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Abstract. Aspect-based Sentiment Analysis (ABSA) is the task aimed at pre-
dicting the sentiment polarity of aspect words within sentences. Recently, incor-
porating graph neural networks (GNNs) to capture additional syntactic structure
information in the dependency tree derived from syntactic dependency parsing
has been proven to be an effective paradigm for boosting ABSA. Despite GNNs
enhancing model capability by fusing more types of information, most works only
utilize a single topology view of the dependency tree or simply conflate different
perspectives of information without distinction, which limits the model perfor-
mance. To address these challenges, in this paper, we propose a new multi-view
attention syntactic enhanced graph convolutional network (MASGCN) that weighs
different syntactic information of views using attention mechanisms. Specifically,
we first construct distance mask matrices from the dependency tree to obtain
multiple subgraph views for GNNs. To aggregate features from different views,
we propose a multi-view attention mechanism to calculate the attention weights
of views. Furthermore, to incorporate more syntactic information, we fuse the
dependency type information matrix into the adjacency matrices and present a
structural entropy loss to learn the dependency type adjacency matrix. Compre-
hensive experiments on four benchmark datasets demonstrate that our model
outperforms state-of-the-art methods. The codes and datasets are available at
https://github.com/SELGroup/MASGCN.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-grained task aimed at classifying the
sentiment polarity of given aspect words in a sentence [48]. It has drawn significant
⋆ Corresponding author.
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attention in recent years [22,39]. Unlike traditional sentence-level sentiment analysis,
ABSA deals with sentences that may contain several different aspect terms in one
sentence, each with different sentiment polarities and contexts. For example, in the
sentence Our waiter was friendly and it is a shame that he didn’t have a supportive staff,
the aspect term waiter is positive, while staff is negative in sentiment. Consequently,
compared with traditional sentiment analysis, ABSA faces the challenge of understanding
the relevant context words for different aspects and fully utilizing the related information.

Early works on ABSA utilized various attention mechanisms [37,25,2,7,10,8,18] to
model the relation between the aspect term and its context words. Although they have
achieved good results, the attention-based weights also introduce substantial noise for
aspect terms. For example, in the sentence Our waiter was friendly and it is a shame
that he didn’t have a supportive staff, for the aspect waiter, both opinion words friendly
and supportive may be assigned large attention scores [50], which hampers performance
improvement.

The rapid development of syntactic parsing offers a new paradigm for ABSA tasks.
Recently, numerous works [46,9,47,1,34,36,19,49,21,50,29] leverage graph neural net-
works (GNNs) over the parsed dependency tree to exploit the syntactic structure, as
the dependency tree provides explicit connections between aspect words and their re-
lated opinion words. These models could be divided into three classes based on distinct
syntactic information within the adjacency matrix [50]: exploiting the topology of
trees [46,9,34], exploiting the dependency types in trees [47,36], and exploiting the
minimum distances in trees [49,50]. However, they still do not fully exploit the syntactic
information of different types. [46] and [9] only exploit the simple topology information
of dependency trees. [50] consider distance and type information via deep reinforced
learning, but they generate only one view for distance information, limiting its expres-
sion capability. [49] take multiple views for distance information into account but fuse
different views indiscriminately. This simple corporation method limits the model to
capture as much view information, as it falls short in filtering the introduced noise from
more views [49]. Hence, fully utilizing the diverse syntactic information in dependency
trees remains challenging.

Recently, the theory of structural entropy [15] has demonstrated significant advan-
tages in graph structural learning [52,23]. It converts the graph into a hierarchical tree,
named the encoding tree, by minimizing the graph’s structural entropy, which is the sum
of the structural entropy of each node in the encoding tree. The structural entropy is
calculated based on the adjacency matrix and the hierarchical partitions of the graph,
where the weights assigned to the matrix are determined by the similarities of the graph
node embeddings. Each type of graph partition has its optimal encoding tree, correspond-
ing to the minimal structural entropy. Thus, structural entropy could serve as a graph
structural learning target [38]. In the ABSA task, syntactic parsing offers an inherent
dependency type partition within the dependency tree, which could be leveraged to learn
the dependency type information matrix using the structural entropy theory.

In this paper, we propose a novel multi-view attention syntactic enhanced graph con-
volutional network (MASGCN) for ABSA, which effectively incorporates information
from various syntactic views. We construct distance mask matrices from the dependency
tree to obtain multiple distance information views. To fuse these distinct views, we
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propose a multi-view attention mechanism that assigns different attention weights to
various views, enhancing the important views and reducing noise from less relevant
ones. Additionally, to incorporate the syntactic information of dependency types, we
introduce a structural entropy loss derived from [15], exploiting the dependency type
in the dependency tree to learn the dependency type matrix. Extensive experiments are
conducted on four benchmark datasets. Comparative results and analysis demonstrate
that the proposed model enjoys superior effectiveness compared to the state-of-the-art
(SOTA) baselines.

In summary, the main contributions of our paper are as follows:

• We propose a novel multi-view attention mechanism syntactic enhanced graph
convolutional network, which fully leverages extensive syntactic information and
mitigates the noise introduced by multiple views.

• We present a multi-view attention mechanism to weigh different views, reinforce
strongly correlated views, and diminish noise from weakly correlated views. Addi-
tionally, we introduce a structural entropy-based loss to learn the dependency type
matrix by utilizing the dependency type information inherent in the dependency tree.

• We conduct extensive experiments on four benchmark datasets. The experimental
results demonstrate the effectiveness of our model.

2 Related Works

2.1 Aspect-based Sentiment Analysis

In contrast to traditional sentiment tasks that are sentence-level or document-level,
ABSA is entity-level oriented and more fine-grained for sentiment polarity analysis.
Early works [12,13,4] extract sentiment features based on handcrafted rules and perform
poorly in capturing rich sentiment information.

Recently, various context-based methods [37,25,2,7,10,8,18,33] propose to utilize
attention mechanisms to model the contextual semantic information between the aspect
term and its context words. ATAE-LSTM [37] proposes an attention-based LSTM model
to concentrate on different parts of sentences to generate attention vectors for aspect
sentiment classification. IAN [25] learns attention between the contexts and targets in
an interactive manner and generates representations for targets and contexts separately.
RAM [2] leverages the multiple-attention mechanism to capture sentiment features
separated by a long distance. MGAN [7] proposes a fine-grained attention mechanism to
capture the word-level interaction between aspects and context and then compose it with
coarse-grained attention mechanisms. [18] design a hierarchical attention mechanism to
fuse the information of the aspect terms and the contextual words. [33] propose a dual
attention mechanism to address the problem of recognizing conflicting opinions. Despite
these context-based methods achieving good results, they are unable to distinguish
the relation between the aspect term and multiple opinion words. This hampers their
performance in sentences having multiple aspects with different polarities.

Owing to the rapid development of syntactic parsing methods, another trend ex-
plicitly utilizes the parsed dependency tree to reveal the connection between aspect
terms and opinion words and learn the syntactic features of aspect terms. These methods
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could be categorized into three classes based on the syntactic information extracted
from the dependency tree: exploiting topology information [46,9,34], exploiting depen-
dency type information [47,36], and exploiting minimum distance information [49,50].
[46] is the first work to utilize the dependency tree of sentences and adopt GCNs to
explore the topological information from the dependency trees. [34] jointly consider the
flat representations learned from the Transformer and the graph-based representations
learned from the corresponding dependency graph to diminish the noise induced by
incorrect dependency trees. [47] utilize a global lexical graph to encode corpus-level
word co-occurrence data and construct a concept hierarchy on both syntactic and lexical
graphs, thereby incorporating dependency type information. [21] integrate the exter-
nal knowledge from SenticNet to enhance the dependency graphs of sentences. [49]
construct the syntactic mask matrices of different distances to learn structural distance
information from local to global. [40] incorporates domain knowledge, dependency
labels, and syntax path in the dependency tree to enhance the accuracy of the model.
[50] employ deep reinforcement learning to guide the extraction of syntactic information
from the dependency tree. However, as these approaches only incorporate part of these
three syntactic information types, or indiscriminately fuse them, they don’t fully leverage
the diverse syntactic information in dependency trees.

2.2 Structural Entropy

Information entropy was proposed to meet the demand for measuring uncertainty in in-
formation transmitted through communication systems. Correspondingly, to measure the
information uncertainty in graph-structured data, structural entropy was also proposed
and used to evaluate the complexity of the hierarchical structure of a graph by defining
the encoding tree and structural entropy [15]. The process of constructing and optimizing
the encoding tree is also a natural vertices clustering method for graphs. Due to the
theoretical completeness and interpretability of structural entropy theory, it has great
potential for application in graph analyses such as graph hierarchical pooling [41] and
graph structure learning [52,6]. Moreover, the two-dimensional and three-dimensional
structural entropy, which measure the complexity of hierarchical structures at two and
three dimensions, respectively, have found applications in fields such as medicine [16],
bioinformatics [17], social bot detection [28,45,42], network security [14], natural lan-
guage understanding [11] and reinforcement learning [44].

3 The proposed framework

This section outlines the overall architecture of MASGCN and details each component
of our proposed model.

3.1 Overall Architecture

We illustrate the overall structure of MASGCN in Figure 1. First, following the approach
of [49], we utilize the aspect-aware attention and self-attention mechanisms to obtain
enhanced semantic matrices. Second, we parse the sentence syntactically to obtain a
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Fig. 1: Overall framework of MASGCN.

dependency tree, constructing distance mask matrices and a dependency type matrix
to inform our model of the tree structure. We also design a structural entropy loss to
capitalize on the dependency type information in the dependency tree. Third, we mask
the semantic matrices with distance mask matrices and incorporate the dependency type
matrix to create multi-view adjacency matrices for the GNN. Finally, we propose a
multi-view attention mechanism to integrate features across these various views.

3.2 Semantic Feature

Given a sentence-aspect pair W −A, where A = {a1, . . . , aM} represents the aspect
words set and is also a sub-sequence of the sentence W = {w1, . . . , wN}, with wi and
aj denoting the i-th and j-th words in W and A, and N and M representing the lengths
of the sentence and the aspect, respectively. We derive the contextual feature of sentences
based on the sentence encoder like BERT [3] and obtain the low-dimensional embedding
matrix H ∈ RN×D, where the i-th word wi corresponds to the i-th row feature hi with
dimension D. Aspect features Ha ∈ RM×D are derived from H .

For enhanced semantic features, we follow [49] and apply the aspect-aware attention
and self-attention mechanism to obtain aspect attention matrices {A1

asp, . . . , A
P
asp} and

self-attention matrices {A1
self, . . . , A

P
self}, where P is the number of attention heads. The

i-th matrices are calculated as follows:

Ai
asp = tanh

(
ĤaW

i
a ×

(
HW i

k

)T
+ ba

)
, (1)

Ai
self =

QW i
Q × (KW i

K)T
√
D

. (2)

Here, Ĥa ∈ RN×D represents the N times repeated mean of Ha, W i
a ∈ RD×D and

W i
k ∈ RD×D are learnable weights for aspect-aware attention of the i-th attention

head, and ba is the learnable bias. The query Q and the key K are equal to the feature
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embedding H , and W i
Q ∈ RD×D and W i

K ∈ RD×D are learnable weights for the
self-attention of the i-th attention head. Then, we integrate Ai

asp and Ai
self as follows:

Ai
sem = Ai

asp +Ai
self, (3)

where Ai
sem ∈ RN×N is the output enhanced semantic matrix. These P matrices

{A1
sem, . . . , A

P
sem} are used for later combination with syntactic matrices.

3.3 Syntactic Feature

In this section, we first utilize the Stanford Parser CoreNLP [26] to parse the sentence into
a syntactic dependency tree, and then extract the distance information and dependency
information from the dependency tree.
• Distance information. We treat the syntactic dependency tree as an undirected graph,
with each word as a node. Then, we define the distance d(vi, vj) between nodes vi and
vj as the number of hops between the two nodes in the graph. The shortest path distance
between nodes vi and vj is calculated as follows:

Dij = min d(vi, vj). (4)

We consider different scales of distance information by defining various distance mask
matrices Mk as follows:

Mk
ij =

{
0, Dij ≤ k,

−∞, otherwrise,
(5)

where k ∈ [1, P ] and P is the number of attention heads mentioned in Section 3.2. As
k ∈ [1, P ] increases, the scope of distance information that the mask matrix Mk covers
also increases.
• Dependency information. We define the initial dependency type adjacency matrix
A0

type ∈ RN×N as follows:

A0
type[i, j] =

{
idtype, Dij = 1,

0, otherwise,
(6)

where idtype ∈ [1, U ] and U is the size of the dependency type vocabulary. To utilize
the dependency information of the dependency tree, we initialize the dependency type
feature matrix Htype ∈ RU×D. The global attention mechanism [50] calculates the
dependency type attention matrix as follows:

α = softmax(HtypeWt), (7)

Atype[i, j] =

{
α[A0

type[i, j]], A0
type[i, j] ̸= 0,

0, otherwise,
(8)

where Wt ∈ RD×1 represents the learnable weights for global attention, α ∈ RU×1

denotes the attention score. Atype ∈ RN×N is the dependency type information matrix
output.
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• Matrix Aggregation. To this end, we have obtained the semantic feature matrices
{A1

sem, . . . , A
P
sem}, the distance information mask matrices {M1, . . . ,MP }, and the de-

pendency type information matrix Atype. We then aggregate these semantic and syntactic
information to construct the i-th view adjacency matrices for GNN as follows:

Ai = Ai
mask +Atype, (9)

Ai
mask = softmax(Ai

sem +M i). (10)

Here, we utilize the softmax operator to mask the i-th semantic feature matrix Ai
sem with

the i-th distance mask matrix M i, as −∞ in M i masks the corresponding place in Ai
sem

to 0. As i increases, Ai
mask could attend more global information. Finally, we obtain P

distinct view adjacency matrices {A1, . . . , AP }, each attending to different semantic
and syntactic information.

3.4 GNN and Multi-View Attention Mechanism

Now we have obtained the sentence embedding H and P distinct adjacency matrices
{A1, . . . , AP }. The output embedding of the l-th GNN layer is calculated as follows:

Hl = σ
(
AGGP

i=1(A
iHl−1)Wl

)
, H0 = H, (11)

where Hl ∈ RN×D is the l-th layer output embedding, Wl ∈ RD×D represents the l-th
layer’s learnable weights, and σ denotes an activation function. The operator AGGP

i=1

is the multi-view attention mechanism we propose, which is as follows:

Hi
avg =

1

N ×D

N,D∑
r,s=1

(
AiHl−1

)
r,s

, (12)

αview = W2 (σ (W1Havg)) , (13)

AGGP
i=1(A

iHl−1) =

P∑
i=1

αi
viewA

iHl−1. (14)

Here, Hi
avg ∈ R is i-th row of Havg ∈ RP×1, αview ∈ RP×1 is the view weights of P

views, W1 and W2 are the learnable weight, αi
view is the i-th row of αview. The multi-view

attention mechanism adaptively extracts useful information from various views, and
leverages the diversity and complementarity of information across different perspectives,
thereby enhancing the representation capabilities for downstream tasks. Additionally,
the multi-view attention mechanism reduces noise introduced by too many views [49].

3.5 Loss Function with Structural Entropy

Structural entropy theory [15] has demonstrated its capability in multiple graph-related
works [41,52,6]. For a graph G = (X,E,W ), X is the set of graph datapoints, and E
and W are the edges and corresponding edge weights. We define a two-level encoding
tree T , where the intermediate tree nodes α represent a partitioned subset of the graph
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vertices X , denoted as Xα ⊂ X . The leaf nodes are the graph vertices, and the top layer
of T is a single virtual node. The original two-dimensional structural entropy of T is
defined as follows:

HT (G) =
∑
α∈T

HT (G;α), (15)

HT (G;α) = − gα
vol(G)

log2
Vα

vol(G)
. (16)

Here, vol(G) is the sum of the edge weights of all edges E, Vα represents the sum of
the edge weights of edges in Xα, and gα is the sum of the edge weights of cut edges
between Xα and its complement set X∁

α.
Within the ABSA task, syntactic parsing provides a natural segmentation of depen-

dency types within the dependency tree. This partitioning can be utilized to develop
a matrix of dependency type information based on the principles of structural entropy
theory. To further enhance the utilization of syntactic information in the dependency tree,
we design a structural entropy loss LSE . In detail, we first build the two-layer encoding
tree T with the dependency type as the immediate layer’s tree nodes. The encoding tree
is an abstraction of the inherent dependency type partition P = {P1, . . . ,PU} of words,
where U is the size of the dependency type vocabulary. Denoting Y ∈ {0, 1}N×U as the
one-hot encoding of P , the two-dimensional structural entropy for this encoding tree
can be described as follows:

LSE = trace
{
Y TAtypeY

2
∑

Atype
⊗ log2

{1}U×NAtypeY

2
∑

Atype

}
, (17)

where ⊗ refers to matrix multiplication. As the dependency type partition P is fixed,
the optimized matrix Atype can be obtained as the minimal two-dimensional structural
entropy [38]. Combined with cross-entropy loss, the final training loss is as follows:

L = Lce + γLSE, (18)

Lce = −
∑
a∈D

log
(
softmax

(
WpH

l
a + bp

))
, (19)

where Wp and bp are learnable weights and bias, H l
a is the aspect embeddings of the

final l-th GNN layer, D is the set of traing samples, and γ is a hyperparameter.

4 Experiment Setup

In this section, we detail the baselines, datasets, and implementation details of MASGCN.

4.1 Datasets

Following previous ABSA works, we evaluate MASGCN on four benchmark datasets:
Restaurant14, Restaurant16, Laptop14, and Twitter. The Restaurant14 and Laptop14
datasets include reviews in the restaurant and laptop domains from SemEval-2014 [32].
The Restaurant16 dataset is from SemEval-2016 [31]. The Twitter dataset is collected
from tweets by [5]. Each aspect is annotated with one of three polarities: positive, neutral,
and negative. The statistics of these datasets are listed in Table 1.
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Table 1: Statistics of experimental datasets.
Dataset Division Positive Negative Neutral

Restaurant14
Train 2164 807 637
Test 727 196 196

Laptop14
Train 976 851 455
Test 337 128 167

Twitter
Train 1507 1528 3016
Test 172 169 336

Restaurant16
Train 1321 488 73
Test 487 136 32

4.2 Baselines

To comprehensively evaluate the performance of MASGCN, we compare it with SOTA
baselines, which are briefly described as follows:
1) Context-based methods.
• ATAE-LSTM [37] is an LSTM model with the attention mechanism on aspects.
• IAN [25] interactively learns attention scores for aspects with their context.
• RAM [2] proposes a recurrent attention memory network to capture the aspect-specific
sentence representation.
• MGAN [7] applies a fine-grained attention mechanism to capture token-level interac-
tions between aspects and contexts.
• TNet [20] utilizes a CNN model to extract salient features for sentiment analysis.
2) Syntax-based GNN methods.
• ASGCN [46] applies GCN on the raw topology of the dependency tree to extract
syntactic information.
• kumaGCN [1] uses gating mechanisms to acquire syntactic features with latent
semantic information.
• DGEDT [34] combines transformer and graph-based representations from the cor-
responding dependency graph to diminish the error induced by incorrect dependency
trees.
• BiGCN [47] uses convolutions on hierarchical lexical and syntactic graphs to integrate
token co-occurrence and dependency type information.
• R-GAT [36] uses a star-induced graph with minimum distances and dependency types
as edges and applies a relational GAT for attention-based aggregation.
• T-GCN [35] uses attention to distinguish relation types and applies an attentive layer
ensemble for feature learning from GCN layers.
• DualGCN [19] introduces syntactic and semantic information through SynGCN and
SemGCN modules simultaneously.
• SSEGCN [49] combines aspect-aware attention, self-attention, and minimum tree
distances to enhance sentiment information with syntactic information.
• SenticGCN [21] integrates external knowledge from SenticNet to enhance the depen-
dency graphs of sentences.
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• SPGCN [24] enhances dependencies and context-awareness with aspect focus and
sentiment integration, using a multi-graph perception mechanism to reduce redundancy
and captures unique dependencies.
• KDGN [40] integrates domain knowledge into the dependency tree and constructs the
knowledge-aware dependency graph to capture latent sentiment polarity.
• CSADGCN [43] integrates context-guided, self, and aspect-level attention for infor-
mation capture and boosts GCN with linguistic features and a biaffine module for word
relationships.
• RDGCN [50] utilizes deep reinforced learning to extract syntactic information and
improve the importance calculation of dependencies in both distance and type views.
• BERT & Model+BERT [3] represents the pre-trained language model BERT and the
model with BERT as the sentence encoder.

4.3 Experimental Settings

In experiments, we initialize token embeddings with pre-trained 300-dimensional Glove
vectors [30], combine them with 30-dimensional part-of-speech and position embeddings,
and feed them into a BiLSTM model with a 0.7 dropout rate. The batch size is 16 and
the number of GCN layers is 2. The learning rate of the Adam optimizer is 0.002.
The view number and attention head number P are set to 10. The hyperparameter γ
of the structural entropy loss is 0.01. Model+BERT utilizes the bert-base-uncased [3]
English version. We utilize accuracy (Acc.) and macro-F1 (F1) to evaluate classification
performance. The baseline results are from [50] and [51].

5 Experiments

In this section, we conduct comparative experiments with baselines for effectiveness
comparison. Moreover, we carry out the ablation study, parameter sensitivity experiments,
and investigations into adjacency matrices to explore each component of our model.

5.1 Performance Comparision

We conduct the experiments on four benchmark datasets and report the experiment results
in Table 2. MASGCN achieves state-of-the-art results on all four datasets, except for
accuracy on the Restaurant16 dataset when using Glove embeddings. Specifically, with
Glove embeddings, MASGCN outperforms all baselines with improvements of at least
0.17–0.79 in accuracy and 0.48–0.99 in macro-F1 across the Restaurant14, Laptop14,
and Twitter datasets. On the Restaurant16 dataset, MASGCN still excels in macro-F1,
showing a 1.22 improvement over the SOTA SenticGCN model. Besides, MASGCN
+ BERT surpasses other Model+BERT combinations across all datasets, except for
macro-F1 on the Twitter dataset and the Laptop14 dataset. These results demonstrate the
effectiveness of our model. Compared to R-GAT, SPGCN, CSADGCN, and RDGCN,
which also utilize three types of information, MASGCN still outperforms due to its
enhanced utilization of this information through multi-view information aggregation.
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Table 2: Classification results (%) of all models. The best results are bolded, and the
second-best results are underlined. † denotes topology information, ‡ denotes type
information, and § denotes distance information.

Embedding Model
Restaurant14 Laptop14 Twitter Restaurant16
Acc. F1 Acc. F1 Acc. F1 Acc. F1

Glove

ATAE-LSTM 78.60 67.02 68.88 63.93 68.64 66.60 83.77 61.71
IAN 78.60 - 72.10 - - - - -
RAM 80.23 70.80 74.49 71.35 69.36 67.30 83.88 62.14
MGAN 81.25 71.94 75.39 72.47 72.54 70.81 - -
TNet 80.69 71.27 76.54 71.75 74.90 73.60 89.07 70.43
ASGCN† 80.77 72.02 75.55 71.05 72.15 70.40 88.69 66.64
kumaGCN† 81.43 73.64 76.12 72.42 72.45 70.77 89.39 73.19
DGEDT† 83.90 75.10 76.80 72.30 74.80 73.40 90.80 73.80
BiGCN†‡ 81.97 73.48 74.59 71.84 74.16 73.35 - -
R-GAT† ‡ § 83.30 76.08 77.42 73.76 75.57 73.82 88.92 70.89
DualGCN† 84.27 78.08 78.48 74.74 75.92 74.29 - -
SSEGCN†§ 84.72 77.51 79.43 76.49 76.51 75.32 89.55 75.62
SenticGCN†‡ 84.03 75.38 77.90 74.71 - - 90.88 75.91
SPGCN† ‡ § 83.16 74.91 77.90 73.86 74.86 72.95 90.75 75.20
RDGCN† ‡ § 84.36 78.06 79.59 76.75 76.66 75.37 - -
MASGCN† ‡ § 84.99 78.64 80.38 77.74 76.96 75.85 89.01 77.13

BERT

BERT 85.97 80.09 79.91 76.00 75.92 75.18 89.52 70.47
DGEDT+BERT† 86.30 80.00 79.80 75.60 77.90 75.40 91.90 79.00
R-GAT+BERT† ‡ § 86.60 81.35 78.21 74.07 76.15 74.88 89.71 76.62
T-GCN+BERT†‡ 86.16 79.95 80.88 77.03 76.45 75.25 92.32 77.29
DualGCN+BERT† 87.13 81.16 81.80 78.10 77.40 76.02 - -
SSEGCN+BERT†§ 87.31 81.09 81.01 77.96 77.40 76.02 90.99 78.78
SenticGCN+BERT†‡ 86.92 81.03 82.12 79.05 - - 91.97 79.56
KDGN+BERT†‡ 87.01 81.94 81.32 77.59 77.64 75.55 - -
CSADGCN+BERT† ‡ § 87.40 81.56 82.12 79.22 76.81 75.67 - -
RDGCN+BERT† ‡ § 87.49 81.16 82.12 78.34 78.29 77.14 - -
MASGCN+BERT† ‡ § 87.76 82.56 82.44 79.11 78.58 77.05 92.52 80.72

5.2 Ablation Study

We evaluate each component of MASGCN on four datasets and report the results in
Table 3. The absence of structural entropy loss LSE and the multi-view attention mech-
anism results in a decline in model performance on most datasets, with an average
reduction of 0.18% and 1.20% in accuracy, and 0.47% and 3.63% in macro-F1, re-
spectively. This demonstrates the effectiveness of structural entropy loss in learning
dependency type information and our proposed multi-view attention mechanism in
fusing syntactic information.
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Table 3: Ablation study results (%). The best results are bolded, and the second-best
results are underlined. w/o refers to the model without the corresponding component.

Model
Restaurant14 Laptop14 Twitter Restaurant16
Acc. F1 Acc. F1 Acc. F1 Acc. F1

MASGCN 84.99 78.64 80.38 77.74 76.96 75.85 89.01 77.13
- w/o structural entropy loss LSE 84.63 78.07 79.73 76.88 77.25 75.61 89.01 76.92
- w/o multi-view attention mechanism 83.56 75.98 79.11 75.01 75.63 74.43 88.23 69.44
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Fig. 2: Hyperparameter sensitivity analysis.

5.3 Hyperparameter Analysis

Two hyperparameters are introduced in our model: the view number P and the coefficient
γ for the structural entropy loss LSE . We vary their values on three benchmark datasets
and illustrate the results in Figure 2. When the view number P is not greater than 10,
more views improve the model performance. However, the performance decreases when
P is 15. This is because the number of views exceeds the maximum distance in the syntax
tree, thereby introducing only additional noise. Despite this, compared to SSEGCN [49],
which fuses different views of distance information indiscriminately and only integrates
four different views when balancing the introduction of additional noise, MASGCN still
improves the ability to fuse more information and reduce noise. Furthermore, we find
that a smaller γ for structural entropy loss is preferred for the model. MASGCN achieves
the best performance with γ being 0.01, except on Twitter, where γ is 0. A γ larger than
0.01 leads to a decrease in model performance.
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Fig. 3: Insights of matrices.

5.4 Insight of Matrices

To elucidate the effectiveness of each type of information, we visualize the semantic
matrix Asem, the masked matrix Amask (incorporating semantic and distance information),
and the final fused adjacency matrix A (incorporating semantic, distance, and dependency
information) mentioned in Section 3. As depicted in Figure 3 (a), with the integration
of distance information and dependency information, the correlation of the aspect term
coffee with the polarity word OUTSTANDING is enhanced, and the attention to other
uncorrelated words is gradually reduced. Figure 3 (b) shows that the integration of
distance information and dependency information decreases the irrelevant attentions,
enhances the attention of the aspect term roll to its polarity words BEST spicy, and
reduces the attention to the polarity word great, which is connected with the other aspect
term salad. The improvement can also be observed in the row of the aspect term salad.
These two cases directly demonstrate the effectiveness of MASGCN.

6 Conclusion

In this paper, we propose a new multi-view attention syntactic enhanced graph convolu-
tional network MASGCN. We propose a multi-view attention mechanism to aggregate
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features from different views, which enhances the strongly correlated views while di-
minishing the noise introduced by too many views. Additionally, we design a structural
entropy based loss to further leverage the dependency type information from the de-
pendency tree. Extensive experiments on four benchmark datasets demonstrate that
MASGCN outperforms the state-of-the-art baseline methods.

7 Limitations and Future Work

Our work incorporates various syntactic information from the dependency tree to improve
the effectiveness of ABSA tasks. However, it is limited to the information from the parsed
dependency tree and does not consider external knowledge. In future work, it would be
valuable to exploit information from other models, such as external knowledge graphs or
large language models like GPT-4 [27].
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