
structure among nodes, i.e., group high-order relationships, using hypergraph structural entropy, and utilizing
this to enhance the embedding learning process.

6.3 Structural Information Theory based Applications
The Structural Information Theory decoding network’s ability to capture the structure’s essence has been validated
in many applications. The hierarchical nature of the structure entropy encoding tree provides new methods
for hierarchical structure pooling [96] and dimension estimation [111] in graph neural network, unsupervised
image segmentation [104, 116], state abstraction [118] and role discovery [117] in reinforcement learning, social
bot detection [67, 110], and unsupervised social event detection [11]. Additionally, reconstructing the graph
structure on the hierarchical encoding tree suppresses edge noise and enhances the learning ability of the graph
structure [123, 124]. Introducing structural entropy in neural networks captures the underlying connectivity graph
and reduces random interference [93]. Similarly, the anchor view, guided by the principle of minimizing structural
entropy, improves the performance of graph contrastive learning [95]. Furthermore, modifying the network
structure based on minimizing structural entropy achieves maximum deception of community structure [56].
Based on the homogeneous graph structure entropy, the study of multi-relational graph structure entropy [10]
further extends the structural information theory, making it suitable for more complex scenarios.

7 CONCLUSION
This paper investigates a new enhanced pre-training framework based on hypergraph structural entropy for
recommendation. The proposed EPRHSE encodes the topology of the recommender system. By developing a pre-
training framework that integrates auxiliary tasks, we have effectively captured the heterogeneous relationships
between users (items) and addressed the sparsity of interactions between users and items. Furthermore, by
incorporating structural information theory into hypergraph learning, we achieve hierarchical user (item)
community divisions in constructing high-dimensional encoding trees, thoroughly exploring the topological
structure within hypergraphs. Hypergraph pooling guides the improvement of the model architecture and allows
for the extraction of global dependencies. Thus, it enhances the simulation of social diffusion processes and
improves node embedding. Experimental results indicate that EPRHSE outperforms baseline models regarding
Recall and NDCG while demonstrating strong stability and high performance in the cold-start scenario. Our
work demonstrates the potential of structural information theory in hypergraph learning and may open new
directions in hypergraph structure entropy. In the future, we aim to explore other hypergraph learning methods
from a structural perspective and extend hypergraph learning to additional research domains.

ACKNOWLEDGMENTS
This work has been supported by NSFC through grants 62322202, 62441612 and 62432006, Local Science and
Technology Development Fund of Hebei Province Guided by the Central Government of China through grants

, Vol. 1, No. 1, Article . Publication date: October 2025.

42 • J. Zhang et al.

246Z0102G and 254Z9902G, the Pioneer and Leading Goose R&D Program of Zhejiang through grant 2025C02044,
National Key Laboratory under grant 241-HF-D07-01, Beijing Natural Science Foundation through grant L253021,
Hebei Natural Science Foundation through grant F2024210008, and Major Science and Technology Special Projects
of Yunnan Province through grants 202502AD080012 and 202502AD080006.

REFERENCES
[1] Muhammad Aljukhadar, Sylvain Senecal, and Charles-Etienne Daoust. 2010. Information overload and usage of recommendations.

In Proceedings of the ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces (UCERSTI),
Barcelona, Spain. 26–33.

[2] Muhammad Aljukhadar, Sylvain Senecal, and Charles-Etienne Daoust. 2012. Using recommendation agents to cope with information
overload. International Journal of Electronic Commerce 17, 2 (2012), 41–70.

[3] Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio Scarano, Carmine Spagnuolo, and Dingqi Yang. 2023. A survey on
hypergraph representation learning. Comput. Surveys 56, 1 (2023), 1–38.

[4] Song Bai, Feihu Zhang, and Philip HS Torr. 2021. Hypergraph convolution and hypergraph attention. Pattern Recognition 110 (2021),
107637.

[5] Chumki Basu, Haym Hirsh, William Cohen, et al. 1998. Recommendation as classification: Using social and content-based information
in recommendation. In Proceedings of the AAAI Conference. 714–720.

[6] David Bawden and Lyn Robinson. 2009. The dark side of information: overload, anxiety and other paradoxes and pathologies. Journal
of information science 35, 2 (2009), 180–191.

[7] Hamed Bonab, Mohammad Aliannejadi, Ali Vardasbi, Evangelos Kanoulas, and James Allan. 2021. Cross-market product recommenda-
tion. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 110–119.

[8] Desheng Cai, Shengsheng Qian, Quan Fang, Jun Hu, and Changsheng Xu. 2023. User cold-start recommendation via inductive
heterogeneous graph neural network. ACM Transactions on Information Systems 41, 3 (2023), 1–27.

[9] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple yet effective graph contrastive learning for
recommendation. In 11th International Conference on Learning Representations, ICLR 2023.

[10] Yuwei Cao, Hao Peng, Angsheng Li, Chenyu You, Zhifeng Hao, and Philip S Yu. 2024. Multi-Relational Structural Entropy. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence. 1–15.

[11] Yuwei Cao, Hao Peng, Zhengtao Yu, and Philip S Yu. 2024. Hierarchical and Incremental Structural Entropy Minimization for
Unsupervised Social Event Detection. In Proceedings of the AAAI conference on artificial intelligence. 1–13.

[12] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. 2019. Unifying knowledge graph learning and recommendation:
Towards a better understanding of user preferences. In Proceedings of the World Wide Web Conference. 151–161.

[13] Jihong Chen, Wei Chen, Jinjing Huang, Jinhua Fang, Zhixu Li, An Liu, and Lei Zhao. 2020. Co-purchaser recommendation for online
group buying. Data Science and Engineering 5 (2020), 280–292.

[14] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. Attentive collaborative filtering:
Multimedia recommendation with item-and component-level attention. In Proceedings of the 40th International ACM SIGIR conference
on Research and Development in Information Retrieval. 335–344.

[15] Li Chen, Marco De Gemmis, Alexander Felfernig, Pasquale Lops, Francesco Ricci, and Giovanni Semeraro. 2013. Human decision
making and recommender systems. ACM Transactions on Interactive Intelligent Systems (TiiS) 3, 3 (2013), 1–7.

[16] Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, and Tat-Seng Chua. 2024. On softmax
direct preference optimization for recommendation. Advances in Neural Information Processing Systems 37 (2024), 27463–27489.

[17] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In Proceedings of the 10th
ACM conference on recommender systems. 191–198.

[18] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007. Google news personalization: scalable online collaborative
filtering. In Proceedings of the 16th international conference on World Wide Web. 271–280.

[19] Guilherme Ferraz de Arruda, Giovanni Petri, and Yamir Moreno. 2020. Social contagion models on hypergraphs. Physical Review
Research 2, 2 (2020), 023032.

[20] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation algorithms. ACM Transactions on Information
Systems (TOIS) 22, 1 (2004), 143–177.

[21] Dawei Du, Honggang Qi, Longyin Wen, Qi Tian, Qingming Huang, and Siwei Lyu. 2016. Geometric hypergraph learning for visual
tracking. IEEE Transactions on Cybernetics 47, 12 (2016), 4182–4195.

[22] Mark H Ebell, Jay Siwek, Barry D Weiss, Steven H Woolf, Jeffrey Susman, Bernard Ewigman, and Marjorie Bowman. 2004. Strength of
recommendation taxonomy (SORT): a patient-centered approach to grading evidence in the medical literature. The Journal of the
American Board of Family Practice 17, 1 (2004), 59–67.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 43

[23] Angela Edmunds and Anne Morris. 2000. The problem of information overload in business organisations: a review of the literature.
International journal of information management 20, 1 (2000), 17–28.

[24] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. 2019. Graph neural networks for social recommendation.
In Proceedings of the World Wide Web Conference. 417–426.

[25] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hypergraph neural networks. In Proceedings of the AAAI
conference, Vol. 33. 3558–3565.

[26] Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007. Random-walk computation of similarities between
nodes of a graph with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering 19, 3 (2007),
355–369.

[27] Yue Gao, Zizhao Zhang, Haojie Lin, Xibin Zhao, Shaoyi Du, and Changqing Zou. 2020. Hypergraph learning: Methods and practices.
IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5 (2020), 2548–2566.

[28] Sathyanarayanan Gopalakrishnan, Supriya Sridharan, Soumya Ranjan Nayak, Janmenjoy Nayak, and Swaminathan Venkataraman.
2022. Central hubs prediction for bio networks by directed hypergraph-GA with validation to COVID-19 PPI. Pattern Recognition
Letters 153 (2022), 246–253.

[29] Zhiqiang Guo, Jianjun Li, Guohui Li, Chaoyang Wang, Si Shi, and Bin Ruan. 2024. Lgmrec: Local and global graph learning for
multimodal recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 8454–8462.

[30] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel. 2010. Social media recommendation based on people and tags.
In Proceedings of the International ACM SIGIR conference on Research and Development in Information Retrieval. 194–201.

[31] Bowen Hao, Hongzhi Yin, Jing Zhang, Cuiping Li, and Hong Chen. 2023. A multi-strategy-based pre-training method for cold-start
recommendation. ACM Transactions on Information Systems 41, 2 (2023), 1–24.

[32] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgcn: Simplifying and powering graph
convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in
Information Retrieval. 639–648.

[33] Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-based recommendations with recurrent
neural networks. (2016), 1–10.

[34] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. 2020. Strategies for pre-training
graph neural networks. In Proceedings of the ICLR. 1–22.

[35] Jin Huang, Rui Zhang, and Jeffrey Xu Yu. 2015. Scalable hypergraph learning and processing. In Proceedings of the 2015 IEEE International
Conference on Data Mining. IEEE, 775–780.

[36] Sheng Huang, Mohamed Elhoseiny, Ahmed Elgammal, and Dan Yang. 2015. Learning hypergraph-regularized attribute predictors. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 409–417.

[37] Thomas W Jackson and Pourya Farzaneh. 2012. Theory-based model of factors affecting information overload. International Journal of
Information Management 32, 6 (2012), 523–532.

[38] Jacob Jacoby. 1984. Perspectives on information overload. Journal of consumer research 10, 4 (1984), 432–435.
[39] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with trust propagation for recommendation in social networks.

In Proceedings of the fourth ACM conference on Recommender systems. 135–142.
[40] Shuyi Ji, Yifan Feng, Rongrong Ji, Xibin Zhao, Wanwan Tang, and Yue Gao. 2020. Dual channel hypergraph collaborative filtering. In

Proceedings of the ACM SIGKDD Conference on Machine Learning. 20201–2029.
[41] Meng Jiang, Peng Cui, Fei Wang, Qiang Yang, Wenwu Zhu, and Shiqiang Yang. 2012. Social recommendation across multiple relational

domains. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management. 1422–1431.
[42] Wang-Cheng Kang and JulianMcAuley. 2018. Self-attentive sequential recommendation. In Proceedings of the IEEE 2018 IEEE International

Conference on Data Mining (ICDM). IEEE, 197–206.
[43] Bilal Khan, Jia Wu, Jian Yang, and Xiaoxiao Ma. 2023. Heterogeneous hypergraph neural network for social recommendation using

attention network. ACM Transactions on Recommender Systems (2023).
[44] Shristi Shakya Khanal, PWC Prasad, Abeer Alsadoon, and Angelika Maag. 2020. A systematic review: machine learning based

recommendation systems for e-learning. Education and Information Technologies 25, 4 (2020), 2635–2664.
[45] Sherrie YX Komiak and Izak Benbasat. 2006. The effects of personalization and familiarity on trust and adoption of recommendation

agents. MIS quarterly (2006), 941–960.
[46] Zhiyu Kong, Xiaoru Zhang, and Ruilin Wang. 2021. Review of the Research on the Relationship Between Algorithmic News Recom-

mendation and Information Cocoons. In Proceedings of the 3rd International Conference on Literature, Art and Human Development
(ICLAHD 2021). Atlantis Press, 341–345.

[47] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recommendation. In Proceedings of the ACM SIGKDD international
conference on knowledge discovery & data mining. 1748–1757.

[48] Angsheng Li and Yicheng Pan. 2016. Structural information and dynamical complexity of networks. IEEE Transactions on Information
Theory 62, 6 (2016), 3290–3339.

, Vol. 1, No. 1, Article . Publication date: October 2025.

44 • J. Zhang et al.

[49] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei Huang, Guoliang Kang, Qiwei Chen, Wei Li, and Dik Lun Lee. 2019.
Multi-interest network with dynamic routing for recommendation at Tmall. In Proceedings of the ACM International Conference on
Information and Knowledge Management. 2615–2623.

[50] Haotian Li, Yong Wang, Songheng Zhang, Yangqiu Song, and Huamin Qu. 2021. KG4Vis: A knowledge graph-based approach for
visualization recommendation. IEEE Transactions on Visualization and Computer Graphics 28, 1 (2021), 195–205.

[51] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017. Neural attentive session-based recommendation. In
Proceedings of the ACM on Conference on Information and Knowledge Management. 1419–1428.

[52] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international conference on World Wide Web. 661–670.

[53] Zihan Lin, Changxin Tian, YupengHou, andWayne Xin Zhao. 2022. Improving graph collaborative filteringwith neighborhood-enriched
contrastive learning. In Proceedings of the ACM web conference 2022. 2320–2329.

[54] Chengkai Liu, Jianghao Lin, Jianling Wang, Hanzhou Liu, and James Caverlee. 2024. Mamba4rec: Towards efficient sequential
recommendation with selective state space models. arXiv preprint arXiv:2403.03900 (2024).

[55] Huafeng Liu, Liping Jing, Jian Yu, and Michael K Ng. 2019. Social recommendation with learning personal and social latent factors.
IEEE Transactions on Knowledge and Data Engineering 33, 7 (2019), 2956–2970.

[56] Yiwei Liu, Jiamou Liu, Zijian Zhang, Liehuang Zhu, and Angsheng Li. 2019. REM: From structural entropy to community structure
deception. Proceedings of the Advances in Neural Information Processing Systems 32 (2019), 1–11.

[57] Yong Liu, Susen Yang, Chenyi Lei, Guoxin Wang, Haihong Tang, Juyong Zhang, Aixin Sun, and Chunyan Miao. 2021. Pre-training
graph transformer with multimodal side information for recommendation. In Proceedings of the 29th ACM International Conference on
Multimedia. 2853–2861.

[58] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S Yu. 2021. Augmenting sequential recommendation with pseudo-prior items via reversely
pre-training transformer. In Proceedings of the International ACM SIGIR conference on Research and Development in Information Retrieval.
1608–1612.

[59] Nicholas H Lurie. 2004. Decision making in information-rich environments: The role of information structure. Journal of consumer
research 30, 4 (2004), 473–486.

[60] Haokai Ma, Ruobing Xie, Lei Meng, Xin Chen, Xu Zhang, Leyu Lin, and Zhanhui Kang. 2024. Plug-in diffusion model for sequential
recommendation. In Proceedings of the AAAI conference on artificial intelligence, Vol. 38. 8886–8894.

[61] Lyu Michael R Ma Hao, Yang Haixuan and King Irwin. 2008. Sorec: social recommendation using probabilistic matrix factorization. In
Proceedings of the 17th ACM conference on Information and knowledge management. 931–940.

[62] KelongMao, Jieming Zhu, Xi Xiao, Biao Lu, ZhaoweiWang, and XiuqiangHe. 2021. UltraGCN: ultra simplification of graph convolutional
networks for recommendation. In Proceedings of the ACM CIKM. 1253–1262.

[63] Mark O’Neill, Elham Vaziripour, Justin Wu, and Daniel Zappala. 2016. Condensing steam: Distilling the diversity of gamer behavior. In
Proceedings of the 2016 Internet Measurement Conference. 81–95.

[64] Charles Oppenheim. 1997. Managers’ use and handling of information. International journal of information management 17, 4 (1997),
239–248.

[65] Denis Parra, Alexandros Karatzoglou, Xavier Amatriain, Idil Yavuz, et al. 2011. Implicit feedback recommendation via implicit-to-explicit
ordinal logistic regression mapping. Proceedings of the CARS-2011 5 (2011).

[66] Michael J Pazzani and Daniel Billsus. 2007. Content-based recommendation systems. In The adaptive web: methods and strategies of
web personalization. Springer, 325–341.

[67] Hao Peng, Jingyun Zhang, Xiang Huang, Zhifeng Hao, Angsheng Li, Zhengtao Yu, and Philip S Yu. 2024. Unsupervised Social Bot
Detection via Structural Information Theory. ACM Transactions on Information Systems (2024).

[68] Owen Phelan, Kevin McCarthy, Mike Bennett, and Barry Smyth. 2011. Terms of a Feather: Content-based news recommendation and
discovery using Twitter. In Proceedings of the European Conference on Information Retrieval. Springer, 448–459.

[69] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and Jie Tang. 2020. Gcc: Graph
contrastive coding for graph neural network pre-training. In Proceedings of the ACM SIGKDD. 1150–1160.

[70] Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan. 2021. U-BERT: Pre-training user representations for improved recommendation.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4320–4327.

[71] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factorizing personalized Markov chains for next-basket
recommendation. In Proceedings of the 19th international conference on World Wide Web. 811–820.

[72] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering recommendation algorithms.
In Proceedings of the 10th international conference on World Wide Web. 285–295.

[73] Wei Shao, Yao Peng, Chen Zu, Mingliang Wang, Daoqiang Zhang, Alzheimer’s Disease Neuroimaging Initiative, et al. 2020. Hypergraph
based multi-task feature selection for multimodal classification of Alzheimer’s disease. Computerized Medical Imaging and Graphics 80
(2020), 101663.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 45

[74] Andrew J Stanley and Philip S Clipsham. 1997. Information overload-myth or reality?. In IEE Colloquium on IT Strategies for Information
Overload (Digest No: 1997/340). IET, 1–1.

[75] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. 2019. BERT4Rec: Sequential recommendation with
bidirectional encoder representations from transformer. In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 1441–1450.

[76] Liang Sun, Shuiwang Ji, and Jieping Ye. 2008. Hypergraph spectral learning for multi-label classification. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining. 668–676.

[77] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved recurrent neural networks for session-based recommendations. In
Proceedings of the DLRS1st workshop on deep learning for recommender systems. 17–22.

[78] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation via convolutional sequence embedding. In Proceedings
of the ACM international conference on web search and data mining. 565–573.

[79] Jiliang Tang, Suhang Wang, Xia Hu, Dawei Yin, Yingzhou Bi, Yi Chang, and Huan Liu. 2016. Recommendation with social dimensions.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 30.

[80] Changxin Tian, Zihan Lin, Shuqing Bian, Jinpeng Wang, and Wayne Xin Zhao. 2022. Temporal contrastive pre-training for sequential
recommendation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 1925–1934.

[81] Haoye Tian, Haini Cai, Li Shun Wen, Junhao, and Yingqiao Li. 2019. A music recommendation system based on logistic regression and
eXtreme gradient boosting. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–6.

[82] Jason Turcotte, Chance York, Jacob Irving, Rosanne M Scholl, and Raymond J Pingree. 2015. News recommendations from social media
opinion leaders: Effects on media trust and information seeking. Journal of computer-mediated communication 20, 5 (2015), 520–535.

[83] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep content-based music recommendation. Advances in
neural information processing systems 26 (2013).

[84] Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu, and Shaoping Ma. 2022. Towards representnternation
alignment and uniformity in collaborative filtering. In Proceedings of the ACM SIGKDD. 1816–1825.

[85] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep knowledge-aware network for news recommendation. In
Proceedings of the 2018 World Wide Web Conference. 1835–1844.

[86] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo. 2019. Multi-task feature learning for knowledge
graph enhanced recommendation. In Proceedings of the World Wide Web Conference. 2000–2010.

[87] Jinpeng Wang, Ziyun Zeng, Yunxiao Wang, Yuting Wang, Xingyu Lu, Tianxiang Li, Jun Yuan, Rui Zhang, Hai-Tao Zheng, and Shu-
Tao Xia. 2023. Missrec: Pre-training and transferring multi-modal interest-aware sequence representation for recommendation. In
Proceedings of the 31st ACM International Conference on Multimedia. 6548–6557.

[88] Nan Wang, Dan Liu, Jin Zeng, Lijin Mu, and Jinbao Li. 2024. HGRec: Group recommendation with hypergraph convolutional networks.
IEEE Transactions on Computational Social Systems (2024).

[89] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat: Knowledge graph attention network for recommen-
dation. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 950–958.

[90] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He, and Tat-Seng Chua. 2021. Learning
intents behind interactions with knowledge graph for recommendation. In Proceedings of the Web conference 2021. 878–887.

[91] Xin Wang, Wei Lu, Martin Ester, Can Wang, and Chun Chen. 2016. Social recommendation with strong and weak ties. In Proceedings of
the 25th ACM International On conference on Information and Knowledge Management. 5–14.

[92] Yaozheng Wang, Dawei Feng, Dongsheng Li, Xinyuan Chen, Yunxiang Zhao, and Xin Niu. 2016. A mobile recommendation system
based on logistic regression and gradient boosting decision trees. In Proceedings of the 2016 International Joint Conference on Neural
Networks (IJCNN). IEEE, 1896–1902.

[93] Yifei Wang, Yupan Wang, Zeyu Zhang, Song Yang, Kaiqi Zhao, and Jiamou Liu. 2023. User: Unsupervised structural entropy-based
robust graph neural network. Proceedings of the AAAI Conference on Artificial Intelligence, 10235–10243.

[94] Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing Xie, Jianfeng Gao, Winnie Wu,
et al. 2020. Mind: A large-scale dataset for news recommendation. In Proceedings of the 58th annual meeting of the Association for
Computational Linguistics. 3597–3606.

[95] Junran Wu, Xueyuan Chen, Bowen Shi, Shangzhe Li, and Ke Xu. 2023. SEGA: Structural Entropy Guided Anchor View for Graph
Contrastive Learning. In Proceedings of the ICML. PMLR, 1–20.

[96] Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. 2022. Structural entropy guided graph hierarchical pooling. In Proceedings of the
International Conference on Machine Learning. PMLR, 24017–24030.

[97] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. 2021. Self-supervised graph learning for
recommendation. In Proceedings of the ACM SIGIR. 726–735.

[98] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang. 2020. Diffnet++: A neural influence and interest diffusion
network for social recommendation. IEEE Transactions on Knowledge and Data Engineering 34, 10 (2020), 4753–4766.

, Vol. 1, No. 1, Article . Publication date: October 2025.

46 • J. Zhang et al.

[99] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019. A neural influence diffusion model for social
recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval.
235–244.

[100] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural networks in recommender systems: a survey. Comput.
Surveys 55, 5 (2022), 1–37.

[101] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019. Session-based recommendation with graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 346–353.

[102] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy Huang. 2022. Hypergraph contrastive collaborative filtering.
In Proceedings of the ACM SIGIR. 70–79.

[103] Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard De Melo, and Yongfeng Zhang. 2019. Reinforcement knowledge graph reasoning
for explainable recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in
information retrieval. 285–294.

[104] Minhui Xie, Hao Peng, Pu Li, Guangjie Zeng, Shuhai Wang, Jia Wu, Peng Li, and Philip S Yu. 2025. Hierarchical Superpixel Segmentation
via Structural Information Theory. Proceedings of The SIAM International Conference on Data Mining.

[105] Fei Xiong, Ximeng Wang, Shirui Pan, Hong Yang, Haishuai Wang, and Chengqi Zhang. 2018. Social recommendation with evolutionary
opinion dynamics. IEEE Transactions on Systems, Man, and Cybernetics: Systems 50, 10 (2018), 3804–3816.

[106] Xiaodong Yan, Tengwei Song, Yifeng Jiao, Jianshan He, Jiaotuan Wang, Ruopeng Li, and Wei Chu. 2023. Spatio-temporal hypergraph
learning for next POI recommendation. In Proceedings of the 46th international ACM SIGIR conference on research and development in
information retrieval. 403–412.

[107] Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, and Philip S Yu. 2024. Instruction-based Hypergraph
Pretraining. In International ACM SIGIR Conference on Research and Development in Information Retrieval.

[108] Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, and Philip S Yu. 2024. Unified Pretraining for
Recommendation via Task Hypergraphs. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining.
891–900.

[109] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. 2022. Knowledge graph contrastive learning for recommendation. In
Proceedings of the international ACM SIGIR conference on research and development in information retrieval. 1434–1443.

[110] Yingguang Yang, Qi Wu, Buyun He, Hao Peng, Renyu Yang, Zhifeng Hao, and Yong Liao. 2024. SeBot: Structural Entropy Guided
Multi-View Contrastive Learning for Social Bot Detection. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD).

[111] Zhenyu Yang, Ge Zhang, Jia Wu, Jian Yang, Quan Z Sheng, Hao Peng, Angsheng Li, Shan Xue, and Jianlin Su. 2023. Minimum entropy
principle guided graph neural networks. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining.
114–122.

[112] Jun Yu, Dacheng Tao, and MengWang. 2012. Adaptive hypergraph learning and its application in image classification. IEEE Transactions
on Image Processing 21, 7 (2012), 3262–3272.

[113] Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen Quoc Viet Hung, and Hongzhi Yin. 2023. XSimGCL: Towards extremely simple
graph contrastive learning for recommendation. IEEE Transactions on Knowledge and Data Engineering 36, 2 (2023), 913–926.

[114] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and Xiangliang Zhang. 2021. Self-supervised
multi-channel hypergraph convolutional network for social recommendation. In Proceedings of the Web conference 2021. 413–424.

[115] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandelwal, Brandon Norick, and Jiawei Han. 2014. Personalized
entity recommendation: A heterogeneous information network approach. In Proceedings of the 7th ACM international conference on
Web search and data mining. 283–292.

[116] Guangjie Zeng, Hao Peng, Angsheng Li, Zhiwei Liu, Chunyang Liu, S Yu Philip, and Lifang He. 2023. Unsupervised Skin Lesion
Segmentation via Structural Entropy Minimization on Multi-Scale Superpixel Graphs. In Proceedings of the IEEE International Conference
on Data Mining (ICDM). 768–777.

[117] Xianghua Zeng, Hao Peng, and Angsheng Li. 2023. Effective and stable role-based multi-agent collaboration by structural information
principles. In Proceedings of the AAAI conference on artificial intelligence, Vol. 37. 11772–11780.

[118] Xianghua Zeng, Hao Peng, Angsheng Li, Chunyang Liu, Lifang He, and Philip S. Yu. 2023. Hierarchical State Abstraction based on
Structural Information Principles. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23,
Edith Elkind (Ed.). International Joint Conferences on Artificial Intelligence Organization, 4549–4557.

[119] An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, and Tat-Seng Chua. 2024. On generative agents in recommendation. In Proceedings
of the 47th international ACM SIGIR conference on research and development in Information Retrieval. 1807–1817.

[120] Yipeng Zhang, Xin Wang, Hong Chen, and Wenwu Zhu. 2023. Adaptive disentangled transformer for sequential recommendation. In
Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining. 3434–3445.

[121] Zizhao Zhang, Haojie Lin, Yue Gao, and KLISS BNRist. 2018. Dynamic hypergraph structure learning.. In Proceedings of the IJCAI.
3162–3169.

, Vol. 1, No. 1, Article . Publication date: October 2025.

Enhanced Pre-training for Recommendation via Hypergraph Structural Entropy • 47

[122] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005. Improving recommendation lists through topic
diversification. In Proceedings of the 14th international conference on World Wide Web. 22–32.

[123] Dongcheng Zou, Hao Peng, Xiang Huang, Renyu Yang, Jianxin Li, Jia Wu, Chunyang Liu, and Philip S Yu. 2023. SE-GSL: A General and
Effective Graph Structure Learning Framework through Structural Entropy Optimization. In Proceedings of the ACM Web Conference
2023. 499–510.

[124] Dongcheng Zou, SenzhangWang, Xuefeng Li, Hao Peng, YuandongWang, Chunyang Liu, Kehua Sheng, and Bo Zhang. 2024. Multispans:
A multi-range spatial-temporal transformer network for traffic forecast via structural entropy optimization. In Proceedings of the 17th
ACM International Conference on Web Search and Data Mining. 1–10.

, Vol. 1, No. 1, Article . Publication date: October 2025.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Recommendation Task
	2.2 Hypergraph Encoder
	2.3 Structural Information Theory
	2.4 Hypergraph Fusion Mechanism (TA layer)

	3 The Proposed Model
	3.1 Pre-training Process
	3.2 Hypergraph Structural Entropy
	3.3 Hypergraph Pooling
	3.4 Recommendation and Optimization
	3.5 Time complexity analysis
	3.6 Space complexity analysis

	4 Experiment Setup
	4.1 Datasets
	4.2 Baselines
	4.3 Variations
	4.4 Evaluation Metrics

	5 Results And Discussion
	5.1 Overall Effectiveness
	5.2 Ablation Study
	5.3 Hyperparameter Sensitivity
	5.4 Cold-start
	5.5 Time analysis
	5.6 Visualization on Graph and Embedding

	6 Related work
	6.1 Recommender Systems
	6.2 Hypergraph Learning
	6.3 Structural Information Theory based Applications

	7 Conclusion
	References

