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Abstract—Learning the representation of sentences is fun-
damental work in the field of Natural Language Processing.
Although BERT-like transformers have achieved new SOTAs
for sentence embedding in many tasks, they have been proven
difficult to capture semantic similarity without proper fine-
tuning. A common idea to measure Semantic Textual Similarity
(STS) is considering the distance between two text embeddings
defined by the dot product or cosine function. However, the
semantic embedding spaces induced by pretrained transformers
are generally non-smooth and tend to deviate from a normal
distribution, which makes traditional distance metrics imprecise.
In this paper, we first empirically explain the failure of cosine
similarity in semantic textual similarity measuring, and present
CoSENT, a novel Consistent SENTence embedding framework.
Concretely, a supervised objective function is designed to optimize
the Siamese BERT network by exploiting ranked similarity
labels of sample pairs. The loss function utilizes uniform cosine
similarity-based optimization for both the training and prediction
phases, improving the consistency of the learned semantic space.
Additionally, the unified objective function can be adaptively
applied to different datasets with various types of annotations
and different comparison schemes of the STS tasks only by using
sortable labels. Empirical evaluations on 14 common textual
similarity benchmarks demonstrate that the proposed CoSENT
excels in performance and reduces training time cost.

Index Terms—sentence embedding, semantic textual similarity,
similarity ranking, siamese network

I. INTRODUCTION

LEARNING to represent text effectively is a fundamental
task in the field of Natural Language Processing (NLP).

In particular, representative and versatile sentence representa-
tion is crucial for numerous NLP tasks, including language
translation [1], sentiment classification [2], [3], information
retrieval [4], question-answering [5], etc. In recent years, a
series of transformer-based [6] pre-trained models, represented
by BERT [7], have achieved state-of-the-art performance on a
variety of sentence representation tasks.
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TABLE I: Directly optimizing the cosine similarity may lead to model
training failure. ϵ is the threshold of contrastive loss. We report
Spearman’s rank correlation as ρ×100 between the cosine similarity
of sentence representations and the gold labels on multiple datasets.

ϵ PAWS [13] STSb [14] SICK-R [15] ATEC [16] BQ [17]
-1 6.52 65.88 59.10 6.83 63.48

-0.5 48.43 67.79 60.00 10.28 67.91
0 72.72 71.68 59.42 44.60 71.20

0.5 74.62 72.93 58.50 50.22 72.12
0.9 75.22 71.03 57.70 50.69 71.79

However, recent studies [8], [9], [10] observed that the
representations from BERT are not uniformly distributed with
respect to direction but are anisotropic, occupying a narrow
cone in the vector space. This leads to the model failing to
effectively measure the semantic similarity between texts with-
out proper fine-tuning and, in some cases, even being inferior
to simple embedding models like GloVe. To better exploit
downstream supervision of text matching, InferSent [11] and
Sentence-BERT (SBERT) [12] propose a fine-tuning paradigm
based on the Siamese network architecture. Specifically, the
Siamese network has two branches of parameter-shared en-
coders and ingests a pair of sentences. Then, the encoder is
optimized via the similarity labels (e.g., -1 denoting dissimilar)
of this pair of sentences. Despite the effectiveness of the
Siamese network, the inconsistency scheme between training
and prediction of SBERT may lead to potential issues. Firstly,
since the training loss function is irrelevant to the cosine-based
evaluation metric (e.g., Spearman rank correlation), the train-
ing process could potentially collapse, i.e., the performance
score on the validation set significantly decreases rather than
increases as the loss decreases on the training set. Secondly,
though SBERT employs a softmax classifier on concatenated
vectors during the training process, there is no detailed the-
oretical justification regarding the effectiveness. In addition,
SBERT designs three loss functions for different types of
mainstream text semantic matching datasets. However, there
is no generic rule for selecting the best one, and those loss
functions are inconsistent, which thus induces extra difficulties
in practice.

To address the aforementioned issues, we focus on pro-
viding an explanation for the failure of cosine similarity
measurement in most BERT-based textual semantics. In fact, a
sentence pair labeled as negative may share partial similarity
in the semantic space, e.g., they are different sentences but
discuss the same topic. These sentence pairs are defined
as hard negative samples, as they are more similar than
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the other negative samples. Hence, we claim that labels are
insufficiently precise to reflect the semantic similarity between
sentences, and directly optimizing cosine similarity with these
inaccurate supervisions would lead to the low generalization
ability of the model. To provide a more detailed explanation,
we illustrate this concept by analyzing the contrastive loss.
This loss function is designed to increase the proximity of
sentences to positive sentence samples and to distance them
from negative sentence samples if their cosine similarity
exceeds the threshold ϵ (see Eq. 2). As shown in Table I,
we can improve sentence matching performance simply by
increasing ϵ to adapt the model to a dataset with more hard
negative samples. For datasets with a high proportion of hard
samples like PAWS [13] and ATEC [16], the model training
performance can be significantly improved by increasing the
threshold ϵ appropriately, as it maintains enough similarity
space for the hard samples. Details of the experiment are
presented in Section III-A. These results indicate that those
negative samples in datasets retain semantic similarity.

In this sense, we propose a novel training paradigm, the
CoSENT, which is a consistent ranking-based semantic match-
ing framework for pre-trained language models. In light of the
shortcomings of SBERT and cosine similarity, it is necessary
to design a consistent and unified loss for semantic matching,
which can optimize a uniform cosine similarity-based objec-
tive for both the training and prediction phases and utilize
different types of supervision, labeling, or scoring for more
flexible optimization. Through the analysis of cosine loss,
we find that the distances manifested by labels (e.g., scores
and positive-negative labels) cannot precisely reflect the actual
similarity of sentence pairs in the semantic space, due to the
absence of an objective reference in the manual labeling. Nev-
ertheless, since the manual label is built upon the subconscious
semantic comparison, the similarity ranking in annotations of
sentence pairs still contains rich information (e.g., even for
hard samples, the overall similarity of positive pairs is greater
than that of negative pairs, albeit with small differences).
Therefore, a novel loss function is presented that aims at
maintaining the similarity ranking of the sentence pairs, which
complements the cosine similarity without introducing extra
parameters or network complexity. Concretely, for a sample
batch sorted by annotated similarity, the optimization goal is
to align the ranking of the cosine similarities between the
sentence vectors of the sample pairs with the ranking of the
annotated similarities, which flexibly improves the distinction
of representation in the BERT semantic space.

To verify the effectiveness and adaptability of CoSENT,
extensive and diverse experiments are conducted, including un-
supervised/supervised Semantic Textual Similarity (STS) eval-
uation, embedding evaluation on transfer tasks, interaction-
based STS evaluation, convergence speed evaluation, and the
detailed study (e.g., pooling method analysis and case study).
In the unsupervised STS experiment and transfer tasks, the
framework is initially fine-tuned on task-irrelevant large-scale
NLI datasets [18], [19] and evaluated directly on classic STS
datasets and transfer tasks datasets without additional training.
Comparatively, in supervised experiments, we train and test
CoSENT on datasets with various annotation types (e.g.,

positive-negative type, NLI type, and scoring type) to show the
generality and effectiveness toward downstream tasks. Besides
representation learning experiments, we extend the CoSENT
to the interaction-based STS model and conduct comparative
experiments. To demonstrate its adaptability towards different
language models and pooling methods, we further investigate
the CoSENT with Chinese pre-trained models and conduct
an ablation study with different pooling methods. Moreover,
we explore the convergence speed of CoSENT, which can
be two to three times faster than SBERT. The experimental
results achieve SOTA on the vast majority of datasets and tasks
and provide strong evidence that our proposed framework can
be consistently and efficiently optimized with different data
annotations, for different pre-training and pooling methods,
and on different STS tasks. All code and datasets of this work
are publicly available at GitHub1.

To summarize, the contributions of our work are as follows:
• An enlightening perspective is proposed to analyze the

shortcomings of cosine similarity measurement in most
BERT-based textual semantics, supported by empirical ex-
periments.

• A novel, consistent, and adaptive framework based on
similarity ranking, CoSENT, is presented for fine-tuning
the transformer encoder to generate discriminative sentence
embeddings.

• Extensive experiments are conducted on diverse datasets to
confirm our method’s new SOTA performance and excellent
convergence speed.
The paper is organized as follows: Section II summarizes

a series of representative works on sentence embedding and
semantic textual similarity; Section III reviews the loss func-
tions commonly used in STS tasks and describes the proposed
framework, CoSENT; Section IV describes the training details
of our framework, followed by the introduction of baselines
and datasets used in the experiments. Section V shows rich
experimental results on the basis of which the CoSENT’s
advantages are fully analyzed, and Conclusion (Section VI)
discusses the implications and future work.

II. RELATED WORK

A. Sentence Embedding Methods

Word embedding is the fundamental research in natural
language processing, which aims to learn a unique representa-
tion vector for each word in the self-supervised manner [20],
[21]. Early sentence embedding work extends this idea to
more complex sentence representation models. Skipthought
vector [22] and Sent2Vec [23] show that simply extending the
skip-gram and n-gram models to sentence representation can
lead to satisfactory results. [24] proposes a simple, unsuper-
vised, neural network-free sentence embedding method and
theoretically demonstrates its homogeneity with Word2Vec.
Universal Sentence Encoder [25] first trains a transformer
network to generate transferable sentence vectors.

Pre-trained language models like BERT [7], RoBERTa [26],
and ELMo [27] take contextual embedding to a new level.

1https://github.com/RingBDStack/CoSENT

https://github.com/RingBDStack/CoSENT
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However, it is proven that the pre-trained models are incapable
of directly generating semantically distinguishable sentence
embeddings [8], as their induced embedding spaces are highly
anisotropic. InferSent [11] introduces semantic similarity su-
pervision between sentence pairs [18], [19] into the learning
of sentence embeddings. Specifically, it extends the Siamese
network architecture [28] with a variety of sophisticated
encoders, including BiLSTM, the self-attentive network, and
hierarchical ConvNet. Besides, it appends additional layers
that perform concatenation, difference, and inner product
before classification to capture correlated features between
sentence representations. Sentence-BERT (SBERT) [12] ver-
ifies the effectiveness of fine-tuning the pre-trained BERT
through the InferSent-like Siamese networks architecture. To
accommodate different downstream tasks, SBERT employs
three loss function schemes, namely cross-entropy loss, MSE
loss, and triplet loss, for training, while uniformly calculating
the cosine similarity between two sentence embeddings as the
prediction. Meanwhile, a series of post-processing methods
are proposed to address the anisotropy problem of pre-trained
models. [9] empirically analyzes the poor performance of
BERT in sentence representation and proposes BERT-flow, a
post-processing approach based on normalizing flows to trans-
form the distribution of BERT’s embeddings into the Gaussian
distribution. BERT-whitening [10] further demonstrates that a
simple linear whitening operation can also effectively alleviate
the anisotropy problem and can significantly reduce the di-
mensionality of the embeddings. Although SBERT effectively
refines BERT sentence vectors, it introduces extra datasets
with supervision. New studies attempt to achieve unsupervised
training through data augmentation and contrastive learning.
Analogous work [29] uses an additional frozen BERT encoder
for similar samples, and ConSERT [30] explicitly introduces
a data augmentation module to construct positive examples
in various manners. SimCSE [31] proposes a simple con-
trastive learning framework for STS. Its supervised version
exploits 3-tuple data (i.e., anchor sentence, similar sentence,
and dissimilar sentence) constructed from the NLI dataset.
Meanwhile, for each input sentence, the unsupervised version
treats the augmentation obtained by applying different dropout
masks as positive samples and the other inputs within the
same mini-batch as negative samples. ArcCSE [32] improves
SimCSE by adding an additive angular margin m between
the positive pair and improves the triplet loss via modeling
the entailment relation among triplet sentences. However, it
still focuses on enhancing the contrastive and triplet loss used
in SimCSE, which only aim to optimize the single sample
with its positive and negative samples. DiffCSE [33] improves
sentence embeddings by contrasting original sentences with
their stochastically modified counterparts, generated through
random masking and sampling from a masked language model.
RankCSE [34] boosts performance by transferring ranking
consistency information from the teacher to student models.
It proposes the introduction of global ranking information
into the model using ListNET and ListMLE losses, which are
similar to our CoSENT loss. By employing CoSENT loss in
the RankCSE model, we will make a complete comparison
with it in Section V.

B. Semantic Textual Similarity Tasks

Semantic textual similarity (STS) is defined as the degree
of semantic equivalence between two blocks of text. Mea-
suring STS is a foundational technique in natural language
understanding and is widely used in a variety of tasks, such
as automated summarization [35], question answering [36],
and text embedding [11]. Recent STS models can be catego-
rized into two paradigms: representation-based and interaction-
based. Representation-based STS models learn fixed repre-
sentation vectors for sentences, with the semantic similarity
between them defined by a simple binary function. There-
fore, representation-based models are widely used in sentence
embeddings [12] and time-sensitive tasks. Meanwhile, in the
interaction-based scheme, sentence pairs are directly encoded
to exploit cross-features or attentions between sentences,
resulting in higher accuracy but also higher computational
costs. A series of works such as BiMPM [37], ESIM [38],
and DRCN [39] explicitly establish word-by-word interaction
between sentence pairs based on recurrent neural network
encoders. BERT [7] also provides a simple yet effective
interaction-based text-matching scheme by concatenating two
sentences and feeding them into the pre-trained BERT to
produce a single vector, which is then used to calculate the
similarity score.

III. A CONSISTENT SENTENCE EMBEDDING VIA
PAIRWISE-SIMILARITY RANKING

This section will first review the loss functions used in STS
tasks to explain our motivation. Then, we will present the
formulation of the CoSENT loss function for the binary STS
task and demonstrate how it can be generalized to datasets
containing sortable labels and interactive models. Finally, we
will describe the details of the architecture of our model.

A. Loss Function for STS Learning

Before introducing CoSENT, we first review loss functions
used in STS tasks and sentence embedding to elaborate on our
motivation. These include contrastive loss [40], MSE loss [41],
softmax loss, and triplet loss [42].

Contrastive loss. [40] proposes a pairwise contrastive loss
for the Siamese network, which is formulated as:

Lcontrast =
1

2
ytrued

2 +
1

2
(1− ytrue)max(0, ϵ− d)2, (1)

where d is the pair-wise distance, ytrue is 1 if the pair is similar
and 0 otherwise. ϵ is a predefined threshold representing the
upper bound of the distance d. After replacing d with the
cosine similarity cos(ui, uj) of the sentence embedding pair
ui and uj to make it suitable for STS tasks, the contrastive
loss can be modified as:

Lcontrast =
1

2
ytrue(1− cos(ui, uj))

2

+
1

2
(1− ytrue)max(ϵ, cos(ui, uj))

2.
(2)

It drives the cosine similarity between positive pairs to con-
verge to 1 and that between negative pairs to decrease to the



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 4

threshold ϵ. However, in practical applications, selecting the
optimal threshold ϵ for different datasets may be challeng-
ing. For instance, when dealing with datasets with a large
proportion of hard samples, ϵ should not be set too low,
as semantically dissimilar samples may only exhibit slight
textual differences. For verification, we train SBERT on the
five datasets mentioned in Section IV-D using the modified
contrastive loss in Eq. 2 and report the results in Table I. It
can be observed that for datasets with more hard samples (e.g.,
PAWS and ATEC), the selection of ϵ can significantly impact
performance. InfoNCE [43] loss proposes to utilize the cross-
entropy loss for contrastive learning as follows:

LInfoNCE = − log
ecos(ui,u

∗
i )/τ∑n

j=1 e
cos(ui,uj)/τ

, (3)

where u∗
i is the positive sample of ui, n is the batch size,

and τ is a temperature hyperparameter. InfoNCE is widely
used in SimCSE family models. It avoids directly defining the
optimization threshold ϵ and replaces it with τ . However, the
temperature is critical in controlling the local separation and
global uniformity of the embedding distributions [44], so it
needs to be adjusted for different datasets.

MSE loss. The MSE (Mean Squared Error) loss, also known
as L2 loss, is a common loss function used in regression
tasks. It is defined as the mean squared difference between
the predicted outputs and the ground truth. In the STS task,
the outputs are the similarities (e.g., cosine similarity) between
the sentence pair (i, j):

LMSE = || cos(ui, uj)− ytrue||2, (4)

where ui and uj are the embeddings of sentence pair i and
j, while ytrue is the similarity label. However, MSE loss is
unsuitable for classification tasks because it turns all biases
positive and amplifies outlier effects, making it more suitable
for problems where noise in the observations follows a normal
distribution [45].

Softmax loss. The softmax loss combines a softmax classifier
and a cross-entropy loss and is widely used in classification
tasks. In STS tasks, several different sentence embedding
concatenation modes have been designed as input to a softmax
classifier. InferSent [11] and Universal Sentence Encoder [25]
both use (ui, uj , |ui−uj |, ui∗uj) as input, where ui and uj are
the embeddings of the sentence pair i and j respectively in the
Siamese network, while SBERT [12] uses (ui, uj , |ui−uj |) as
the input of the softmax classifier. The formal representation
is written as follows:

h = W (ui, uj , |ui − uj |),

Lsoftmax = − log
ehytrue∑n
i=1 e

hi
,

(5)

where W is a trainable matrix, h is the hidden layer output,
and n is the number of classes in the multi-class classifier. hi

represents the i-th value in h and hytrue
is the score of the

target class. Although these models successfully use a softmax
classifier to deviate the embedding vector from the initial
anisotropic state, they fail to explain why cosine similarity
is valid in the learned space. This gap in explanation arises

because the cosine function is not involved in the training, yet
it is used in STS prediction.

Triplet loss. Triplet loss [42] takes the triplet consisting of an
anchor sentence embedding ua, a positive sentence embedding
up, and a negative sentence embedding un as the input. It is
optimized to ensure that the distance between ua and up is
smaller than the distance between ua and un in the learned
space. It can be written as:

Ltriplet = max(d(ua, up)− d(ua, un) + ϵ, 0), (6)

where d(ui, uj) is the distance of the sentence pair (i, j). The
margin ϵ ensures that up is at least ϵ closer to ua than to un.

The triplet loss function is sensitive to the choice of negative
samples [46]. As models cannot learn anything from easy
negative samples, hard negative samples are vital for enhanc-
ing the model’s predictive accuracy. However, identifying and
annotating a sufficient number of hard negative samples is
challenging, making training with the triplet loss function both
time-consuming and resource-intensive. Additionally, setting
the margin ϵ poses its own challenges. If ϵ is too high, the
model may struggle to learn the desired embedding space,
while if ϵ is too low, the model risks overfitting the training
data [47].

(a) Contrastive loss (b) Triplet loss (c)  CoSENT loss 

negative pair

positive pair
anchor sample

negative sample

positive sample

Fig. 1: Illustration of the optimization process of different loss
functions. (a) shows the optimization direction of contrastive loss,
while (b) shows the optimization using triplet loss. (c) illustrates the
basic idea of CoSENT loss. The darker the node pairs (denoting
sample pairs) in the figure, the higher their annotated similarity.
By capturing the ranking of similarity annotations, the goal of
CoSENT is to flexibly scale the distances between samples to obtain
a representative sentence embedding space.

B. CoSENT Loss: General and Effective Optimization Objec-
tive

Due to the limitations of the above loss functions, we aim
to design a loss function that directly optimizes the cosine
function for consistency in training and prediction and can
be widely used across various datasets. In this subsection,
we introduce the core innovation of our model: a novel,
similarity-ranking-based loss function for supervised STS
training, named CoSENT. The comparison of common loss
and CoSENT loss is illustrated in Fig. 1. The contrastive loss
and triplet loss both focus on one sentence in relation to other
single sentences, bringing positive samples closer and pushing
negative samples further away, operating within the sentence
pair. CoSENT, on the other hand, works on the sentence pairs
and focuses on maintaining ranking consistency between the
learned similarity of sentence pairs within the entire set and
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(b) Sentence Embedding and Textural Similarity Prediction

(c) Interaction-based STS Learning with CoSENT Loss(a) Representation-based STS Learning with CoSENT Loss
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Fig. 2: The overall architecture of CoSENT.

their similarity labels. This approach enables the model to
determine the appropriate similarity distribution.

1) CoSENT Loss for Binary Classification: Based on the
idea presented in Section III-A, we consider that the distance
between positive sample pairs is generally smaller than that
between negative sample pairs. Formally, denoting Ωpos and
Ωneg as the positive/negative sentence pairs set respectively,
for any (i, j) ∈ Ωpos and (k, l) ∈ Ωneg, it holds that:

cos (ui, uj) > cos (uk, ul), (7)

where ui , uj , uk, and ul are the corresponding representations
of sentences i, j , k, and l. The supervision focuses only on the
similarity ranking between sample pairs with different labels,
and the model itself determines the specific pairwise distance.
Therefore, the binary CoSENT loss function can be written
as:

log

1 +
∑

(i,j)∈Ωpos,(k,l)∈Ωneg

eλ(cos(uk,ul)−cos(ui,uj))

 , (8)

where λ is a hyperparameter for amplification. It is derived
from the cross-entropy loss with the softmax activation func-
tion:

− log
est
n∑

i=1

esi
= log

1 +

n∑
i=1,i̸=t

esi−st

 , (9)

where n is the number of classes, {s1, s2, . . . , sn} represents
the prediction score of each class, and st is the prediction
score of the target class according to the supervision. It can

be observed that its optimization objective is essentially to
limit the scores of all non-target classes to be lower than the
score of the target class, which is similar to ours.

2) Generalized CoSENT Loss for Ranked Labels: In the
binary classification task, we expect the sentence vectors of
the positive sample pairs to be more similar to each other
than the sentence vectors of the negative sample pairs, which
can be generalized to any rankable sample pair. Therefore,
using sim to denote the similarity label of a sentence pair, we
extend Eq. 9 as follows:

log

1 +
∑

sim(i,j)>sim(k,l)

eλ(cos(uk,ul)−cos(ui,uj))

 . (10)

As long as we can design the ranking of similarity for the
sample pairs, we can use Eq. 10 to train the sentence vectors
so that the higher the similarity between the sample pairs,
the higher the cosine similarity of their sentence vectors will
be. In practice, CoSENT can be adopted for various types of
datasets with sortable labels, such as NLI datasets, positive-
negative datasets, and scoring datasets.

3) CoSENT Loss for interaction-based STS Task: So far,
our CoSENT loss functions have been designed to optimize
the cosine similarity between sentence vectors, which is a
representation-based model design. In representation-based
models, the sentence pair is encoded separately using en-
coders, whereas interaction-based models treat the text pair as
a single entity and classify it accordingly. CoSENT can also be
used as a loss function for interaction-based models because
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it is a function that depends only on the relative ranking of
the labels and is not necessarily related to cosine similarity.
Denoting the output of the interaction model as f(i, j) for any
sentence pair (i, j), CoSENT loss for the interaction model is
as follows:

log

1 +
∑

sim(i,j)>sim(k,l)

eλ(f(k,l)−f(i,j))

 . (11)

C. Detailed Architecture

In this subsection, we will provide more details on the
model. Fig. 2 (a) and (b) depict the training and prediction
architecture of the representation-based model, respectively.
During training, the model inputs all sentence pairs into the
dual transformer pair by pair, and the output is passed through
a pooling layer to obtain pairs of sentence embeddings. The
pairs of sentence vectors are sorted according to their label,
and the cosine similarities of the sentence vector pairs are
added to the CoSENT loss based on the ranking information.
The loss is then used to update the parameters of the Siamese
network simultaneously through backpropagation, with the
optimization target of maintaining ranking information con-
sistency between the similarity labels and the predicted cosine
similarity. Like SBERT, we use a Siamese network structure to
update the transformer parameters, which enables the sentence
vectors to share the same semantic space and be comparable
using cosine similarity. At inference, the fine-tuned model
computes the cosine similarity between sentence pairs as
its output. The pooling layer after the Transformer encoder
produces fixed-sized sentence embeddings. We experiment
with four pooling strategies: Mean pooling takes the average
of the hidden states produced by the transformer for each input
token; CLS pooling uses the special CLS token; Max pooling
involves taking the maximum value of the hidden states; and
first-last pooling averages the first and the last tokens of the
transformer.

In Fig. 2 (c), we present the interaction-based model.
Sentence pairs are concatenated as the input of the transformer
encoder. CoSENT then utilizes the output of the fully con-
nected layer and corresponding labels to optimize the model.
After training, the model directly uses the output of the fully
connected layer as the similarity score for the STS task.

IV. EXPERIMENTAL SETTINGS

A. Hardware and Software

We fine-tune the BERTlarge and RoBERTalarge models on
a server with an NVIDIA RTX A6000 GPU and an Intel
i9-10980XE CPU. All other experiments are completed on
a Linux server consisting of a 16-core Intel i9-12900 CPU,
32GB of RAM, and an NVIDIA GeForce RTX 3090Ti GPU.
We implement all models using Pytorch 1.12 and Python 3.9.

B. Baselines

We compare the performance with the following baselines.
Avg. GloVe embeddings denotes averaging all word embed-
dings generated by GloVe [20] to create sentence embeddings.

Avg. BERT embeddings and BERT CLS-vector denote the
average of the output or the CLS-token of raw BERT [7],
respectively. InferSent-GloVe is the InferSent [11] model
using the GloVe word embeddings as the input representation.
Universal Sentence Encoder [25] is a transformer-based model
designed to capture the relationships between different words
in a sentence and generate a representation of the input text.
SBERT-NLI and SRoBERTa-NLI correspond to the BERT
and RoBERTa models fine-tuned on the NLI dataset using
the SBERT [12] training approach. The terms cosine and
softmax in parentheses indicate the loss function selected
by the model. BERTbase-SimCSE refers to the unsupervised
SimCSE [31] model that fine-tunes on the English Wikipedia
dataset using dropout as a data augmentation strategy. Ar-
cCSE [32] enhances the pairwise discriminative power and
models the entailment relation among triplet sentences. Dif-
fCSE [33] introduces equivariant contrastive learning to Sim-
CSE. RankCSE [34] utilizes a teacher-student framework to
learn additional ranking information. In the SentEval transfer
task, BERTbase-SimCSE-sup is the supervised SimCSE [31]
model trained on the NLI dataset. As supervised results are
not reported for ArcCSE, DiffCSE, and RankCSE, we only
compare with the unsupervised versions of these models.

C. Training Details

In experiments, we adopt a consistent set of hyperparam-
eters, including a learning rate of 2e-5 and a weight decay
of 0.01. A linear learning rate warm-up is applied over the
first 10% of the training data. For fine-tuning on the NLI
dataset in unsupervised tasks, we train the models for one
epoch with a batch size of 64. In other situations, the default
number of training epochs is four and the batch size is 16.
For unsupervised tasks, the default pooling method for BERT
is the first-last pooling, whereas the CLS pooling method is
utilized in the RoBERTa model. The mean pooling method is
selected for other tasks. We set the hyperparameter λ in Eq. 10
to a uniform value of 20 for all datasets. BERTbase-RankCSE-
CoSENT is trained using the original experimental settings of
RankCSE [34] and employs our CoSENT loss to capture the
consistent ranking information between the teacher and student
models. In the English task, BERTbase and BERTlarge refer
to BERT-base-uncased and BERT-large-uncased models pre-
sented in [7], while RoBERTabase and RoBERTalarge refer to
RoBERTa-base and RoBERTa-large models proposed in [26].
In the Chinese task, BERTbase refers to bert-base-chinese [7]
and RoBERTabase refers to chinese-roberta-wwm-ext [48]. All
models are downloaded from Huggingface.

D. Dataset

We employ a range of English and Chinese STS datasets,
including the Wiki [31], STS 2012-2016 [49], [50], [51],
[52], [53], STS benchmark [14], SICK [15], and PAWS [13]
datasets for the English task, and the ATEC [16], BQ [17],
LCQMC [54], PAWSX [55], and Chinese-STSb [56] datasets
for the Chinese task. These datasets are described in detail as
follows.
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TABLE II: Statistics of benchmark datasets.

Dataset Train Validation Test Similarity label
Wiki 1000000 - - -
NLI 942069 19657 19656 0, 1, 2
STS 2012 2234 6 3108 0-5
STS 2013 - - 1500 0-5
STS 2014 - - 3750 0-5
STS 2015 - - 3000 0-5
STS 2016 - - 1186 0-5
STS benchmark 5749 1500 1379 0-5
SICK 4439 495 4906 1-5 / 0, 1, 2
PAWS 49401 8000 8000 0, 1
ATEC 62477 20000 20000 0, 1
BQ 100000 10000 10000 0, 1
LCQMC 238766 8802 12500 0, 1
PAWSX 49401 2000 2000 0, 1
Chinese-STSb 5231 1458 1361 0-5

Wiki. The Wiki dataset is provided by SimCSE, which
contains 106 randomly sampled sentences from English
Wikipedia.
STS 2012-1016. The STS 2012-2016 datasets are built by
the organizer of the SemEval shared task. Each sample in
the dataset consists of a pair of sentences, along with a label
indicating the similarity of the two sentences on a scale from 0
to 5. A score of 0 signifies that the semantics of the sentences
are completely independent, while a score of 5 indicates that
the sentences are semantically equivalent.
STS benchmark. The STS benchmark dataset consists of a
carefully chosen group of English datasets used in the STS
tasks organized in the context of SemEval between 2012 and
2017. The datasets encompass text sources ranging from image
captions, and news headlines to user forums. The labels of this
dataset are inherited from the STS 2012-2016 datasets.
NLI. The NLI (Natural Language Inference) dataset is a
combination of the SNLI [18] and the Multi-Genre NLI [19]
dataset. The label of the NLI dataset contains the categories
of contradiction, neutral, and entailment.
SICK The SICK (Sentences Involving Compositional Knowl-
edge) dataset consists of 10,000 sentence pairs from two
existing sets: the 8K ImageFlickr dataset and the SemEval
2012 STS MSR-Video Description dataset. Each sentence pair
has a relatedness score and a text entailment relation. The
dataset can be referred to as the SICK-Relatedness dataset
when the relatedness score (1-5) is considered and as the
SICK-NLI dataset when the NLI label (contradiction, neutral,
or entailment) is applied.
PAWS. The PAWS dataset contains 108,463 pairs that have
been labeled by humans and an additional 656,000 pairs that
have been labeled with noise. We only use a subset of the
PAWS dataset known as the PAWS-Wiki labels (Final) dataset,
which includes pairs generated through word swapping and
back translation methods. These pairs have received human
judgments regarding both paraphrasing and fluency. The labels
for each sentence pair in the dataset are binary, with 0
indicating that the pair has a distinct meaning, and 1 indicating
that the pair is a paraphrase.
ATEC. The ATEC dataset is derived from sentence pairs of
actual customer service interactions in Ant Financial’s Brain
application.

BQ. The BQ (Bank Question) dataset is a large-scale, domain-
specific Chinese corpus containing 120,000 question pairs
from online bank customer service logs.
LCQMC. The LCQMC dataset uses Baidu Knows as the
original data source to collect large-scale sentence pairs.
PAWSX. The PAWSX dataset contains 23,659 human-
translated PAWS evaluation pairs and 296,406 machine-
translated training pairs in six typologically distinct languages.
We only use the Chinese subset.
Chinese-STSb. The Chinese-STSb dataset is obtained by
translating the raw English STS benchmark dataset using
Tencent Cloud’s API and then undergoing manual revision to
address errors and inaccuracies in the sentences.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To demonstrate the effectiveness of our proposed method,
we present our experimental results for various tasks related
to semantic textual similarity in this section. As the Pearson
correlation is proven inadequate for STS tasks [57], we uni-
formly report Spearman’s rank correlation between the cosine
similarity and the gold labels to compare the performance of
the models. The reported results of the baselines are partially
derived from the original paper and partially evaluated using
the authors’ source code.

A. Unsupervised STS

In the unsupervised STS task, we only fine-tune models on
the NLI dataset or the Wikipedia dataset, not using any STS-
specific training data. Then we evaluate model performance
on the STS 2012-2016 dataset [49], [50], [51], [52], [53],
the STS benchmark dataset [14], and the SICK-Relatedness
dataset [15]. The results are reported in Table III. It shows
that the raw BERT sentence embeddings, with both the CLS-
token and averaging pooling methods, fail to outperform the
averaged GloVe embeddings in all datasets. For the BERTbase,
BERTlarge, RoBERTabase, and RoBERTalarge models, using
the CoSENT loss to fine-tune on the NLI dataset generally
results in better performance on the 7 datasets compared to
the other baselines, with a maximum average improvement
of 1.13 on the datasets compared to SBERT. Compared with
other SimCSE family models fine-tuned on the Wiki dataset,
BERTbase-RankCSE-CoSENT achieves an average improve-
ment ranging from 0.55 to 4.66 in Spearman’s rank correlation
across all datasets. Moreover, BERTbase-RankCSE-CoSENT
outperforms RankCSE with LitNet and ListMLE loss in 5 out
of 6 datasets, which demonstrates the benefit of our CoSENT
loss in ranking consistency information learning.

We also observe that the RoBERTa model generally outper-
forms the BERT model. However, the performance enhance-
ment of CoSENT with BERT is more prominent than those
with RoBERTa. Specifically, CoSENT improves BERTbase

and BERTlarge on six and seven datasets, respectively, while
only improving RoBERTabase and RoBERTalarge on four and
three datasets, respectively. We analyze that this is because
the raw RoBERTa model is more sufficient compared to the
BERT model.
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TABLE III: Results of unsupervised STS tasks. We report Spearman’s rank correlation ρ between the cosine similarity of sentence
representations and the gold labels for various datasets. Performance is reported as ρ × 100. STS12-STS16 refers to the STS 2012-2016
datasets, STSb refers to the STS benchmark dataset, and SICK-R refers to the SICK-Relatedness dataset. Bold: the best performance under
each category, underline: the second best performance.

Model Fine-tune data STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg.
Avg. GloVe embeddings N/A 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
Avg. BERT embeddings N/A 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
BERT CLS-vector N/A 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
InferSent - GloVe NLI 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
Universal Sentence Encoder NLI 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
SBERTbase-NLI NLI 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SBERTlarge-NLI NLI 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
SRoBERTabase-NLI NLI 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
SRoBERTalarge-NLI NLI 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68
BERTbase-CoSENT-NLI NLI 71.34 76.06 73.63 80.71 75.23 78.25 74.10 75.62
BERTlarge-CoSENT-NLI NLI 74.44 79.17 76.10 81.13 77.88 80.35 74.68 77.68
RoBERTabase-CoSENT-NLI NLI 72.29 76.79 74.31 78.64 76.29 77.75 68.70 74.97
RoBERTalarge-CoSENT-NLI NLI 74.31 77.87 75.36 79.63 76.38 79.11 69.56 76.03
BERTbase-SimCSE Wiki 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
BERTbase-ArcCSE Wiki 72.08 84.27 76.25 82.32 79.54 79.92 72.39 78.11
BERTbase-DiffCSE Wiki 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
BERTbase-RankCSE-listNet Wiki 74.38 85.97 77.51 84.46 81.31 81.46 75.26 80.05
BERTbase-RankCSE-listMLE Wiki 75.66 86.27 77.81 84.74 81.10 81.80 75.13 80.36
BERTbase-RankCSE-CoSENT Wiki 75.76 85.54 78.11 84.60 81.58 82.88 77.92 80.91

TABLE IV: Results of supervised STS tasks. The training and
testing data come from distinct divisions of the same dataset. We
report Spearman’s rank correlation ρ between the cosine similarity
of sentence representations and the gold labels on multiple datasets.
Bold: the best performance under each category, underline: the
second best performance, “–”: results are not available.

Model NLI STSb SICK-R PAWS MRPC
SBERTbase(MSE) 76.60 84.67 83.76 73.09 55.46
SBERTlarge(MSE) 76.97 84.45 84.99 74.15 53.49
SRoBERTabase(MSE) 77.80 84.92 84.47 72.57 61.55
SRoBERTalarge(MSE) 74.01 85.02 85.12 74.11 60.46
SBERTbase(softmax) 55.52 - - 71.96 41.06
SBERTlarge(softmax) 57.26 - - 63.71 41.02
SRoBERTabase(softmax) 56.61 - - 73.46 42.11
SRoBERTalarge(softmax) 60.84 - - 70.01 44.76
BERTbase-CoSENT 77.88 85.75 84.43 74.59 62.16
BERTlarge-CoSENT 77.01 86.40 85.00 76.26 60.17
RoBERTabase-CoSENT 79.12 86.95 84.64 75.81 67.31
RoBERTalarge-CoSENT 87.04 87.84 85.40 75.63 66.13

B. Supervised STS

In the supervised STS task, we directly fine-tune the model
on the training subset of the NLI [18], [19] dataset, STS
benchmark dataset [14], SICK-Relatedness dataset [15], PAWS
dataset [13], and MRPC dataset, and evaluate it on the
corresponding test partition of each dataset. Since the STSb
and SICK-R datasets are scoring datasets, the softmax loss is
not available. Results are reported in Table IV. It demonstrates
the efficiency of the CoSENT over all other loss functions used
in SBERT across datasets and pre-trained models. Concretely,
CoSENT consistently outperforms its competitors with a max-
imum average improvement ranging from 0.04 to 26.20 in the
NLI dataset, from 1.08 to 2.82 in the STSb dataset, from 0.01
to 0.67 in the SICK-R dataset, from 1.50 to 12.55 in the PAWS
dataset, and from 5.67 to 25.20 in the MRPC dataset.

It is noteworthy that the performance of the softmax loss
in the supervised STS task is subpar in comparison to other
loss functions. We suggest that this underperformance is due
to the inconsistency between the softmax loss optimization

objective and Spearman’s rank coefficient of cosine similarity
used in the prediction phase. Interestingly, the softmax loss
produces relatively satisfactory sentence embeddings in the
unsupervised STS task.

C. Chinese STS

Considering the differences in semantic space complexity
and corresponding pre-trained model capabilities of different
languages, we also conduct experiments on various Chinese
datasets and on the basis of Chinese pre-trained models in
addition to the classical STS benchmarks.

We evaluate both supervised and unsupervised STS
tasks using five datasets: ATEC[16], BQ[17], LCQMC[54],
PAWSX[55], and Chinese-STSb [56] dataset. All results are
reported in Table VI. Our observations can be summarized
as follows: (1) In the unsupervised STS tasks, CoSENT
achieves general improvement across five datasets, especially
on the PAWSX dataset, with an average improvement of up
to 5.25. This demonstrates that the sentence embedding space
learned by CoSENT is superior to that learned by SBERT in
the Chinese task. (2) In the supervised STS tasks, CoSENT
achieves improvement across all datasets. The improvement is
quantified with a maximum increase of 5.86 and 2.17 when
compared to the best results obtained from softmax and MSE
methods in the BERTbase and RoBERTabase models. (3) MSE
loss is not suitable for binary classification datasets, such as
ATEC and LCQMC, while the softmax loss is not available
for the scoring dataset STSb. In comparison, CoSENT can
be adopted in various types of datasets and achieves superior
performance.

D. Transfer Task - SentEval

SentEval [58] is a library for evaluating the quality of
sentence embeddings. It provides a set of predefined transfer
tasks that can be used to evaluate the performance of sentence
embeddings. The goal of the task is to train a classifier to



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 9

TABLE V: Evaluation of sentence embeddings on transfer tasks using the SentEval toolkit. SentEval evaluates sentence embeddings on
different sentence classification tasks by training a logistic regression classifier using the sentence embeddings as features. Classification
accuracy (%) based on 10-fold cross-validation is reported. Bold: the best performance under each category, underline: the second best
performance.

Model Fine-tune data MR CR SUBJ MPQA SST TREC MRPC Avg.
Avg. GloVe embeddings N/A 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Avg. fast-text embeddings N/A 77.96 79.23 91.68 87.81 82.15 83.60 74.49 82.42
Avg. BERT embeddings N/A 78.66 86.25 94.37 88.66 84.40 92.80 69.45 84.94
BERT CLS-vector N/A 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
InferSent - GloVe NLI 81.57 86.54 92.50 90.38 84.18 88.20 75.77 85.59
Universal Sentence Encoder NLI 80.09 85.19 93.98 86.70 86.38 93.20 70.14 85.10
SBERTbase-NLI NLI 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
SBERTlarge-NLI NLI 84.88 90.07 94.52 90.33 90.66 87.40 75.94 87.69
BERTbase-SimCSE Wiki 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
BERTbase-SimCSE-sup NLI 82.69 89.25 94.81 89.59 87.31 88.40 73.51 86.51
BERTbase-ArcCSE Wiki 79.91 85.25 99.58 89.21 84.90 89.20 74.78 86.12
BERTbase-DiffCSE Wiki 81.76 86.20 94.76 89.21 86.00 87.60 75.54 85.87
BERTbase-RankCSE-listNet Wiki 83.21 88.08 95.25 90.00 88.58 90.00 76.17 87.33
BERTbase-RankCSE-listMLE Wiki 83.07 88.27 95.06 89.90 87.70 89.40 76.23 87.09
BERTbase-RankCSE-CoSENT Wiki 83.46 89.54 94.84 90.32 88.08 86.80 77.45 87.21
BERTbase-CoSENT-NLI NLI 83.70 89.86 93.94 90.17 89.29 91.60 76.35 87.84
BERTlarge-CoSENT-NLI NLI 85.31 90.44 94.68 90.52 90.94 90.80 77.10 88.54

TABLE VI: Results of different Chinese STS datasets. The PAWSX
dataset is a Chinese subset of the original PAWSX [55] dataset.
STSb refers to the Chinese-STSb [56] dataset. The top half of the
table shows the unsupervised STS results, and the bottom half shows
the supervised STS results. Bold: the best performance under each
category, underline: the second best performance, “–”: results are not
available.

Model ATEC BQ LCQMC PAWSX STSb
SBERTbase-NLI 28.19 42.73 64.98 15.38 74.88
SRoBERTabase-NLI 31.87 45.60 67.89 15.64 73.93
BERTbase-CoSENT-NLI 28.93 41.84 66.07 20.49 73.91
RoBERTabase-CoSENT-NLI 31.84 46.65 68.43 20.89 74.37
SBERTbase(MSE) 45.55 70.74 77.83 51.76 76.29
SRoBERTabase(MSE) 46.09 72.14 77.99 58.41 78.97
SBERTbase(softmax) 48.68 70.97 79.16 51.24 -
SRoBERTabase(softmax) 50.15 71.06 79.48 59.71 -
BERTbase-CoSENT 50.13 71.53 79.45 57.62 81.26
RoBERTabase-CoSENT 50.84 72.60 79.89 61.63 81.14

predict the label of a given sentence pair, using sentence
embeddings as input. The accuracy of the classifier is used
as a measure of the quality of the sentence embeddings. We
compare sentence embeddings with baselines on the following
seven transfer tasks.
MR [59]. MR involves sentiment classification of movie
reviews. The goal is to predict whether a given movie review
is positive or negative.
CR [60]. CR is similar to MR but it uses customer reviews
from various products on e-commerce sites.
SUBJ [61]. The subjectivity dataset with subjective reviews
and objective plot summaries. This task focuses on determin-
ing the subjectivity of a sentence (objective or subjective).
MPQA [62]. Phrase level opinion polarity classification task
(positive, negative, neutral) on the MPQA Opinion Corpus.
SST [63]. The Stanford Sentiment Treebank (SST) transfer
task aims to predict the sentiment of a given sentence on a
five-point scale (very negative, negative, neutral, positive, very
positive).
TREC [64]. The fine-grained question-type classification task,
where the goal is to predict the type of question based on its
text, such as factoid, list, yes/no, etc.

MRPC [65]. The Microsoft Research Paraphrase Corpus from
parallel news sources. This task is a paraphrase identification
task, which aims to determine whether two sentences are
semantically equivalent.

The results are reported in Table V. CoSENT achieves the
best performance in 5 out of 7 tasks. Compared to InferSent
and Universal Sentence Encoder, CoSENT has an average
increase of approximately 3% in performance. Additionally,
it has an average increase of around 1% when compared to
SBERT and an increase of approximately 2% when compared
to SimCSE. CoSENT demonstrates a general improvement
compared to SBERT, with the exception of the SST and MRPC
tasks. This highlights the advantage of the quality of sentence
embeddings learned by CoSENT. Compared with RankCSE,
BERTbase-RankCSE-CoSENT outperforms in 4 out of 7 tasks,
which demonstrates the advantage of CoSENT in capturing
ranking information compared to the ListNet and ListMLE
losses used in the RankCSE model. Additionally, CoSENT
shows significant underperformance on the TREC dataset. We
analyze this because TREC is a question-type classification
task, which has a more specific sentiment space.

TABLE VII: Results of the interaction-based model. The suffix CE
refers to the model with cross-entropy as the loss function. Bold: the
best performance under each category.

Model ATEC BQ LCQMC PAWSX Avg.
BERTbase-CE 50.35 73.66 79.33 63.23 66.64
BERTbase-CoSENT 50.42 74.07 79.68 63.07 66.81
RoBERTabase-CE 50.32 72.49 80.13 70.33 68.31
RoBERTabase-CoSENT 50.54 73.27 80.03 70.35 68.55

E. Interaction-based STS

We propose the CoSENT formula, as outlined in Eq. 11,
as the loss function for the interaction-based model. In this
subsection, we evaluate the performance of CoSENT in the
interaction-based STS task. We fine-tune the raw BERTbase

and RoBERTabase models on the ATEC, BQ, LCQMC, and
PAWSX datasets, and report the Spearman’s rank correlation
in Table VII. CoSENT slightly outperforms cross-entropy loss,
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Fig. 3: The average convergence speed for three different loss functions: CoSENT, MSE, and Softmax, across various datasets. The x-axis
represents the number of steps and the y-axis represents Spearman’s rank correlation. The results indicate that the use of the CoSENT loss
function can significantly reduce training time while also improving performance.

with an average improvement of 0.31 and 0.24 for BERT
and RoBERTa, respectively. Furthermore, we observe that
the performance of the BERT model is improved more by
CoSENT compared to the RoBERTa model. This may be
attributed to the fact that RoBERTa is a more robust and
optimized version of BERT.

F. Experiment on Model Convergence Speed

In this experiment, we evaluate the convergence speed of
CoSENT compared to other models. We use the same dataset
and training setup for all models and measure both the training
time and the final performance of each model.

As illustrated in Fig. 3, CoSENT demonstrates an improve-
ment in convergence speed while also increasing model perfor-
mance. Specifically, for datasets with hard samples like PAWS
and PAWSX, fine-tuning with CoSENT can approximately
reduce the training time by 50%-67% compared to the baseline
while achieving the same level of performance as measured by
Spearman’s rank correlation. On the PAWS dataset, CoSENT
achieves convergence at step 2500 with a value of 0.7501,
while MSE loss converges at step 5017 with a value of 0.7103,
and softmax loss converges at step 7516 with a value of
0.7416. Furthermore, CoSENT consistently outperforms other
baselines throughout the entire training phase.

G. Ablation Study

In this subsection, we conduct an ablation study to gain a
deeper understanding of the various components of CoSENT
and their relative significance.

1) Hyperparameter Sensitivity: CoSENT has a single hy-
perparameter, denoted as λ, as shown in Eq. 10. To evaluate
its impact, experiments are conducted by varying the value

of λ from 1 to 40 in increments of 5, using both the raw
transformer BERTbase and RoBERTabase models, across three
diverse datasets. As shown in Fig. 4, the hyperparameter λ has
little effect on the performance of the model, as the Spearman’s
rank correlation is similar when it is selected within the range
of 5-40, except for RoBERTalarge with a λ of 40. Therefore,
we can confidently set the hyperparameter for different tasks
without worrying about how the model performance will be
affected.

TABLE VIII: Results of CoSENT with different pooling methods
in supervised tasks. BERTbase and RoBERTabase are selected as the
raw models for fine-tuning. Bold: the best performance under each
category, underline: the second best performance.

Pooling Strategy NLI STSb SICK-R PAWS MRPC Avg.
BERTbase+Mean 77.88 85.75 84.43 74.59 62.16 76.96
BERTbase+CLS 75.80 85.73 83.97 74.87 59.95 76.06
BERTbase+Max 71.51 84.61 83.33 73.53 57.41 74.08
BERTbase+first-last 68.23 85.12 83.68 74.07 60.06 74.23
RoBERTabase+Mean 79.12 86.95 84.64 75.81 67.31 78.77
RoBERTabase+CLS 76.74 86.26 84.68 74.99 64.51 77.44
RoBERTabase+Max 71.78 86.26 83.87 74.76 62.98 75.93
RoBERTabase+first-last 74.40 86.73 84.66 74.85 66.17 77.36

2) Pooling Methods: Different pooling methods can be
adopted in the pooling layer of the framework shown in Fig. 2.
In this subsection, we evaluate various pooling strategies such
as Mean, CLS, Max, and first-last, and report the results in
Table VIII. We find that the impact of the pooling strategy
on the STSb, SICK-R, and PAWS datasets is relatively minor,
while it has a greater impact on the NLI and MRPC datasets.
Additionally, we observe that the mean pooling strategy gen-
erally outperforms the other three pooling strategies on all
datasets and models, with the exception of the SICK-R dataset
when using the RoBERTabase model, where the mean pooling
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Fig. 4: The influence of varying hyperparameter λ values selected within CoSENT. Our experiment is conducted on three English STS datasets
(STSb [14], PAWS [13], and SICK-R [15]) using both the BERT and RoBERTa models. The x-axis represents the value of hyperparameter
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Fig. 5: Density plots of cosine similarities between sentence pairs. The x-axis is the cosine similarity.

TABLE IX: Results of CoSENT with different pooling methods
in the unsupervised tasks. BERTbase-NLI and RoBERTabase-NLI
refer to the raw model fine-tuned on the NLI dataset. Bold: the
best performance under each category, underline: the second best
performance.

Pooling Strategy STSb SICK-R PAWS MRPC Avg.
BERTbase-NLI+Mean 76.22 69.79 29.19 50.21 56.35
BERTbase-NLI+CLS 76.12 68.90 29.58 50.41 56.25
BERTbase-NLI+Max 74.87 69.70 35.42 50.28 57.57
BERTbase-NLI+first-last 78.25 74.10 19.43 50.37 55.54
RoBERTabase-NLI+Mean 76.54 68.51 34.24 53.04 58.08
RoBERTabase-NLI+CLS 77.75 68.70 32.70 52.85 58.00
RoBERTabase-NLI+Max 75.77 68.29 35.28 53.07 58.10
RoBERTabase-NLI+first-last 75.44 69.85 29.40 53.83 57.12

strategy slightly underperforms the CLS and first-last pooling
strategies. In contrast, the max pooling strategy underperforms
all other pooling methods on all datasets and models, except
when using BERTbase and first-last on the NLI dataset, which
is similar to the results found by Reimers et al [12].

We also conduct experiments to evaluate the impact of
different pooling strategies on the unsupervised task. As
shown in Table IX, the max pooling demonstrates an average
improvement of 0.02 to 2.03 in comparison to other strategies,
while it performs the worst on the supervised tasks. The
pooling strategy has a significant impact on the PAWS dataset.
This is because the PAWS dataset contains a large number of
hard samples, which have high requirements for the learned
sentence embedding space. Furthermore, we find that the first-
last pooling strategy outperforms all other strategies on the
STSb and SICK-R datasets for the BERTbase-NLI models.
This is in contrast to the situation in the supervised task, where
first-last achieves the worst performance for the NLI dataset.

H. Cosine-similarity Distribution

To intuitively demonstrate the capability of CoSENT, we
illustrate the distribution of cosine similarity for the fine-

tuned BERT model using varying loss functions on the PAWS,
MRPC, PAWSX, and ATEC datasets in Fig. 5. We consistently
maintain a threshold ϵ of 0 for contrastive loss during all
evaluations. The PAWS, PAWSX, and ATEC datasets contain
numerous difficult negative samples, making it challenging
for the contrastive loss to differentiate them if the threshold
is not set to an appropriate level. Compared to the other
loss, CoSENT typically exhibits a more dispersed distribution,
leading to better performance on STS tasks. On the ATEC
dataset, contrastive loss and MSE loss tend to concentrate
around 0, as they drive the learning of the similarity of negative
sample pairs towards 0. This may not be suitable for handling
challenging samples.

I. Case Study

As a framework for learning sentence embeddings, CoSENT
can be applied to a wide range of natural language processing
tasks, such as sentence pair classification tasks, information
retrieval, and machine translation. To showcase the versatility
and effectiveness of CoSENT, we present a detailed case study
and report the results in Table X. We select SBERT as the
baseline and the raw BERTbase model for fine-tuning. We
select six English sentence pairs and four Chinese sentence
pairs from the PAWS and PAWSX datasets, respectively.

Both models succeed in sentence pairs 1 and 3, which
only have a slight difference in word order and phrasing.
In contrast, they fail in sentence 2. They judge “the Otago
region of New Zealand” to be different from “the New
Zealand region of Otago” but the difference in word order only
conveys a subtle difference in emphasis and doesn’t impact
the conveyed information. The former places the focus on the
specific region, Otago, within New Zealand, while the second
focuses on the country, New Zealand, and the specific region,
Otago, within it. The SBERT model struggles to accurately
distinguish sentence pairs 4 and 5, where the subject changes
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TABLE X: Case Study on both English and Chinese datasets. For each sample sentence pair, a comparison performance on the ground truth
and the prediction of the baseline model and CoSENT is presented. Predictions in red indicate incorrect assignments, while those in green
indicate correct ones.

Sentence pair 1 The NBA season of 1975 – 76 was the 30th season of the National Basketball Association.
The 1975 – 76 season of the National Basketball Association was the 30th season of the NBA.

Ground Truth: Equivalent baseline: Equivalent ours:Equivalent

Sentence pair 2 Taieri is a former parliamentary electorate in the Otago region of New Zealand, from 1866 to 1911.
Taieri is a former parliamentary electorate in the New Zealand region of Otago, from 1866 to 1911.

Ground Truth: Equivalent baseline: Unequivalent ours:Unequivalent

Sentence pair 3

The film was a commercial hit, and one of Sergio Sollima’s more successful films, and less political than the director’s earlier
Spaghetti Westerns.
The film was a commercial hit, and one of Sergio Sollima’s more political films, and less successful than the former spaghetti-
director’s westerns.

Ground Truth: Unequivalent baseline: Unequivalent ours:Unequivalent

Sentence pair 4 In 1900, Elizabeth married Waller Cowles, and her daughter Harriet was born in 1912.
Elizabeth Waller married Cowles in 1900, and their daughter Harriet was born in 1912.

Ground Truth: Unequivalent baseline: Equivalent ours:Unequivalent

Sentence pair 5 Abdul Rahman said Raouf will only survive if he goes into exile.
Abdul Rahman will survive only if he goes into exile.

Ground Truth: Unequivalent baseline: Equivalent ours: Unequivalent

Sentence pair 6

On July 30, 2012, it was announced that Corrêa should have a test with Middlesbrough FC after being recommended by Club
legend Juninho Paulista to manager Tony Mowbray.
On 30 July 2012 it was announced Corrêa would have a trial with Middlesbrough FC after being recommended to manager
Tony Mowbray by club legend Juninho Paulista.

Ground Truth: Equivalent baseline: Unquivalent ours: Equivalent

Sentence pair 7 还有具体的讨论，公众形象辩论和项目讨论。
还有公开讨论，特定档案讨论和项目讨论。

Ground Truth: Unequivalent baseline: Unequivalent ours: Unequivalent

Sentence pair 8 现有长期教师43 人，其中大多数教师是国家优秀艺术家。
有43 名常任教师，而且大多数教师都是该国著名的艺术家。

Ground Truth: Equivalent baseline: Unequivalent ours: Unequivalent

Sentence pair 9 Somatherapy（或Soma）是一种群体疗法，由威廉·赖希在20 世纪70 年代根据精神分析学家弗莱雷的研究创立。
Somatherapy（或Soma）是20 世纪70 年代由威尔海姆·赖希根据精神分析学家弗莱雷的研究创立的团体治疗。

Ground Truth: Equivalent baseline: Unequivalent ours: Equivalent

Sentence pair 10 Sculcoates 拥有一座图书馆、邮局、一个名为Beverley Road Baths 的游泳池、一所高中以及两所小学。
Sculcoates 有一间图书馆、一间邮局、一个叫做Beverley Road Baths 的游泳浴池、一所小学和两所高中。

Ground Truth: Unequivalent baseline: Equivalent ours: Unequivalent

due to variations in word order or the presence or absence of
certain words. Concretely, “Elizabeth and Waller Cowles” is
changed to “Elizabeth Waller and Cowles” in sentence pair
4, and “Raouf will survive” is modified to “Abdul Rahman
will survive” in sentence pair 5. On the other hand, CoSENT
can predict these sentence pairs accurately. In sentence pair
6, SBERT is misled by wording and format, while CoSENT
is successful. For the Chinese group, both models correctly
predict that sentence pair 7 is inequivalent. Sentence pair
7 describes the different types of discussions, as the first
sentence describes “specific discussion, public image debate”
and the second one describes “open discussion, specific file
discussion”. However, both models fail in predicting sentence
8, which conveys the same basic information and differs in
wording (long-term vs. full-time, and outstanding vs. famous).
CoSENT outperforms the baseline in sentence pairs 9 and 10.
It evaluates sentence pair 9 as equivalent because it only alters
the phrasing, and evaluates sentence pair 10 as inequivalent
because “one high school and two elementary schools” has
been transformed into “one elementary school and two high
schools”. Both judgments correspond to the ground truth,
while the baseline fails.

VI. CONCLUSION

Cosine similarity is a common measure for sentence embed-
dings, but directly optimizing it can lead to training failure.

Many works strive to design and optimize the encoders so
that their induced embedding space fits the cosine-similarity
metric. Although these works achieve satisfactory results,
they can result in confusion since the cosine function is not
involved in the training phase. In this article, we present
CoSENT, a novel, consistent, and adaptive sentence embed-
ding framework. Various experiments, including unsupervised
and supervised STS tasks for English and Chinese datasets,
as well as transfer tasks, demonstrate the effectiveness of
our work. CoSENT can be adaptively applied to different
types of datasets, e.g., NLI datasets, positive-negative datasets,
and scoring datasets. Additionally, we observe that CoSENT
converges faster, especially with a speed of 2 times on datasets
with hard samples. We expect and explore additional concepts
for integrating CoSENT with data enhancement to improve
performance. Furthermore, since CoSENT diverges from the
typical cross-entropy loss used in interaction-based models,
we can explore the use of model blending.
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