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ABSTRACT
Research on Graph Structure Learning (GSL) provides key insights
for graph-based clustering, yet current methods like Graph Neural
Networks (GNNs), Graph Attention Networks (GATs), and con-
trastive learning often rely heavily on the original graph structure.
Their performance deteriorates when the original graph’s adjacency
matrix is too sparse or contains noisy edges unrelated to clustering.
Moreover, these methods depend on learning node embeddings and
using traditional techniques like k-means to form clusters, which
may not fully capture the underlying graph structure between
nodes. To address these limitations, this paper introduces DeSE,
a novel unsupervised graph clustering framework incorporating
Deep Structural Entropy. It enhances the original graph with quan-
tified structural information and deep neural networks to form
clusters. Specifically, we first propose a method for calculating
structural entropy with soft assignment, which quantifies structure
in a differentiable form. Next, we design a Structural Learning layer
(SLL) to generate an attributed graph from the original feature data,
serving as a target to enhance and optimize the original structural
graph, thereby mitigating the issue of sparse connections between
graph nodes. Finally, our clustering assignmentmethod (ASS), based
on GNNs, learns node embeddings and a soft assignment matrix
to cluster on the enhanced graph. The ASS layer can be stacked
to meet downstream task requirements, minimizing structural en-
tropy for stable clustering and maximizing node consistency with
edge-based cross-entropy loss. Extensive comparative experiments
are conducted on four benchmark datasets against eight represen-
tative unsupervised graph clustering baselines, demonstrating the
superiority of the DeSE in both effectiveness and interpretability.
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1 INTRODUCTION
Graph structure learning (GSL) has a wide range of applications
in recommender systems [29], community detection [45], interest
discovery [46], web topic mining [43], graph clustering [10, 14],
dimensionality reduction [20], etc. It integrates with downstream
tasks to refine the graph topology and generate node classifications,
enabling the learning of robust semantic embeddings and struc-
tural information, thereby improving the performance of various
applications. Unsupervised graph clustering typically employs con-
trastive loss to learn an appropriate graph structure embedding,
enhancing the representational similarity of nodes within clusters
while avoiding dependence on labeled data.
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Figure 1: Concept maps of three type models. ((a) and (b) are
existing models, (c) is our DeSE)

Early unsupervised graph clustering methods rely heavily on the
original graph structure and focus solely on optimizing it within the
model. Examples include hierarchical graph learning methods [15,
34, 39], pooling techniques [2], and structure-based embedding
learning approaches [19, 25]. The primary goal of these methods
is to learn better node embeddings by minimizing the distance
between neighboring or structurally similar nodes, as shown in
Figure 1(a). However, nodes with similar attributes may not always
have direct connections in practice. For instance, papers in the
same category often lack direct or indirect citation links in citation
networks. This dependence on the original graph, which is typically
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a sparse adjacency matrix, significantly limits the performance of
the models.

To address these issues, existing methods optimize the origi-
nal graph structure through approaches such as graph simplifica-
tion [5, 8] and latent structure learning [7, 16, 33]. Specifically, these
approaches use graph contrastive techniques to extract structural
knowledge [6, 18, 35], or graph autoencoders to simultaneously
learn representations and perform clustering tasks [21, 44], in order
to mitigate feature drift. However, these methods still rely on the
learned embeddings to form clusters, as shown in Figure 1(b). The
most common approach is the classic K-Means algorithm, which
requires prior knowledge of the number of clusters. We argue that
such a model relies on both the quality of representation learning
and the configuration of the clustering algorithm. Moreover, mod-
els that first learn embeddings and then perform clustering do not
directly capture the essential relationship between node features
and adaptive clusters during model convergence. Additionally, al-
though these methods focus on unsupervised graph clustering and
produce structured clusters, few models quantitatively represent
the graph structure, leading to poor interpretability. While [25]
proposes optimizing the node assignment matrix using modularity,
this measure captures the difference between actual intra-cluster
edges and expected edges, where nodes with higher degrees are
more likely to be connected. This approach is not applicable in all
scenarios. In tasks like citation networks and social event networks,
each cluster often contains a central node closely connected to
other nodes. Still, these central nodes belong to different categories
and have limited connections with one another.

In this work, we propose DeSE, a novel unsupervised graph clus-
tering framework with Deep Structural Entropy, which enhances
the original graph using quantifiable structural information and
deep neural networks to improve clustering performance and inter-
pretability. First, in terms of structural quantification, we introduce
structural information theory and propose a new method for calcu-
lating soft assignment structural entropy in the context of the graph
clustering task. We transform structural entropy into a continuous
and differentiable form by utilizing a probability matrix that assigns
cluster nodes. This allows for retaining more information about
boundary nodes during the embedding aggregation process rather
than discarding low-probability nodes outright. Second, we design
a Structure Learning Layer (SLL) to enhance the original graph
structure. By constructing a K-nearest neighbor graph in the node
feature mapping space, we create an attribute graph to address
the sparsity and missing interactions between graph nodes. This
attribute graph is continuously optimized and refined during the
training process. Third, we propose a cluster assignment method
(ASS) based on Graph Neural Networks, directly in the enhanced
graph rather than using embeddings, as shown in Figure 1(c). ASS
employs two convolutional layers: one for learning the embeddings
of the current layer’s nodes and the other for learning the soft as-
signment matrix. These are then aggregated to obtain embeddings
for higher-level communities and update the graph structure at
the upper levels. Finally, the model is optimized by minimizing
the structural entropy of the assignments to stabilize the cluster
structure and by using an edge-based cross-entropy loss to maxi-
mize the consistency between connected nodes, thereby achieving
unsupervised graph clustering.

We conduct extensive experiments on four datasets, Cora, Cite-
seer, Computer, and Photo, to demonstrate the effectiveness of DeSE.
First, the overall experimental results indicate that DeSE demon-
strates superior overall performance compared to the eight baseline
models. Second, a series of ablation experiments analyze the SLL,
GNN layer for features, and structure entropy loss DeSE. Thirdly,
the experiment for hyperparameters also illustrates the high perfor-
mance and stability of DeSE. The main contributions of this work
are summarized as follows.
• A novel unsupervised graph clustering framework with Deep

Structural Entropy is proposed with high effectiveness.
• A structure learning layer (SLL) and a cluster assignment

method (ASS) based on Graph Neural Networks are designed for
enhancing structure and graph clustering.
• A new optimization method that minimizes the structural

entropy of the assignments and maximizes the consistency between
connected nodes.
• A series of comparative analysis experiments show that DeSE

achieves higher graph clustering effectiveness and strong inter-
pretability.

2 RELATEDWORK
2.1 Unsupervised Graph Clustering
Unsupervised graph clustering has evolved significantly over the
past decades, from traditional methods like spectral clustering [27]
and modularity-based approaches [22] to the more sophisticated
deep learning models used today. Early methods primarily focused
on leveraging graph structure alone, which limited their perfor-
mance in dealing with complex, feature-rich data. Spectral clus-
tering and its variants, which use eigenvalue decomposition of
graph Laplacians, have been widely used due to their theoretical
simplicity and effectiveness [30]. However, these approaches scale
poorly to large graphs and are noise-sensitive, especially when
the graph structure is sparse or incomplete. With the advent of
deep learning, there has been a shift towards models that integrate
node features and graph structure. Techniques such as Graph Neu-
ral Networks (GNNs), particularly Graph Convolutional Networks
(GCNs) [11], and Graph Autoencoders (GAEs) [12], have gained
traction for unsupervised graph clustering tasks. These models
learn node embeddings that preserve local and global structures,
facilitating better clustering results. Furthermore, some approaches
have started to explore the role of structure in enhancing cluster-
ing [15, 34]. These methods aim to quantify and improve the quality
of graph structures, particularly in the presence of noise, leading
to more stable clustering results.
2.2 Graph Structure Learning
Graph Structure Learning (GSL) has gained increasing attention in
recent years as researchers seek to optimize graph structures for
downstream tasks like clustering and node classification. Unlike
traditional methods that rely on predefined graphs, GSL techniques
dynamically learn or refine the graph structure based on node
features and interactions. This approach has shown to be partic-
ularly effective in handling noisy, incomplete, or poorly defined
graphs. Adaptive graph learning methods [5, 9] focus on pruning
noisy edges or adding informative ones to improve graph quality.
These models typically apply sparsity constraints or similarity met-
rics to update the graph structure during training, resulting in a



Unsupervised Graph Clustering with Deep Structural Entropy KDD ’25, August 3-7, 2025, Toronto, Canada.

cleaner and more informative graph representation. Joint learning
approaches [9, 40] simultaneously learn the graph structure and
node embeddings in an end-to-end manner. These methods are
particularly powerful because they allow structure optimization
based on the specific task. A key challenge in GSL is balancing
structural refinement with maintaining meaningful graph relation-
ships. These techniques show promise in handling noisy graphs
and enhancing overall task performance, especially in unsupervised
or semi-supervised settings.
2.3 Structural Information Theory
The Structural Information Theory decoding network’s ability to
capture the structure’s essence has been validated in many applica-
tions. Introducing structural entropy in neural networks captures
the underlying connectivity graph and reduces random interfer-
ence [28]. The hierarchical nature of the structure entropy encoding
tree provides new methods for hierarchical structure pooling in
graph neural network [32], unsupervised image segmentation [41],
dimension estimation [38], state abstraction [42] in reinforcement
learning, social bot detection [23, 36], and unsupervised social event
detection [4]. Additionally, reconstructing the graph structure on
the hierarchical encoding tree suppresses edge noise and enhances
the learning ability of the graph structure [47, 48]. Furthermore,
modifying the network structure based on minimizing structural
entropy achieves maximum deception of community structure [17].
Similarly, the anchor view, guided by the principle of minimizing
structural entropy, improves the performance of graph contrastive
learning [31]. Based on the homogeneous graph structure entropy,
the study of multi-relational graph structure entropy [3] further
extends the structural information theory, making it suitable for
more complex scenarios.

3 PRELIMINARY
Definition 3.1 (Unsupervised Graph Clustering). The unsuper-

vised graph clustering task aims to cluster nodes based solely on the
provided interaction and feature information. From a data perspec-
tive, the input consists of an undirected homogeneous graph with
node features, represented as 𝐺 = (𝑉 , E, 𝑋 ), where 𝑉 is a set of 𝑁
nodes, E is a set of𝑀 edges, and 𝑋 ∈ 𝑅𝑁×𝑓 is the node feature ma-
trix with dimension 𝑓 . The edge relationships between nodes in 𝐺
are represented by a symmetric adjacency matrix 𝐴𝑔 ∈ {0, 1}𝑁×𝑁 ,
where each element denotes the edge weight between nodes. The
objective of the unsupervised graph clustering task is to learn a
node assignment matrix 𝑆 ∈ {0, 1}𝑁×𝑐 , which reflects the commu-
nity memberships of nodes, where 𝑐 is the number of clusters. In
our model, 𝑐 does not need to be specified in advance.

Definition 3.2 (Structural Entropy). Structural information the-
ory [13] is originally proposed for measuring the structural informa-
tion contained within a graph. Specifically, this theory aims to calcu-
late the structural entropy of the homogeneous graph 𝐺 = (𝑉 , E),
which reflects its uncertainty when undergoing hierarchical di-
vision. The structural information of the homogeneous graph 𝐺
determined by the encoding tree T is defined as:

𝐻 T (𝐺) = −
∑︁

𝛼∈T,𝛼≠𝜆

𝑔𝛼

𝑣𝑜𝑙 (𝐺) 𝑙𝑜𝑔
𝑣𝑜𝑙 (𝛼)
𝑣𝑜𝑙 (𝛼−) , (1)

where 𝑣𝑜𝑙 (𝐺) is the sum of the degrees of all nodes in the graph 𝐺 .
Each vertice in the encoding tree T corresponds to a node subset

𝑇𝛼 in the graph 𝐺 . 𝑣𝑜𝑙 (𝛼) is the volume of 𝑇𝛼 and is the sum of
the degrees of all nodes in the subset 𝑇𝛼 . 𝛼− is the parent vertice
of vertice 𝛼 in the encoding tree. 𝑔𝛼 is the sum of weights of all
edges from node subset 𝑇𝛼 to node subset 𝑉 /𝑇𝛼 , which can be
understood as the total weight of the edges from the nodes outside
the node subset𝑇𝛼 to the nodes inside𝑇𝛼 , or the total weight of the
cut edges. 𝑔𝛼

𝑣𝑜𝑙 (𝐺 ) represents the probability that the random walk
enters𝑇𝛼 . The structural entropy 𝐻 (𝐺) of graph𝐺 is the minimum
𝐻 T (𝐺). Let T𝑘 be encoding trees whose height is not greater than
𝑘 , then the 𝑘-dimensional structural entropy of 𝐺 is defined as
𝐻𝑘 (𝐺) =𝑚𝑖𝑛{𝐻 T𝑘 (𝐺)}.

4 METHODOLOGY
This section elaborates on the unsupervised graph clustering frame-
work DeSE with deep structural entropy. As shown in Figure 2,
DeSE consists of three keymodules: Structural Quantification, Struc-
tural Learning Layer, and Clustering Assignment Layer. Specifically,
Structural Quantification (Section 4.1) introduces a soft assign-
ment structural entropy, quantifying the structural information
and transforming discrete clustering into a continuous and differ-
entiable objective. Structural Learning Layer (SLL) (Section 4.2)
learns a K-nearest neighbor attribute graph in the feature map-
ping space to enhance the original graph structure. Clustering
Assignment Layer (ASS) (Section 4.3), based on GNN, simulta-
neously learns node embeddings and a soft assignment matrix in
the enhanced graph, updating new cluster embeddings and the
cluster-enhanced graph. Optimization (Section 4.4) integrates all
modules, optimizing the learning process using structural entropy
loss between nodes and clusters and cross-entropy loss between
node embeddings.

4.1 Structural Quantification
Structural information theory offers significant advantages in learn-
ing hierarchical structures and clusters of graph nodes. It quantifies
the uncertainty in graph structures and represents them in a math-
ematically computable form. Although prior research has extended
structural entropy [3, 23] and its optimization methods from simple
homogeneous graphs to multi-relational graphs and hypergraphs,
structural entropy is still calculated in a discrete manner. This limi-
tation restricts current optimization methods to operations like the
merge operator, where nodes are greedily merged in pairs. How-
ever, in unsupervised graph clustering tasks, we aim for structural
entropy to not only divide nodes into clusters but also provide
trainable feedback to enhance the graph structure. This highlights
the limitations of traditional structural entropy.

To address this issue, we transform the original binary "be-
long/not belong" relationship between nodes and clusters (rep-
resented as discrete values of 0 or 1 in the assignment matrix) into a
probabilistic relationship. A node is no longer exclusively assigned
to a single cluster; instead, it can belong to multiple clusters with
varying probabilities. This approach aligns with real-world scenar-
ios, such as interdisciplinary papers in citation networks. Although
these papers have a primary category, they also contribute to and
are associated with other relevant categories, which is valuable in-
formation in embedding and structure learning. This probabilistic
cluster assignment is also known as a "soft assignment."



KDD ’25, August 3-7, 2025, Toronto, Canada. Jingyun Zhang, Hao Peng, Li Sun, Guanlin Wu, Chunyang Liu, and Zhengtao Yu

𝐴𝑔

𝑋
𝑺𝑳𝑳 𝑨𝑺𝑺1 𝑨𝑺𝑺𝑘GNN

𝐴𝑔 + 𝛽𝑓𝐴𝑓

𝑋

𝐴𝑔 + 𝛽𝑓𝐴𝑓

𝐸

𝐴𝑔′ + 𝛽𝑓𝐴𝑓′

𝐸𝑐

𝑺𝟏 𝑺𝒌

𝓛𝒔𝒆

𝓛𝒄𝒆

ℒ

original graph 𝐴𝑔

…𝑁

𝑓

…

𝑑

𝑇𝑜𝑝 𝑘

Ⅱ. 𝑺𝑳𝑳

𝐺𝑁𝑁𝑒𝑚𝑏

𝐺𝑁𝑁𝑎𝑠𝑠

…

…
…

embedding 𝐸 learned

embedding

𝑺

𝑬𝒄

𝑆𝐿𝐿𝐴𝑔

Ⅲ. 𝑨𝑺𝑺

enhanced graph
𝑨𝒈′ + 𝜷𝒇𝑨𝒇′𝐴𝑔𝑔

𝐴𝑔’

enhanced graph

feature

𝑀𝐿𝑃

attribute graph 𝐴𝑓

soft

assignment

𝐴𝑔 + 𝛽𝑓𝐴𝑓

𝐻
cluster

embedding

new enhanced

graph

𝑐

Ⅰ. Structural Quantification

layer2

layer3

layer1

layer0
node

cluster

𝑺𝟏

𝑺𝟐
𝑪𝟎 𝑪𝟏

𝑺𝟏[𝟔, 𝟏]

𝑺𝟏[𝟔, 𝟐]

𝑺𝟏[𝟔, 𝟑]

𝒗𝟔

𝒄𝟏 𝒄𝟐 𝒄𝟑𝒄𝟎

𝑺𝟐[𝟏, 𝟎]
𝑺𝟐[𝟏, 𝟏]

Figure 2: The overall framework of DeSE.
Soft Assignment SE. The traditional definition of structural

entropy is presented in Section 3. Structural information theory
quantifies the uncertainty in a graph’s structure based on the ran-
dom walk of nodes through edges. When the lower-level vertices
belong to the parent vertex according to the assignment matrix 𝑆𝑘
at layer 𝑘 , we first express Eq. 1 as the sum of node entropies at
each layer and introduce the concept of a direct assignment matrix:

𝐻 T𝑠𝑎 (𝐺) =
ℎ∑︁

𝑘=1
𝐻𝑠𝑎 (𝐺 ;𝑘), (2)

𝐶𝑘 = 𝑆ℎ · 𝑆ℎ−1 · ... · 𝑆𝑘+1, (3)
where 𝐻𝑠𝑎 (𝐺 ;𝑘) in Eq. 2 denotes the structural entropy at layer
𝑘 with 𝑁𝑘 vertices, while the total height of the encoding tree is
ℎ. The 𝑆𝑘 ∈ 𝑅𝑁𝑘×𝑁𝑘−1 represents the assignment matrix between
the vertices of layer 𝑘 and those of layer 𝑘 − 1. As computed in
Eq. 3, 𝐶𝑘 ∈ 𝑅𝑁×𝑁𝑘 is the direct assignment matrix between the
leaf vertices (i.e., the nodes in the graph) and the vertices of layer 𝑘 ,
representing the probability that each node belongs to a cluster at
layer 𝑘 . Additionally, we redefine the calculation and representation
of cut edges and volume as follows:

𝑣𝑜𝑙𝑘 [𝑖] = 𝐷 (𝐶𝑘 )𝑖 , (4)

𝑔𝑘𝑖 = 𝑣𝑜𝑙𝑘 [𝑖] − 𝑣𝑜𝑙𝑘𝑖𝑛 [𝑖] = 𝑣𝑜𝑙
𝑘 [𝑖] − (𝐶𝑘 )𝑖

⊺
𝑊 (𝐶𝑘 )𝑖 , (5)

where the volume 𝑣𝑜𝑙𝑘 [𝑖] of vertex 𝑖 at layer 𝑘 is the sum of the
assignment probabilities over all node degrees, as expressed in
Eq. 4. And 𝐷 ∈ 𝑅𝑁 is the degree vector for all nodes, which can
be obtained through the weight matrix of edges𝑊 ∈ 𝑅𝑁×𝑁 that
𝐷 = 1N⊺ ·𝑊 (1N⊺ is a length-N vector consisting entirely of
ones and the calculation of weight matrix𝑊 will be detailed in
Section 4.2). The subscript 𝑖 on 𝐶𝑘 refers to the 𝑖-th column vector
of the matrix, which represents the direct clustering probability
of 𝑁 nodes in the graph to the 𝑖-th cluster at layer 𝑘 . And the 𝑖-th
vertex at layer k represents the 𝑖-th cluster at layer 𝑘 . The term
𝑔𝑘
𝑖
represents the cut value of the 𝑖-th vertex at layer 𝑘 , which is

calculated as the difference between the volume 𝑣𝑜𝑙𝑘 [𝑖] of vertex

𝑖 and its internal volume 𝑣𝑜𝑙𝑘𝑖𝑛 [𝑖]. The internal volume 𝑣𝑜𝑙𝑘𝑖𝑛 [𝑖] is
expressed as the sum of the weighted probabilities of all edges,
where the probability refers to the likelihood that the two nodes
connected by an edge belong to the same cluster 𝑖 at layer 𝑘 . Thus,
the computation of structural entropy is modified as follows:

𝐻𝑠𝑎 (𝐺 ;𝑘) = −
𝑁𝑘∑︁
𝑖=1

𝑔𝑘
𝑖

𝑣𝑜𝑙0
𝑙𝑜𝑔

𝑣𝑜𝑙𝑘 [𝑖]∑𝑁𝑘−1
𝑗=1 𝑣𝑜𝑙𝑘−1 [ 𝑗] · 𝑆𝑘 [𝑖, 𝑗]

= −
𝑁𝑘∑︁
𝑖=1

𝑣𝑜𝑙𝑘 [𝑖] − (𝐶𝑘 )𝑖
⊺
𝑊 (𝐶𝑘 )𝑖

𝑣𝑜𝑙0
𝑙𝑜𝑔

𝑣𝑜𝑙𝑘 [𝑖]
𝑣𝑜𝑙𝑘−1 (𝑆𝑘 )⊺𝑖

= −
𝑁𝑘∑︁
𝑖=1

𝐷 (𝐶𝑘 )𝑖 − (𝐶𝑘 )𝑖
⊺
𝑊 (𝐶𝑘 )𝑖

𝐷𝐶0 𝑙𝑜𝑔
𝐷 (𝐶𝑘 )𝑖

𝐷𝐶𝑘−1 (𝑆𝑘 )⊺𝑖
,

(6)

where the original volume associated with a single parent ver-
tex is replaced by the probabilistic sum of the volumes of all par-
ent vertices 𝑣𝑜𝑙𝑘−1 (𝑆𝑘 )⊺𝑖 in the soft assignment approach. And
𝑣𝑜𝑙𝑘−1 = [𝑣𝑜𝑙𝑘−1 [1], ..., 𝑣𝑜𝑙𝑘−1 [𝑁𝑘−1]] is the vector representation
of the volume of all 𝑁𝑘 vertices at layer 𝑘 , which can be further
simplified to 𝐷𝐶𝑘−1 by Eq. 4
4.2 Structural Learning Layer (SLL)
In graph clustering tasks, the input typically consists of node fea-
tures𝑋 and an adjacencymatrix𝐴𝑔 . The general approach is to train
the node features based on the original structure to generate embed-
dings. However, the connections in𝐴𝑔 do not always align perfectly
with clustering objectives. For instance, in citation networks, papers
on similar topics may not be directly linked (e.g., papers on neural
networks but focusing on different application areas), or papers that
are linked may not belong to the same topic (e.g., interdisciplinary
or multi-methodology papers). Similarly, in product co-purchase
networks, items bought together may be complementary rather
than similar (e.g., desktop computers and monitors or cameras and
lenses). Such mismatches in the original graph structure 𝐴𝑔 will
lead to information loss during the aggregation process, which can
hinder the effectiveness of graph clustering.
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The SLL aims to enhance the original graph structure by leverag-
ing the available feature information𝑋 and dynamically optimizing
and updating the graph during training. Since the original features
are often high-dimensional and sparse binary vectors, we first map
the node features into a lower-dimensional dense space using a
multilayer perceptron (MLP), as shown in Figure 2 II. Based on
these embeddings, we apply the K-nearest neighbors algorithm
(KNN) to select the top 𝐾 neighbors for each node and create edges
with a weight of 1. This process constructs an attribute graph,
mathematically represented as:

𝐴𝑓 = 𝐾𝑁𝑁 (𝑀𝐿𝑃 (𝑋 ;Θ𝑓 );𝐾), (7)

where𝑀𝐿𝑃 is a multilayer perceptron with an input size of 𝑓 and
both hidden and output layers of size 𝑑 , while Θ𝑓 ∈ 𝑅 𝑓 ×𝑑 rep-
resents the parameters of the 𝑀𝐿𝑃 . 𝐾𝑁𝑁 is the K-nearest neigh-
bors operation, and each row of the obtained adjacency matrix
𝐴𝑓 ∈ {0, 1}𝑁×𝑁 indicates the neighbor selection for each node.
Since 𝐾𝑁𝑁 selects neighbors by ranking the distances between
nodes, the neighbors may be unidirectional. That is if the node 𝑣𝑖 is
among the top 𝐾 neighbors of node 𝑣 𝑗 , node 𝑣 𝑗 may not necessarily
be among the top 𝐾 neighbors of node 𝑣𝑖 . Given the different im-
plications of unidirectional versus bidirectional neighbor selection,
we adjust the adjacency matrix of the attribute graph as follows:

𝐴𝑓 = (𝐴𝑓 +𝐴𝑓
⊺)/2. (8)

This ensures that the attribute graph’s adjacency matrix becomes
symmetric while still partially retaining the unidirectional and
bidirectional neighbor selections. Finally, we combine the original
graph adjacency matrix with the attribute graph adjacency matrix
to obtain an enhanced graph:

𝑊 = 𝐴𝑔 + 𝛽𝑓 𝐴𝑓 , (9)

where 𝛽𝑓 is a hyperparameter controlling the weight of the attribute
graph in the fusion, and𝑊 ∈ 𝑅𝑁×𝑁 , is the new adjacency matrix
with edge weights used for soft assignment SE in Section 4.1 and
subsequent calculations.

4.3 Clustering Assignment Layer (ASS)
The clustering assignment layer utilizes the initial embeddings
and the adjacency matrix to learn the soft assignments and em-
beddings of nodes while updating the graph structure and cluster
embeddings after aggregation. It consists of three components: Em-
bedding Learner𝐺𝑁𝑁 𝑒𝑚𝑏 , Soft Assignment Learner𝐺𝑁𝑁𝑎𝑠𝑠 , and
Aggregator 𝐴𝑔𝑔, as shown in Figure 2 III.

Embedding Learner. The embedding learner is based on a GNN
architecture, mathematically represented as follows:

𝐻 = 𝐺𝑁𝑁 𝑒𝑚𝑏 (𝐸,𝑊 ;Θ1) = 𝑅𝑒𝐿𝑈 (𝑚𝑒𝑎𝑛(𝑊𝐸Θ1)), (10)

where 𝐺𝑁𝑁 𝑒𝑚𝑏 applies a linear transformation to the initial em-
bedding 𝐸, mapping it to the embedding space. It then aggregates
the average embeddings of connected nodes to generate new node
embeddings, followed by an activation function. The learnable pa-
rameters of the linear transformation are denoted by Θ1 ∈ 𝑅𝑑×𝑑 .

Soft Assignment Learner. The soft assignment learner extends
the GNN architecture with an attentionmechanism, mathematically

represented as follows:

𝑆 = 𝐺𝑁𝑁𝑎𝑠𝑠 (𝐸,𝑊 ;Θ2) = 𝑅𝑒𝐿𝑈 ((Γ ◦𝑊 )𝐸Θ2),

Γ𝑖, 𝑗 =
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 ((𝑒𝑖 | |𝑒 𝑗 )Θ3))∑𝑁
𝑗=1 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 ((𝑒𝑖 | |𝑒 𝑗 )Θ3))

,
(11)

where 𝐺𝑁𝑁𝑎𝑠𝑠 performs a linear transformation on the initial
embeddings 𝐸 into the cluster space (i.e., with dimensions equal
to the number of clusters). It then computes the attention matrix
Γ for each edge to serve as aggregation weights, performing non-
averaged embedding aggregation to obtain cluster embeddings.
The learnable parameters of the linear transformation in𝐺𝑁𝑁𝑎𝑠𝑠

are denoted by Θ2 ∈ 𝑅𝑑×𝑐 . The computation of attention involves
linearly transforming the concatenated embeddings of the nodes
at each end of an edge into a 1-dimensional space (i.e., the weight
space), followed by activation and normalization. 𝑒𝑖 and 𝑒 𝑗 represent
the embedding of node 𝑣𝑖 and node 𝑣 𝑗 . The learnable parameters for
the linear transformation in the attention mechanism are denoted
by Θ3 ∈ 𝑅2𝑑×1.

Aggregator. The aim of 𝐴𝑔𝑔 is to update the embedding and
adjacency matrix of clusters. We use the probability sum of node
embeddings for cluster embeddings, denoted as 𝐸𝑐 = 𝑆⊺𝐻 ∈ 𝑅𝑐×𝑑 .
The new adjacency matrix is combined from the attribute graph
adjacency matrix and the structural graph adjacency matrix, similar
to the structural learning method described in Section 4.2 Eq. 9.
The detailed computation process is as follows:

𝐴𝑔
′
= 𝑆⊺𝐴𝑔𝑆, 𝐴𝑓

′
= 𝐾𝑁𝑁 (𝑀𝐿𝑃 (𝐸𝑐 ;Θ𝑐 );𝐾), (12)

where Θ𝑐 ∈ 𝑅𝑑×𝑑 represents the learnable parameters of the𝑀𝐿𝑃
for clusters and the new weighted adjacency matrix is𝑊

′
= 𝐴𝑔

′ +
𝛽𝑓 𝐴𝑓

′
.

4.4 Optimization
The entire process of graph clustering in DeSE is illustrated in Ap-
pendix B Algorithm 1. Initially, the original graph is enhanced as
detailed in Section 4.2, followed by a round of GNN propagation
on the new weighted adjacency matrix𝑊 , transforming the sparse
and high-dimensional feature vectors 𝑋 into the initial node em-
beddings 𝐸. Next, several ASS (Section 4.3) modules are used to
learn soft assignment matrices {𝑆𝑘 } at different layers. We employ
soft assignment structural entropy (SE loss) and negative sampling
cross-entropy loss (CE loss) to optimize the graph clustering task.
Let the set of positive and negative edges be denoted as E ′ , with an
equal number of positive and negative edges. The CE loss is then
calculated as follows:

𝑝𝑖, 𝑗 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (2 − ||𝑒𝑖 − 𝑒 𝑗 | |2), 𝑙𝑖, 𝑗 =

{
1, 𝑊𝑖, 𝑗 ≠ 0
0, 𝑒𝑙𝑠𝑒

,

L𝑐𝑒 = − 1
|𝑊 |

∑︁
(𝑖, 𝑗 ) ∈E′

𝑙𝑖, 𝑗 𝑙𝑜𝑔(𝑝𝑖, 𝑗 ) + (1 − 𝑙𝑖, 𝑗 )𝑙𝑜𝑔(1 − 𝑝𝑖, 𝑗 ),
(13)

where 𝑝𝑖, 𝑗 represents the probability of an edge existing between
node 𝑣𝑖 and node 𝑣 𝑗 , calculated based on the distance between
their embeddings. Let 𝑙𝑖, 𝑗 denote the ground truth label indicating
whether an edge actually exists between them. The final loss is
composed of SE loss, as calculated in Section 4.1, and CE loss:

L = 𝜆𝑠𝑒𝐻
T
𝑠𝑎 + 𝜆𝑐𝑒L𝑐𝑒 , (14)
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Table 1: Comparison of the NMI, ARI, ACC, and F1 across different methods on four datasets. The best results are bolded, and
the second-best results are underlined.

Method Cora Citeseer Computer Photo
NMI ARI ACC F1 NMI ARI ACC F1 NMI ARI ACC F1 NMI ARI ACC F1

DMoN 48.98 40.55 63.55 58.91 33.70 30.27 59.12 56.68 49.30 31.82 49.13 39.29 63.38 52.41 73.83 71.05
MinCut 40.40 29.44 54.69 53.13 28.70 23.60 49.02 46.96 48.37 26.07 38.92 34.73 57.47 43.88 66.26 64.84
DGI 53.56 49.71 70.35 67.56 38.36 31.53 53.14 42.25 22.68 12.76 29.21 24.52 30.70 14.63 39.59 37.74

SUBLIME 54.20 50.30 71.30 63.50 44.10 43.90 68.50 63.20 45.55 24.89 40.94 34.64 56.91 45.11 64.95 61.24
EGAE 54.00 47.20 72.40 50.94 41.20 43.20 67.40 42.85 45.98 34.80 49.59 40.28 59.99 50.14 70.33 67.78

CONVERT 55.57 50.58 74.07 72.92 41.62 42.77 68.43 62.39 48.44 34.25 51.30 42.17 63.04 55.20 74.24 69.13
AGC-DRR 18.74 14.80 40.62 31.23 40.28 45.34 68.32 64.82 49.31 35.93 55.72 42.61 60.43 48.20 68.44 62.63
RDGAE 55.30 53.00 73.10 48.32 43.70 45.70 69.50 43.54 42.64 37.34 56.72 35.77 48.12 33.14 51.92 42.39
DeSE 57.96 55.47 75.22 72.63 44.34 45.01 69.34 64.29 52.10 45.64 58.78 43.17 70.13 62.50 80.55 76.55

Improv.(%) ↑4.3% ↑4.7% ↑1.6% ↓0.4% ↑0.5% ↓1.5% ↓0.2% ↓0.8% ↑5.7% ↑22.2% ↑3.6% ↑1.3% ↑10.7% ↑13.2% ↑8.5% ↑7.7%

Table 2: Statistics of four datasets.
Dataset #Node #Edge #Feature #Cluster Sparsity Iso.
Cora 2,708 5,278 1,433 7 3.9 0

Citeseer 3,327 4,552 3,703 6 2.7 48
Computer 13,752 245,861 767 10 35.7 281
Photo 7,650 119,081 745 8 31.1 115

where 𝜆𝑠𝑒 and 𝜆𝑐𝑒 are hyperparameters of coefficients for SE loss
and CE loss, respectively.
4.5 Complexity Analysis
We analyze the time complexity of each component of DeSE. For
SLL, the time complexity is mainly contributed by MLP and KNN,
which are 𝑂 (𝑁 𝑓 𝑑) and 𝑂 (𝑁𝑙𝑜𝑔𝑁 ), respectively. In the ASS, the
complexities of embedding learner and soft assignment learner are
𝑂 (𝑁𝑑2) and 𝑂 (𝑁𝑑2 + 𝑁𝑑). For loss computation, the complexity
is 𝑂 (𝑁𝑐) for SE loss and 𝑂 (2𝑀𝑑) for CE loss. Since the number of
clusters 𝑐 is usually small, the total time complexity of the model
can be summarized as 𝑂 ((𝑑 + 𝑙𝑜𝑔𝑁 + 𝑓 )𝑁𝑑 +𝑀𝑑), which can be
simplified to 𝑂 (𝑑𝑁𝑙𝑜𝑔𝑁 ).
5 EXPERIMENTS
In this section, we conduct empirical experiments to demonstrate
the effectiveness of the proposed framework DeSE. We aim to an-
swer five research questions as follows: Q1: How effective the DeSE
is for unsupervised graph clustering, and what kind of clusters are
learned compared with baselines (Section 5.2)? Q2: How do the
Structure Learning Layer and SE loss influence the performance
of DeSE (Section 5.3)? Q3: How do key hyperparameters impact
the performance of DeSE (Section 5.4)? Q4: How robust is DeSE to
the number of clusters, and what kind of graph structure is learned
(Section 5.5)?
5.1 Experiment Setup
Datasets. We conduct experiments on four benchmark datasets:
Cora, Citeseer, Computer, and Photo. Details of datasets are sum-
marized in Table 2 of Appendix D, supplemented with the number
of independent nodes "Iso." and the average number of edges per
node "Sparsity".
Baselines. For graph clustering, we mainly compare DeSE with
two categories of methods, including three structure-driven models
(i.e., DMoN [25], MinCut [1], and DGI [26]) and five unsupervised
GSL models (i.e., SUBLIME [18], EGAE [44], CONVERT [35], AGC-
DRR [8], and RDGAE [21]). Details of baselines are summarized

in Appendix C. The codes for all baseline models and DeSE, along
with all datasets, are publicly accessible on GitHub1.
Evaluation Metrics. We evaluate the accuracy and consistency of
graph clustering with four metrics. NMI (Normalized Mutual Infor-
mation) evaluates how well the predicted clusters match the true
clusters in terms of information shared. ARI (Adjusted Rand Index)
assesses the similarity between the predicted and true cluster as-
signments, adjusting for random chance. ACC (Accuracy) measures
the proportion of nodes correctly assigned to their true clusters. F1
Score evaluates the balance between precision and recall in cluster
assignments.
5.2 Graph Clustering Performance
Table 1 reports the graph clustering results of our method DeSE in
comparison with eight baseline models across four datasets. The
evaluation metrics include NMI, ARI, ACC, and F1. For all meth-
ods, both the original graph structure and node features from the
datasets are used as input. The baseline models are drawn from
open-source implementations. As can be observed, despite the ab-
sence of labeled data, our proposed DeSE model outperforms all
baselines on 12 out of the 16 evaluated metrics across the four
datasets and ranks second on three of the remaining metrics. No-
tably, the DeSE model achieves the best performance on the NMI
metric in all benchmarks. This strong performance is attributed
to the novel approach of leveraging deep structural entropy to
enhance graph structure learning, guiding adaptive clustering.

Additionally, we make other observations: First, the GSL (Graph
Structure Learning) baselines outperform methods that directly use
the raw graph structure for clustering on most datasets and metrics,
demonstrating the importance of structure learning and structure
enhancement. Second, while most baselines perform relatively well
on NMI and ACC, they struggle to balance ARI and F1. For instance,
DMoN and MinCut exhibit particularly poor ARI, while EGAE and
RDGAE have notably low F1 scores. This imbalance can largely be
attributed to differences in the prediction of majority and minority
classes. ACC and NMI tend to focus on overall alignment, whereas
F1 and ARI place greater emphasis on local precision, particularly
in the handling of imbalanced classes. In contrast, our DeSE model
does not exhibit such conflicts and performs well across all four
metrics. Figure 3 presents the detailed correspondence between the
node numbers of the predicted clusters and the true clusters on DeSE

1https://github.com/SELGroup/DeSE

https://github.com/SELGroup/DeSE
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Figure 3: Clusters of DeSE, EGAE, MinCut, and RDGAE on the Photo dataset. (The vertical axis represents the number of nodes
contained in the true clusters, while the horizontal axis represents the number of nodes predicted by the model. Each circle in
the heatmap shows the number of nodes from true cluster 𝑖 predicted to belong to cluster 𝑗 . The circle’s size represents the
node count, and its color intensity indicates the proportion of these nodes within true cluster 𝑖, with darker colors showing a
higher proportion.)

Table 3: Test results corresponding without SLL module and
SE loss on four datasets.

Variation Cora Citeseer
NMI ARI ACC F1 NMI ARI ACC F1

w/o SLL 54.21 47.72 - - 43.00 43.56 52.63 45.69
w/o SE 35.19 24.87 47.27 39.43 24.65 19.25 42.14 34.13
DeSE 57.96 55.47 75.22 72.63 44.34 45.01 69.34 64.29

Variation Computer Photo
NMI ARI ACC F1 NMI ARI ACC F1

w/o SLL 51.18 33.13 55.65 43.18 70.09 62.29 79.67 73.23
w/o SE 39.19 34.21 - - 53.05 37.50 - -
DeSE 52.10 45.64 58.79 43.17 70.13 62.50 80.55 76.55

and three baselines. It can be observed that RDGAE predicts large
clusters with relatively high accuracy but shows noticeable errors
for smaller categories, such as the misprediction of the majority
of nodes from cluster 0 and cluster 3 into cluster 1. In contrast,
EGAE and MinCut do not provide comprehensive predictions for
the larger clusters, with a significant number of nodes from cluster
1 and cluster 6 being distributed across other clusters. Our DeSE
model maintains relatively focused and accurate clustering for both
large and small clusters. The clusters of DeSE plots for the remaining
three datasets are discussed in Appendix E.
5.3 Ablation Study
In our proposed DeSE, the Structural Learning Layer refines the
graph structure, and SE loss with soft assignment is introduced for
optimization. To evaluate the effectiveness of these two components,
we independently disabled the SLL and SE loss (i.e., set 𝛽𝑓 = 0 and
𝜆𝑠𝑒 = 0), resulting in the variations referred to as "w/o SLL" and "w/o
SE". The corresponding results are presented in Table 3. Without
the SLL, the clustering performance deteriorates more significantly
on datasets with relatively sparse connections, such as Cora and
Citeseer. This is especially evident in the ACC and F1 scores on Cora,
where they become undefined, indicating a mismatch between the
predicted and actual number of clusters. This suggests that the SLL
improves the quality of the graph structure, particularly for sparse
graphs. Similarly, in the absence of SE loss, clustering performance
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Figure 4: Sensitivity of hyperparameter𝐾 withNMI andACC.

declines sharply across all datasets, with large and relatively dense
datasets such as Computer and Photo showing undefined ACC and
F1 scores due to the mismatch between the predicted and actual
number of clusters. This highlights the importance of optimizing the
model using quantified structural information to improve clustering
performance.
5.4 Sensitivity Analysis
In this section, we investigate the sensitivity of critical hyperpa-
rameter in DeSE, including the number of neighbors in KNN 𝐾 , the
weight of attribute graph 𝛽𝑓 , and the coefficients of SE loss and CE
loss 𝜆𝑠𝑒 and 𝜆𝑐𝑒 .

Number of neighbors 𝐾 . Figure 4 shows the NMI and ACC
performance under different numbers of neighbors across four
datasets. It can be observed that the value of 𝐾 = 1 yields high
NMI and ACC scores. As the value of 𝐾 increases, both NMI and
ACC show a significant decline in the Cora and Citeseer datasets,
which have relatively sparse graph structures. However, on the
Computer and Photo datasets, which have a higher average number
of edges per node, the decrease is less pronounced. This suggests
that the selection of neighbors has a significant impact on clustering
results. While improving the graph structure using neighbors offers
advantages for clustering, introducing too many neighbors can be
detrimental, as it may introduce noise. Nodes with similar features
in the embedding space do not necessarily belong to the same
cluster. Next, we provide a more detailed explanation of the degree-
based distributions used for selecting 𝐾 and present the complete
experimental results in Table 4. The first row represents the results
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Table 4: Performance of DeSE on different degree-based distributions for 𝐾 .

Method Cora Citeseer Computer Photo
NMI ARI ACC F1 NMI ARI ACC F1 NMI ARI ACC F1 NMI ARI ACC F1

𝐾 = 1 57.96 55.47 75.22 72.63 44.34 45.01 69.34 64.29 52.10 45.64 58.78 43.17 70.13 62.50 80.55 76.55
𝐾 ∼ /5 54.72 49.57 73.33 68.70 39.98 40.38 66.39 61.62 39.89 26.54 46.16 29.51 65.79 61.42 - -
𝐾 ∼ /10 56.57 51.44 74.29 70.21 43.08 43.56 68.19 63.17 45.08 32.93 48.56 34.05 62.31 58.91 65.47 52.67
𝐾 ∼ 𝑠𝑞𝑟𝑡 36.20 33.74 62.81 57.55 21.47 20.32 45.77 36.76 35.27 23.40 43.20 23.12 58.76 49.59 69.68 57.92
𝐾 ∼ 𝑙𝑜𝑔 30.04 25.37 55.31 52.10 20.73 19.90 44.72 35.93 42.96 27.47 - - 54.49 43.75 63.07 45.62
𝐾 ∼ˆ 57.88 52.67 75.22 71.07 42.79 43.30 68.17 63.28 45.79 32.32 56.43 30.07 65.06 64.99 73.79 64.30

𝐾 ∼ 𝑟𝑎𝑛𝑑𝑜𝑚 39.17 32.21 56.28 54.39 22.25 20.90 45.00 39.45 47.86 30.00 52.07 41.47 65.75 58.68 58.31 43.25
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Figure 5: Sensitivity of hyperparameter 𝛽𝑓 on four datasets with four metrics.

for 𝐾 = 1, which are reported in our paper. The subsequent five
sets of comparative experiments consider (𝐸𝑃𝑆 = 1𝑒 − 6):

• 𝐾 ∼ /5: 𝐾 = 𝑐𝑒𝑖𝑙 ( 𝑑𝑒𝑔𝑟𝑒𝑒5 + 𝐸𝑃𝑆),
• 𝐾 ∼ /10: 𝐾 = 𝑐𝑒𝑖𝑙 ( 𝑑𝑒𝑔𝑟𝑒𝑒10 + 𝐸𝑃𝑆),
• 𝐾 ∼ 𝑠𝑞𝑟𝑡 : 𝐾 = 𝑐𝑒𝑖𝑙 (

√︁
𝑑𝑒𝑔𝑟𝑒𝑒 + 𝐸𝑃𝑆),

• 𝐾 ∼ 𝑙𝑜𝑔: 𝐾 = 𝑐𝑒𝑖𝑙 (𝑙𝑜𝑔2 (𝑑𝑒𝑔𝑟𝑒𝑒 + 1) + 𝐸𝑃𝑆),
• 𝐾 ∼ :̂ 𝐾 = 𝑓 𝑙𝑜𝑜𝑟 (𝑑𝑒𝑔𝑟𝑒𝑒

1
𝑑𝑒𝑔𝑟𝑒𝑒+1 ).

In Table 4, a ’-’ indicates that the number of clusters produced
by DeSE under this configuration does not match the actual number,
making it impossible to compute ACC and F1. We can see that the
best performance of DeSE is still at 𝐾 = 1, as too many neighbors
distort the graph while both enhancing and preserving it. Therefore,
we chose 𝐾 = 1 in our experiments. Then, to understand whether
the introduced edge (𝐾 = 1) is noise or if it represents the miss-
ing edge in the original graph, we add a variation "𝐾 ∼ 𝑟𝑎𝑛𝑑𝑜𝑚"
where, instead of using KNN, a random edge is added and check its
performance. Results in the last line of Table 4 show a significant
performance drop with random edges compared with 𝐾 = 1. Thus,
while DeSE performs best when 𝐾 = 1; we argue that this setting
effectively recovers missing but meaningful edges in the original
graph.

Weight of attribute graph 𝛽𝑓 . To analyze its sensitivity, we
search the value of 𝛽𝑓 in the range of {0.1, 0.2, 0.4, 0.6, 0.8, 1.0}.
As is demonstrated in Figure 5, the optimal choice of 𝛽𝑓 varies
across datasets. For example, the best performance is achieved at
0.4 for Computer and Photo, 0.2 for Cora, and 0.1 for Citeseer.
However, a common trend is that an excessively large 𝛽𝑓 leads
to poor performance, particularly with F1 and ACC scores, which
drop sharply when 𝛽𝑓 exceeds 0.6. We hypothesize that this occurs
because assigning too much weight to the attribute graph may
interfere with the effectiveness of the original graph structure.

Table 5: Sensitivity of hyperparameters 𝜆𝑠𝑒 and 𝜆𝑐𝑒 with NMI.

Variation SE loss 𝜆𝑠𝑒 CE loss 𝜆𝑐𝑒
0.01 0.05 0.2 0.5 0.1 0.5 1 5

Cora 57.96 56.94 55.02 54.19 54.24 56.82 57.02 57.96
Citeseer 44.34 42.30 41.41 40.88 44.01 44.34 44.13 44.26
Computer 40.74 44.45 52.10 42.26 46.05 52.10 47.31 43.10
Photo 70.13 69.95 63.90 66.06 66.08 68.67 70.13 70.13

Coefficients of SE loss and CE loss 𝜆𝑠𝑒 and 𝜆𝑐𝑒 . The NMI
results of DeSE with 𝜆𝑠𝑒 in the range of {0.01, 0.05, 0.2, 0.5} and
𝜆𝑐𝑒 in the range of {0.1, 0.5, 1, 5} are presented in Table 5. The
optimal choice varies across different datasets, but generally, the SE
loss tends to favor smaller coefficients, while the CE loss tends to
favor larger coefficients. However, compared to the variant w/o SE
(𝜆𝑠𝑒 = 0) in section 5.3, it is evident that despite the small coefficient
of the SE loss, it plays a significant role in improving performance.
5.5 Robustness on Clusters
To evaluate the robustness of DeSE under different cluster number
settings, we set the number of clusters in 𝐺𝑁𝑁𝑎𝑠𝑠 to the original
cluster number 𝑐 , 𝑐 + 1, and 𝑐 + 2, respectively, and visualize the
results using t-SNE. As shown in Figure 6, the first row presents
the predictions of DeSE on the Cora dataset, while the second row
displays the results under the ground-truth labels. It can be observed
that regardless of the set number of clusters, DeSE consistently
forms seven clusters, matching the ground truth, and achieves a
relatively high NMI. This demonstrates the robustness of our model
with respect to cluster numbers. Additionally, cluster construction
is not entirely dependent on embedding learning. The ground-truth
distribution shows that distant nodes can belong to the same cluster.
DeSE is able to capture such nodes to some extent. For instance, in
Figure 6(e), a small group of yellow nodes in the lower left is closer
to the purple cluster in terms of embedding distribution, but DeSE
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Table 6: Robustness of cluster numbers on baselines.

Method Cluster Cora Citeseer Computer Photo
NMI ARI ACC F1 NMI ARI ACC F1 NMI ARI ACC F1 NMI ARI ACC F1

DeSE
+1 57.40 53.50 73.52 71.20 44.34 44.84 68.86 63.95 51.22 33.29 55.86 43.17 70.13 62.50 80.55 76.55
+2 57.96 52.68 75.22 71.08 41.98 43.42 68.68 63.57 49.20 31.15 56.25 29.58 68.77 59.57 75.76 65.94

DMoN +1 35.18 24.49 - - 15.73 10.65 - - 43.93 23.22 - - 55.03 38.34 - -
+2 42.72 29.20 - - 20.84 18.39 - - 44.61 22.11 - - 56.67 40.21 - -

MinCut +1 38.80 26.92 - - 20.79 15.98 - - 33.13 27.50 - - 59.27 44.09 - -
+2 33.27 20.04 - - 22.57 18.26 - - 28.46 25.34 - - 56.79 41.80 - -

DGI +1 53.62 44.70 - - 38.87 38.62 - - 25.98 15.10 - - 30.60 17.71 - -
+2 56.05 47.72 - - 38.12 37.53 - - 32.42 18.22 - - 23.55 11.36 - -

(a) Cora 7 (NMI=56.26). (c) Cora 8 (NMI=57.40). (e) Cora 9 (NMI=57.96).

(b) Cora 7 true. (d) Cora 8 true. (f) Cora 9 true.

Figure 6: Robustness of cluster numbers on Cora.

is still able to identify them correctly. We attribute this to the use
of SE loss and structural learning, which reduces the embedding
distance between connected nodes and approaches cluster division
from the perspective of overall structural stability. More analysis
on the robustness of the cluster for the remaining three datasets is
discussed in Appendix F.

We conduct experiments on three baselines for comparison. As
shown in Table 6, we report the NMI, ARI, ACC, and F1 for DeSE,
DMoN, MinCut, and DGI. ACC and F1 cannot be tested due to mis-
matched cluster numbers of baselines. It can be observed that when
the number of clusters generated by the baselines slightly deviates
from the ground truth, the performance of NMI and ARI declines
sharply and exhibits instability. Moreover, due to the mismatch in
the number of clusters with the ground truth, the baselines fail to
provide ACC and F1 scores, which apply to all the baselines pre-
sented. This highlights their dependency on a predefined number of
clusters. In contrast, our model DeSE does not suffer from this limi-
tation. It not only maintains strong NMI and ARI performance even
when the specified number of clusters deviates from the ground
truth but also converges the number of clusters to the appropriate
value, thereby achieving high ACC and F1 performance.

When the approximate range of the number of clusters is known
in advance, as described above, DeSE achieves good clustering per-
formance, and the expected number of clusters aligns well with
the actual number. When the number of clusters is unknown, we
can iteratively run DeSE to approximate convergence as shown in
Table 7. Using the Cora dataset as a case study, we perform the
following steps: We set the number of clusters to 𝑐 = 𝑁 = 2708,

Table 7: Case study on Cora when the number of clusters is
unknown.

Round Input: 𝑐 Output: NMI, clusters
1 𝑐 = 2708 NMI=39.40, clusters=372
2 𝑐 = 372 NMI=45.00, clusters=36
3 𝑐 = 36 NMI=51.17, clusters=14
4 𝑐 = 14 NMI=50.08, clusters=7
5 𝑐 = 7 NMI=57.96, clusters=7

obtaining an NMI of 39.40 with 372 clusters. We set 𝑐 = 372 and
repeat the experiment, yielding an NMI of 45.00 with 36 clusters.
We set 𝑐 = 36 and repeat the experiment, obtaining an NMI of 51.17
with 14 clusters. We then set 𝑐 = 14 and repeat the experiment,
resulting in an NMI of 50.08 with 7 clusters. We set 𝑐 = 7 and repeat
the experiment, achieving an NMI of 57.96 with 7 clusters. At this
point, the preset number of clusters matches the output number,
and we stop the testing process.

6 CONCLUSION
This paper presents a novel unsupervised graph clustering frame-
work, DeSE, which incorporates deep structural entropy. The pro-
posed framework addresses the challenges of structural quantifi-
cation and structural learning to enhance clustering performance.
We introduce a method for calculating structural entropy with soft
assignment and design a Structural Learning Layer to optimize the
original graph based on node features. Additionally, the Clustering
Assignment Layer jointly learns node embeddings and a soft assign-
ment matrix to derive node clusters through a new optimization
approach that minimizes both SE loss and CE loss. Extensive exper-
iments demonstrate the superiority and interoperability of DeSE
while also showcasing its robustness in determining the number of
clusters. Our findings highlight the potential of structural informa-
tion theory in graph structure learning and may open new avenues
for research on trainable soft assignment structural entropy in the
integration of features and structure.
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A NOTATIONS
The comprehensive list of the primary symbols used throughout
this paper is presented in Table 8.

Table 8: Forms and interpretations of notations.
Symbol Definition

𝐺 = (𝑉 , E, 𝑋 ) The original graph.
𝐴𝑔 ∈ {0, 1}𝑁×𝑁 The adjacency matrix from the original graph.
𝐴𝑓 ∈ {0, 1}𝑁×𝑁 The adjacency matrix from the learned graph.

𝑉 , E The node/edge set.
𝑋 ∈ 𝑅𝑁×𝑓 The node feature matrix.

𝑆 ∈ {0, 1}𝑁×𝑐 The node assignment matrix.
𝑆𝑘 ∈ 𝑅𝑁𝑘×𝑁𝑘−1 The assignment matrix between layer 𝑘 and layer 𝑘 − 1.
𝐶𝑘 ∈ 𝑅𝑁×𝑁𝑘 The direct assignment matrix between nodes and layer 𝑘 .

𝑁 , 𝑁𝑘 The number of nodes, The number of vertices of layer 𝑘 .
𝑀 , 𝑐 The number of edges/clusters.
𝑓 , 𝑑 The dimension of feature/embedding.
T ; 𝜆 Encoding tree; The root vertice of the encoding tree.
𝛼 ; 𝛼− Vertice on encoding tree. Parent vertice of vertice 𝛼 .
𝑇𝛼 A node subset corresponds to vertice 𝛼 .
𝑔𝛼 Number of cutting edges of nodes in vertice 𝛼 .
ℎ Height of the encoding tree.

𝑣𝑜𝑙 (𝐺); 𝑣𝑜𝑙 (𝛼) Volume of Graph 𝐺 ; Volume of vertice 𝛼 .
𝑣𝑜𝑙𝑘 [𝑖] Volume of vertex 𝑖 at layer 𝑘 with soft assignment.
𝑣𝑜𝑙𝑘𝑖𝑛 [𝑖] Internal volume of vertex 𝑖 at layer 𝑘 .

𝑔𝑘
𝑖

Cutting edges of vertex 𝑖 at layer 𝑘 with soft assignment.
𝐻 T (𝐺) The structural entropy.
𝐻 T𝑠𝑎 (𝐺) The soft assignment SE of graph 𝐺 .
𝐻𝑘 (𝐺) The 𝑘-dimensional structure entropy.

𝐻𝑠𝑎 (𝐺 ;𝑘) The soft assignment structural entropy at layer k.
𝐷 ∈ 𝑅𝑁 The degree vector for all nodes.

𝑊 ∈ 𝑅𝑁×𝑁 The weight matrix.
𝑀𝐿𝑃 (;Θ𝑓 ) The multilayer perceptron with parameter Θ𝑓 .
𝐾𝑁𝑁 (;𝐾) The k-nearest nerighbors algorithm with parameter 𝐾 .

𝐺𝑁𝑁 𝑒𝑚𝑏 (;Θ1) The embedding learner with parameter Θ1.
𝐺𝑁𝑁𝑎𝑠𝑠 (;Θ2) The soft assignment learner with parameter Θ2.

Γ The attention matrix.
L𝑐𝑒 , L𝑠𝑒 The CE loss. The SE loss.
𝜆𝑐𝑒 , 𝜆𝑠𝑒 The coefficients of CE loss and SE loss.
𝛽𝑓 , 𝐾 The weight of 𝐴𝑓 . The number of neighbors in KNN.

B ALGORITHM
The algorithm of DeSE is summarized in Algorithm 1.
C BASELINES
Detailed descriptions of 8 baselines compared to our work are
introduced as follows:
• DMoN [25] introduces a modularity measure of clustering

quality to optimize cluster assignment in an end-to-end manner
and proposes Deep Modularity Networks.
• MinCut [1] formulates a continuous relaxation of the nor-

malized minCUT problem and trains a GNN to compute cluster
assignments by optimizing this objective.
• DGI [26] is a versatile method for learning node representa-

tions in graph-structured data based on maximizing the mutual
information between local patch representations and high-level
graph summaries.
• SUBLIME [18] is a structure bootstrapping contrastive Learn-

ing framework with the aid of self-supervised contrastive learning,
where the learned graph topology is optimized by data itself.

• EGAE [44] is a specific GAE-based model for graph cluster-
ing that is consistent with the theory of learning well-explainable
representations.
•CONVERT [35] is a contrastive graph clustering network with

reliable augmentation and distills reliable semantic information by
recovering the perturbed latent embeddings.
• AGC-DRR [8] is an attributed graph clustering framework

with dual redundancy reduction to reduce the information redun-
dancy in both input and latent feature space.
• RDGAE [21] is a tailored GAE model that triggers a correction

mechanism against Feature Drift by gradually transforming the
reconstructed graph into a clustering-oriented one.
Algorithm 1: Algorithm of one epoch of DeSE.
Input: Original adjacency matrix: 𝐴𝑔 ; Feature matrix: 𝑋 ;

Coefficient of CE and SE loss: 𝜆𝑐𝑒 , 𝜆𝑠𝑒 ; Weight of 𝐴𝑓 :
𝛽𝑓 ; Number of neighbors: 𝐾 ; Number of clusters: 𝑐;
Dimension of embedding: 𝑑 ; Number of layers: ℎ.

Output: Node assignment matrix: 𝑆 ∈ {0, 1}𝑁×𝑐 .
// SLL

1 Initialize 𝐴𝑓 with structure learning layer via Eq. 7;
2 Update 𝐴𝑓 via Eq. 8;
3 Calculate𝑊0 with 𝛽𝑓 , 𝐴𝑔 , and 𝐴𝑓 via Eq. 9;
4 Initialize embedding 𝐸 with GNN and𝑊 ;
5 Initialize list 𝑆𝑙𝑖𝑠𝑡 ← {};
// ASS

6 for k=1,2,..,h do
7 Calculate embedding 𝐻 with Embedding Learner

𝐺𝑁𝑁 𝑒𝑚𝑏 via Eq. 10;
8 Calculate matrix 𝑆𝑘 with Soft AssignmentLearner

𝐺𝑁𝑁𝑎𝑠𝑠 via Eq. 11;
9 Update 𝐴𝑔 and 𝐴𝑓 via Eq. 12;

10 Calculate𝑊𝑘 with 𝛽𝑓 , 𝐴𝑔 , and 𝐴𝑓 via Eq. 9;
11 Store 𝑆𝑘 to 𝑆𝑙𝑖𝑠𝑡 ;
12 end

// Soft Assignment SE

13 Initialize L𝑠𝑒 ← 0;
14 for k=1,2,..,h do
15 Calculate 𝐶𝑘 with {𝑆ℎ, ..., 𝑆𝑘+1} via Eq. 3;
16 Calculate 𝑣𝑜𝑙𝑘 via Eq. 4;
17 Calculate 𝑔𝑘 via Eq. 5;
18 Calculate 𝐻𝑠𝑎 (𝐺 ;𝑘) with 𝑆𝑘 , 𝐶𝑘 , 𝑣𝑜𝑙𝑘 , and 𝑔𝑘 via Eq. 6;
19 Update L𝑠𝑒 ← L𝑠𝑒 + 𝐻𝑠𝑎 (𝐺 ;𝑘);
20 end
21 Calculate L𝑐𝑒 with embedding 𝐸 via Eq. 13;
22 Calculate final loss L with coefficients 𝜆𝑐𝑒 , 𝜆𝑠𝑒 via Eq. 14;

// hard assignment matrix

23 Initialize 𝑆 ← 0𝑁×𝑐 ;
24 Calculate the index 𝑖𝑑𝑥 of the maximum value of 𝐶𝑘 along

each row;
25 for i=1,2,...,N do
26 Set 𝑆 [𝑖, 𝑖𝑑𝑥 [𝑖]] = 1;
27 end
28 Return the hard assignment matrix 𝑆 .
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Figure 7: Clusters of DeSE on Cora, Citeseer, and Computer
datasets.

D DATASET
Table 2 provides computed values like the average number of edges
per node (Sparsity) and the number of isolated nodes (Iso.). Detailed
descriptions of four datasets are provided below: • Cora [37] is
a citation network composed of research papers in the field of
machine learning, with each paper linked to others that it cites.
The nodes represent the papers, while the edges denote citation
relationships between them. • Citeseer [37] is a citation network
similar to Cora, consisting of scientific papers. Each node represents
a research paper, and the edges represent citation links between
them. • Computer [24] is part of the Amazon co-purchase graph,
where nodes represent products in the "computers" category on
Amazon, and edges indicate that two products are frequently bought
together. • Photo [24] is a part of the Amazon co-purchase graph,
but it focuses on products in the "photo" category (e.g., cameras,
photography accessories). Similar to the Computer dataset, nodes
represent products, and edges indicate frequent co-purchases.
E GRAPH CLUSTERING PERFORMANCE
The detailed correspondence between the nodes of the predicted
clusters and the true clusters of DeSE on Cora, Citeseer, and Com-
puter datasets are presented in Figure 7. We can observe that DeSE
demonstrates concentrated and accurate predictions for larger clus-
ters across the three datasets, while smaller clusters are often dis-
regarded. For example, in Cora, the predicted cluster 0 primarily
contains most of the actual clusters 0 and 6, but since cluster 0 is
larger in size, the predicted cluster is classified as cluster 0. Sim-
ilarly, in Citeseer, the predicted cluster 0 mostly contains actual
cluster 3, but because the predicted cluster 3 includes more of the
actual cluster 3, it is not assigned to cluster 3. In contrast, there
are more misclassifications in the Computer dataset, particularly

with the actual cluster 4 being more widely dispersed in the pre-
dictions. We believe that the primary reason for these errors is
the unclear boundaries between clusters. As seen in Figure 7, the
errors tend to appear collectively, indicating that smaller clusters
are easily merged into a larger cluster or that a large cluster is
split into smaller ones. Improving or fine-tuning cluster boundaries
within DeSE is the next step for future research.

F ROBUSTNESS ON CLUTSERS

(a) cluster6 (NMI=42.16). (c) cluster7 (NMI=44.34). (e) cluster8 (NMI=41.98).

(b) cluster6 true. (d) cluster7 true. (f) cluster8 true.
Figure 8: Robustness of cluster numbers on Citeseer.

(a) cluster8 (NMI=63.04). (c) cluster9 (NMI=70.13). (e) cluster10 (NMI=68.78).

(b) cluster8 true. (d) cluster9 true. (f) cluster10 true.
Figure 9: Robustness of cluster numbers On Photo.

(a) cluster10 (NMI=47.63). (c) cluster11 (NMI=51.22). (e) cluster12 (NMI=49.20).

(b) cluster10 true. (d) cluster11 true. (f) cluster12 true.
Figure 10: Robustness of cluster numbers On Computer.
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The visual results of our model DeSE on Citeseer, Photo, and
Computer datasets about the robustness of clusters are presented
in Figure 8, Figure 9, and Figure 10. We also observe that, regardless
of the number of clusters set (as long as it is greater than or equal
to the original number), the model consistently forms the same
number of clusters adaptively. While there are some differences
in NMI, this is due to the lack of fine-tuning of parameters for
different cluster numbers. A key direction for future work is to
improve the model to reduce the impact of hyperparameters on
clustering accuracy across varying numbers of clusters.

G SENSITIVITY ANALYSIS
Table 9 presents the ACC results of DeSE with 𝜆𝑠𝑒 in the range
of {0.01, 0.05, 0.2, 0.5} and 𝜆𝑐𝑒 in the range of {0.1, 0.5, 1, 5} as a
supplement to Section 5.4 "Coefficients of SE loss and CE loss 𝜆𝑠𝑒
and 𝜆𝑐𝑒 ". It can be observed that, for ACC, the optimal parameter
selection follows a similar trend to NMI in Table 5. Specifically, the
SE loss tends to favor smaller coefficients, while the CE loss prefers
larger coefficients. Despite its smaller value, the SE loss plays a
significant role in improving clustering accuracy.

H TIME AND MEMORY ANALYSIS
We set the epoch to 600 and conduct 10 experiments on DeSE. Ta-
ble 10 records the average runtime across the four datasets. It can
be observed that the DeSE’s runtime increases with the number
of nodes and edges in the dataset, especially for the Computer
dataset, which has higher "Sparsity". However, overall, the runtime
remains within an acceptable range. Future efficiency improve-
ments may be achievable through enhancements in the selection
of K-nearest neighbors in large-scale graphs and the computation
of soft-assignment structural entropy. In addition, Table 11 shows
that the hyperparameter memory usage of DeSE is also a major
advantage.

Table 9: Sensitivity of hyperparameters 𝜆𝑠𝑒 and 𝜆𝑐𝑒 with ACC.

Variation SE loss 𝜆𝑠𝑒 CE loss 𝜆𝑐𝑒
0.01 0.05 0.2 0.5 0.1 0.5 1 5

Cora 75.22 74.45 72.90 72.08 72.30 74.59 74.63 75.22
Citeseer 68.86 52.30 51.52 50.86 67.96 68.86 68.89 69.04
Computer 43.20 - 55.87 50.49 54.46 55.87 44.18 43.70
Photo 80.55 80.08 71.16 66.77 66.76 71.71 72.18 80.55

Table 10: Average time cost for DeSE and baselines (Sec).

Method Cora Citeseer Computer Photo
DeSE 65.87 81.17 2037.16 684.54
DMoN 65.07 77.80 293.47 179.90
MinCut 69.56 79.18 243.15 146.48
DGI 178.24 250.88 1144.88 581.18

SUBLIME 104.80 137.21 477.92 215.87
EGAE 106.17 67.52 506.03 184.83

CONVERT 91.85 146.44 281.85 140.51
AGC-DRR 234.44 533.16 8096.46 2885.40
RDGAE 56.03 107.47 1284.25 580.86

Table 11: Memory usage analysis for DeSE and baselines (MB).

Method Cora Citeseer Computer Photo
DeSE 0.09 0.92 0.21 0.43
DMoN 0.96 2.07 0.63 0.62
MinCut 0.96 2.07 0.63 0.62
DGI 5.81 10.24 4.51 4.47

SUBLIME 2.96 7.39 1.66 1.61
EGAE 1.52 3.74 0.87 0.85

CONVERT 14.69 51.58 5.75 5.75
AGC-DRR 6.11 6.11 6.11 6.11
RDGAE 0.18 0.45 0.10 0.09
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