Graph-based Semi-Supervised Learning by Strengthening Local
Label Consistency

Chen Li Xutan Peng Hao Peng
BDBC, Beihang University The University of Sheffield Beihang University
Beijing, China Sheffield, United Kingdom Beijing, China
lichen@act.buaa.edu.cn x.peng@shef.ac.uk penghao@buaa.edu.cn
Jia Wu Lihong Wang Philip S. Yu
Macquarie University CNCERT University of Illinois at Chicago

NSW, Australia
jla.wu@mg.edu.au

Jianxin Li
BDBC, Beihang University
Beijing, China
lijx@act.buaa.edu.cn

ABSTRACT

Graph-based algorithms have drawn much attention thanks to their
impressive success in semi-supervised setups. For better model per-
formance, previous studies have learned to transform the topology
of the input graph. However, these works only focus on optimizing
the original nodes and edges, leaving the direction of augmenting
existing data insufficiently explored. In this paper, we propose a
novel heuristic pre-processing technique, namely Local Label Con-
sistency Strengthening (L2CS), which automatically expands new
nodes and edges to refine the label consistency within a dense sub-
graph. Our framework can effectively benefit downstream models
by substantially enlarging the original training set with high-quality
generated labeled data and refining the original graph topology. To
justify the generality and practicality of L?CS, we couple it with the
popular graph convolution network and graph attention network
to perform extensive evaluations on three standard datasets. In all
setups tested, our method boosts the average accuracy by a large
margin of 4.7% and consistently outperforms the state-of-the-art.
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1 INTRODUCTION

Numerous real-world data can be represented as graphs, e.g., so-
cial networks [15, 18], citation networks [12, 19, 29], protein net-
work [7], and knowledge graphs [13, 22]. In many cases, large-scale
annotated data is expensive to obtain. The so-called graph-based
Semi-Supervised Learning (SSL), which holds promise to bootstrap
applications even with limited supervision, has therefore attracted
increasing research interest. Different from the traditional sam-
ple independent scenarios, graph-based SSL models tend to mine
the structural relational information to boost effectiveness. Corre-
spondingly, some existing methods have shown that optimizing the
input graph structure is beneficial [23, 28]. However, generative
ways to refine the topology and the information propagation along
the edges are unexplored. In this paper, we propose to mitigate
these limitations by a new strategy which strengthens local label
consistency, thereby improving the model performance.
Specifically, earlier works develop the classical regularization
methods, which achieve SSL by smoothing features or model pre-
dictions over local neighborhoods using explicit regularization
schemes [2, 17]. Although this direction has been well studied,
a later thread of algorithms, namely graph convolution networks,
has demonstrated state-of-the-art performance and drawn much
attention [3, 11, 25]. By utilizing flexible aggregation strategies,
these models selectively fuse the local features of a graph into
the hidden representations of its target nodes. To further perform
downstream tasks, the hidden layers are coupled with specific task
layers [11, 25]. One common characteristic of these two lines of
models is that they both adopt the presence of smoothness in the
graph structure as a basic assumption. Recently, to better exploit
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annotated resources, researchers propose to modify the topology
of the input graph [1, 20, 28]. However, to our knowledge, all such
methods are limited within handling the existing graph topology.

Inspired by the discussion on the relationship between infor-
mation similarity within the same community and information
propagation [14, 28], we explore a novel research direction for
the first time, namely Local Label Consistency Strengthening (LCS).
Through generating some key high-quality nodes and edges, L2CS
improves the label consistency of the set of nodes that are struc-
turally closely related to guide more properly feature smoothing
on the graph. Specifically, L2CS first identifies dense subgraphs
through overlapping clustering algorithms. For each subgraph, by
jointly considering node attributes and edge links, it generates a
new node with high-quality attributes and a corresponding low-
entropy label predicted via the local labeled original nodes in the
given data. Lastly, L°CS connects generated nodes with their cor-
responding original nodes to facilitate information propagation,
yielding an updated graph. In addition, we find that this simple
pre-processing technique also enhances the class separability of
node attributes. Therefore, by producing a high-quality augmented
training set, LCS generally further renders the performance of
subsequent SSL models stronger.

To validate the practical usefulness of L2CS, we perform exten-
sive evaluations on the SSL benchmark with three standard datasets.
Coupled with two popular models (i.e., Graph Convolutional Net-
work (GCN) and Graph Attention Network (GAT)), our method
significantly improves the performance of the base algorithms and
consistently outperforms baseline models, including the state-of-
the-art. In summary, the contribution of this work is three-fold. (1)
This is the first study which expands the original graph topology
with both new nodes and edges to improve training. (2) By simu-
lating the generation process of graph signals, theoretically and
empirically we show that the data augmented by our method has
enhanced quality. (3) In the extensive evaluations of SSL on three
standard datasets, our method significantly boosts two popular base
algorithms and substantially sets new state-of-the-art scores.

2 OUR APPROACH

By implying the widely-adopted assumption of existing graph-
based SSL models, i.e., features exhibit smoothness along the graph
edges [14, 24, 26, 27], Yang et al. [28] propose a criterion to assess
training samples and given graph, which is highly correlated to the
subsequent modeling performance: Criterion ¢: The higher the
label consistency in the dense subgraph, the better the propagation of
feature along the edges. This criterion, which is intuitively evident
given the observed presence of graph node communities, has been
empirically validated by the experiments of [14, 28]. Therefore, one
of the ultimate objectives of our algorithm boils to: compared with
the original graph G, the augmented data should satisfy Criterion
% equally well, or even better.

As illustrated in Figure 1, to achieve this goal, in the first step, we
learn to partition the original graph into different dense subgraphs
(i.e., clusters) based on graph structure. Next, for each cluster, we
automatically generate a new node, whose attributes can be re-
garded as the multiple sampling results on attributes of existing
original nodes in the same dense subgraph. Considering the fact
that multiple sampling of distribution can stabilize its posterior

probability (i.e., Law of Large Numbers), compared with original
nodes, generated nodes naturally have better class separability in
terms of attributes. Consequently, while labels of some generated
nodes can be directly confirmed from the original nodes, the labels
of remaining generated nodes can also be roughly determined even
with a very simple classifier. Lastly, since most edges between gen-
erated nodes and their corresponding original nodes can maintain
label consistency, the updated graph G’ is deemed to have high
quality (cf. Criterion %) and has a much larger volume than the
original G, thus effectively benefiting subsequent algorithms.

2.1 Substructure-based Overlapping Clustering

In real-world scenarios, it is quite common that a node belongs to
multiple communities (dense subgraphs), e.g., an author publishes a
highly impacted paper on machine learning theory, which may get
cited by different communities such as computer vision and natural
language processing. Therefore, we identify subgraphs through
overlapping clustering, which is a well-studied topic in community
detection. Its workflow of overlapping clustering is two-phased.
First, it learns to cluster nodes within local regions. To handle nodes
belonging to multiple neighborhoods, it will create personas for
each cluster. Next, it performs a standard global clustering and
re-associates the personas whose sources are the same. We denote
the resulting set of dense subgraphs as S’.

2.2 Refinement based on Label Consistency

From the generative perspective of graph [16], original nodes in a
cluster Cp, € S’ become |Cp,| samples from the golden distribution
of attributes. Similarly, the attributes of the corresponding gener-
ated node x{ € X¢ can be generated through multiple samplings,
i.e., aggregating the attributes of original nodes as

(e}
T |Cml
where X¢ denotes the attribute matrix of all generated nodes, and
Y€ is for the label matrix, likewise. To determine the values of Y€,
we proceed with our discussions case by case.

“Winner takes all". We assume that the nodes in the same dense
subgraph share similar features/label. Hence, for each generated
node, if its original nodes are from the training set, i.e., have anno-
tated labels, then it can straightforward inherit the dominating (i.e.,
most numerous) label, such that
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where np (p =0,---, k) is the occurrence of the p-th kind of label
observed in Cp,. Y, = denotes the label matrix of this category
of generated nodes. In practice, we find applying the additional
constraint of nj > 2 can guarantee the reliability of assigned labels.
Data Augmentation. However, only a small portion (e.g., roughly
1/3 in the Cora dataset) of generated nodes can be directly labeled
using Eq. (2). For other generated nodes, we find that the label prop-
agation paradigm leads to unsatisfactory results, mainly due to two
reasons: on the one hand, real-world graphs (e.g., Cora, Citeseer,
and Pubmed) are often not fully connected, so many nodes cannot
receive the broadcast of training labels; on the other hand, long-
range dependencies may lead to under-smoothing. As theoretically
explained by [9], the stability of Eq. (1) will get strengthened if
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Figure 1: Overview of the L2CS pipeline. First, LCS learns to cluster nodes within local regions, and aggregates the internal node
features of the dense subgraph (i.e, cluster) to generate new nodes. Next, some original nodes in the training set can assign
their labels to correspond generated nodes, and then L2CS predicts more unlabeled generated nodes through self-learning. Last,
L2CS connects the generated nodes with the original nodes in the subgraph and augments the training set.

the number of samplings increases, and X¢ will thereupon exhibit
stronger class separability (of attributes). This property inspires
us to attempt a novel self-learning scheme to handle unlabeled
generated nodes. To begin with, we learn a simple binary classifier
based on the already-labeled generated nodes (i.e., the union of gen-
erated nodes labeled in the last paragraph and those labeled in the
previous iterations). Next, after predicting on-the-fly labels using
this classifier, we filter out the generated nodes whose labels are
assigned with probability lower than a given “labeling threshold”.
The above two steps are iteratively performed to produce enough
generated nodes with high-quality predicted labels.

2.3 Downstream Coupling

By merging high-quality labeled generated nodes into G (i.e., in-
serting generated nodes and connecting them with original nodes
in the corresponding cluster.), we obtain the updated graph G’ =
{V’,E’,X’, Y’} as shown in Figure 1. Apart from the significantly
enlarged volume, another outstanding advantage of G’ is that, for
each dense graph, as generated node becomes the common neigh-
bor of all its original nodes (i.e., they are linked with new edges),
the maximum distance between any two nodes in the same dense
subgraph becomes 2, i.e., long-range dependencies get generally
shortened. Finally, G’ can be fed into subsequent graph-based SSL
models, with the single aggregation operation for v; at depth [ be-
ing represented as hﬁ =o(Xjev,uin} ai,jWhﬂ_l) (hé is the hidden
representation of v; at the I-th layer, V; is the neighbor set of v;, W
is a learnable linear transformation matrix, o(+) is an element-wise
nonlinear activation function, and ¢; ; is the evaluation parameter
set in feature aggregation, e.g., the attention function of GAT).

3 EXPERIMENTS

Following previous studies [11, 25, 29], we demonstrate the ef-
fectiveness of L?CS on the widely-adopted semi-supervised node
classification benchmark.

3.1 Experimental Setup

Datasets. Our evaluation is based on three datasets (i.e., Cora, Cite-
seer, and Pubmed [29]) which are the de facto standards for assess-
ing graph-based SSL algorithms. They are all sampled via citation
networks, where nodes are for research publications and edges for
the citation. In Cora and Citeseer, node attributes are represented

as bag-of-words, while Pubmed uses TF-IDF weights. For a fair
comparison, we adopt the same splits as Yang et al. [29], i.e., 20
training samples per class, 500/1000 verification/test samples.
Baselines. To justify the generality of L2CS, we respectively inte-
grate it with GCN [11] and GAT [25] as they are the two most pop-
ular graph-based SSL methods in the GNN community. As shown
in Table 1, we select three recently-published approaches as our ref-
erence baselines [10, 27, 30]. In addition, we include six variants of
GCN [3, 4, 6, 16, 27, 28, 32], and three variants of GAT [6, 16, 24, 31].
Parameters. In practice, we find that our proposed L>CS is robust
towards configuration variations. Therefore, we exploit the default
setting for parameters without much fine-tuning. To be specific,
for overlapping clustering we select the Ego-Splitting algorithm [5,
21]), with the resolution set at 1.0. In the high-level information
diffusion step, we utilize the simple GBDT [8] as our classifier, with
alearning rate at 0.25, max depth at 3, and other parameters selected
as default. During all experiments, we terminate the training when
the verification accuracy no longer increases for 2K iterations. Test
scores based on the models and hyper-parameters with the best
verification performance are reported, and all the hyper-parameters
used are listed (the number of iterative diffusions and the labeling
threshold is 10 and 0.99, respectively).

3.2 Results Analysis

Table 1 reports the results of our baseline methods, base algorithms
(GCN and GAT), and L2CS-enhanced models (L2CS-GCN and L2CS-
GAT). To reduce randomness, we run each model for 10 independent
trials and calculate the average score and standard deviation. On
all the three datasets, L°CS-GAT consistently sets new state-of-
the-art performance, with margins of 0.6% to 3.3% compared with
the best baselines which are not coupled with L2CS. Before being
stacked with L2CS, the base GCN is 1.2% inferior to GAT on average;
after the data augmentation, L?CS-GCN still falls behind L?CS-GAT.
However, compared with other baseline methods, L?CS-GCN ranks
second on Citeseer and Pubmed and third on Cora, exhibiting strong
competitiveness. Please note that neither GCN nor GAT achieves
outstanding accuracies compared with their strong counterparts:
more concretely, even the original GAT cannot rank within the top
three (with L?CS-enhanced models excluded) on any dataset. This
fact emphasizes the substantial effectiveness of L>CS.



Table 1: Accuracy (%) of the classification benchmark. The
highest performance per dataset is highlighted in bold.

‘ Method Cora Citeseer Pubmed
SIG-VAE [10] 79.7 70.4 79.3
Reference CurvGN-n [30] 82.7+0.7 72.1£0.6 79.2+0.5
GIL [27] 86.2 74.1 83.1
Chebyshev [3] 81.2 69.8 74.4
TAGCN [4] 833 725 79.0
TO-GCN [28] 83.1 72.7 79.5
DGCN [32] 835 72.6 80.0
GCN-based | ConfGCN [27] 82.0+0.3 72.7+0.7 79.5+£0.5
LSM_GCN [16] 82.5+0.2 74.4+0.3 77.9+£0.4
GRAND_GCN [6] 84.5+0.3 74.2+0.3 80.0+0.3

GCN [11] 81.5 703 79.0

L2CS-GCN (Ours) 85.620.4 75.7+0.3 83.740.3

LSM_GAT [16] 82.940.3 73.120.5 77.6£0.7
GAT 25 +GAM [24]* 85.0 73.6 -

ADSF-RWR [27] 85.4+0.3 74.3+0.4 81.2+0.3

GAT-based | p AND GAT [6] 84.3+0.4 73.2+0.4 79.2+0.6

GAT [25] 83.040.7 72.5+0.7 79.0+0.3

L2CS-GAT (Ours) 87.640.5  76.7+0.4  84.3+0.3

Original Nodes

Generated Nodes

Cora Citeseer Pubmed

Figure 2: The visualization results of the attributes of the
original nodes and the generated nodes after the dimension
reduction by using t-sne.

When calculating the specific accuracy enhancement brought
by L?CS, we witness very significant 4.1% to 5.4% and 4.2% to 4.7%
increases for GCN and GAT, respectively. Put these increments in
the context: among all the other GCN-based approaches, the range
of performance gain over GCN is -4.6% to 4.1%; among all the other
GAT-based ones, it is -1.4% to 2.4% over GAT.

3.3 Ablation Analysis

In this section, we conduct some ablation analysis on the node
attributes of the generated nodes, the label consistency within the
updated subgraph, and the performance of each component.

To begin with, in Figure 2, we visualize original nodes and gen-
erated nodes with attributes as axes. While the former seem more
crisscross, the latter exhibit clearer “community borders", demon-
strating that generated nodes have better class separability.

Next, to assess the label consistency within a dense subgraph,
we design a straightforward experiment, which counts the percent-
age of dominating labels in each cluster partitioned by L?CS. We
evaluate the original G and the updated G’ together and plot the
occurrence densities of dominating label proportion in Figure 3. On
all datasets tested, compared with the curves in G, those in G’ have

Cora Citeseer Pubmed
D 06 o 0.6
3061 0.6 4 original graph
v updated graph
3 04 0.44 P graph | 10.4
(]
%5 021 0.24 0.2
:H:O.O‘, T T 0'0‘1 T T 0‘0‘1 T T
0.0 0.5 1.0 00 0.5 1.0 00 0.5 1.0

The proportion of dominating labels in cluster
Figure 3: Distribution of per cluster dominating label pro-
portion. X-axes denote the proportion of nodes with the
dominating label in each cluster. Areas closer to the right
indicates higher label consistency in the cluster.

Table 2: The results of ablation experiments.

Method | Clustering Augmentation Cora Citeseer ~ Pubmed
Overlapping - 83.1£0.4 729404  82.5+0.5
i + + +

L2CS-GCN Overlappmg v 85.6+0.4 75703  83.7+0.3
Non-overlapping - 82.8+0.4 71.5x0.3  80.9+0.4
Non-overlapping v 84.7+0.5 75.1+0.3  83.3£0.4

Overlapping - 84.2+0.5 739404  82.9+0.4

L2CS-GAT Overlapping v 87.6+£0.5 76.7+0.4  84.3£0.3

82.8+0.4 73.1+£0.3 82.3+0.4
85.9+0.5 75.8+0.3 84.1+0.4

Non-overlapping -
Non-overlapping

higher peaks and are more right-gathered, implying that a larger
proportion of nodes with subgraphs share the same labels.

Finally, we remove the components in L2CS and perform ablation
experiments. The results are shown in Table 2. We find that the
effect of overlapping clustering components can obviously achieve
better results than non-overlapping ones. We think this is mainly
due to the existence of mass fuzzy nodes in the graph, whose class
separability of their attributes is weak (as shown in Figure 2). If
such nodes are forced to belong to only a certain cluster, it is easy
to introduce noise in the cluster or cause missing information in
other clusters. In addition, as the augmented nodes exhibit higher
quality and the added edges improve local label consistency, our
data augmentation leads to huger performance gains.

4 CONCLUSION

In this paper, we propose a simple yet effective L2CS framework,
which boosts the performance of graph-based SSL models by aug-
menting training resources. Aiming to strengthen the label simi-
larity within dense subgraphs, L°CS generates high-quality nodes,
which also exhibit refined class separability of attributes. Results
of extensive evaluations indicate that this generic pre-processing
technique can dramatically enhance the base algorithms and further
outperform state-of-the-art baselines. Followup experiments and
analyses present more insights regarding the superiority of L>CS.
In the future, we will test L2CS in more setups, as well as explore
other novel graph augmentation strategies.
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