
Hyperbolic Continuous Structural Entropy For Hierarchical Clustering
Guangjie Zeng1, Hao Peng1, Angsheng Li1, Li Sun2, Chunyang Liu3, Shengze Li4, Yicheng Pan1*,

Philip S. Yu5

1School of Computer Science and Engineering, Beihang University, China
2School of Control and Computer Engineering, North China Electric Power University, China

3Didi Chuxing, China
4Academy of Military Science, China

5Computer Science, University of Illinois Chicago, USA
{zengguangjie, penghao, angsheng, yichengp}@buaa.edu.cn, ccesunli@ncepu.edu

liuchunyang@didiglobal.com, lsz86591989@163.com, psyu@uic.edu

Abstract

Hierarchical clustering is a fundamental machine-learning
technique for grouping data points into dendrograms. How-
ever, existing hierarchical clustering methods encounter two
primary challenges: 1) Most methods specify dendrograms
without a global objective. 2) Graph-based methods often ne-
glect the significance of graph structure, optimizing objec-
tives on complete or static predefined graphs. In this work,
we propose Hyperbolic Continuous Structural Entropy neu-
ral networks, namely HypCSE, for structure-enhanced con-
tinuous hierarchical clustering. Our key idea is to map data
points in the hyperbolic space and minimize the relaxed con-
tinuous structural entropy (SE) on structure-enhanced graphs.
Specifically, we encode graph vertices in hyperbolic space us-
ing hyperbolic graph neural networks and minimize approx-
imate SE defined on graph embeddings. To make the SE ob-
jective differentiable for optimization, we reformulate it into
a function using the lowest common ancestor (LCA) on trees
and then relax it into continuous SE (CSE) by the analogy
of hyperbolic graph embeddings and partitioning trees. To
ensure a graph structure that effectively captures the hierar-
chy of data points for CSE calculation, we employ a graph
structure learning (GSL) strategy that updates the graph struc-
ture during training. Extensive experiments on seven datasets
demonstrate the superior performance of HypCSE.

Introduction
Hierarchical clustering is a classic unsupervised machine-
learning technique that groups data points into nested clus-
ters organized as a cluster tree known as a dendrogram (Ran
et al. 2023). Unlike partitioning clustering, which divides
data points into a predefined number of clusters, hierarchi-
cal clustering captures relationships between data points at
a finer granularity through nested clusters, without requir-
ing the number of clusters to be specified in advance. It
has broad applications including image analysis (Yan et al.
2021), bioinformatics (Chen and Li 2023), and medicine
(Ciaramella, Nardone, and Staiano 2020).

Despite their success, conventional hierarchical cluster-
ing algorithms specify dendrograms procedurally (Chier-

*Corresponding author.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

chia and Perret 2019). Among them, agglomerative meth-
ods (Gower and Ross 1969) iteratively merge closest cluster
pairs, while divisive methods (Moseley and Wang 2017) iter-
atively split clusters by flat clustering. Thus, they encounter
Challenge 1: most of them lack a global objective and of-
ten lead to suboptimal dendrograms. Recently, Dasgupta’s
cost (Dasgupta 2016) and its extensions (Cohen-Addad et al.
2019; Wang and Wang 2020) have been proposed to evaluate
dendrogram quality globally. From an information-theoretic
perspective, SE (Li and Pan 2016; Li 2024) measures den-
drogram quality by quantifying the minimum length of ran-
dom walks on graphs. These cost functions facilitate the
analysis of algorithms and the comparison of dendrograms.

Based on the optimization algorithms for cost functions
they adopted, hierarchical clustering methods can be divided
into discrete and continuous methods. Continuous meth-
ods (Monath et al. 2017, 2019; Chierchia and Perret 2019;
Chami et al. 2020; Zügner et al. 2022) relax a given cost
function to be differentiable and perform optimization using
gradient-based techniques. Their chosen cost functions in-
clude Dasgupta’s cost (Dasgupta 2016) and Tree-Sampling-
Divergence (Charpentier and Bonald 2019), both of which
are defined on graphs. Compared to discrete methods, con-
tinuous methods offer flexibility since they can be integrated
into commonly used end-to-end learning pipelines. How-
ever, existing continuous methods optimize objectives on
complete graphs (Chami et al. 2020) or predefined graphs
(Chierchia and Perret 2019; Zügner et al. 2022). Complete
graphs can be cluttered with trivial edges from data noise,
while predefined graphs are static and unable to learn from
data features during training. As a result, they encounter
Challenge 2: they may not fully utilize data features or cap-
ture hierarchies by optimizing objectives on static graphs.

To address the aforementioned challenges, we introduce
continuous SE (CSE) in hyperbolic space for hierarchical
clustering. CSE is defined on a graph and its hyperbolic
space embedding, measuring the quality of the graph em-
bedding in capturing the graph’s hierarchy. We formulate the
SE objective as the weighted average of LCAs’ volumes of
graph vertices. In hyperbolic space, graph embeddings can
be analogous to partitioning trees (Chami et al. 2020). We
quantify the CSE of graph embedding by approximating the

Graph embedding

Graph
encoding

partitioning tree

i
j

k

l
a

child?
child?

Graph

Tree
decoding

i

j k

la

Figure 1: HypCSE overview. Graphs are encoded as hyper-
bolic embeddings by minimizing CSE. Partitioning trees are
decoded from embeddings for hierarchical clustering.

volumes of LCAs on the analogous partitioning tree. Unlike
DSI in LSEnet (Sun et al. 2024), which relaxes SE by level-
wise assignment for flat partitioning clustering, our CSE re-
laxes SE by analogizing hyperbolic graph embeddings and
binary partitioning trees for hierarchical clustering. Next, we
optimize the graph embedding for hierarchical clustering by
minimizing the CSE, as depicted in Figure 1. Given a con-
structed graph from input data, we encode it as a graph em-
bedding in hyperbolic space and optimize the corresponding
CSE via gradient descent. The optimized graph embedding
is then decoded as a binary partitioning tree, serving as the
hierarchical clustering result. Furthermore, we design a Hy-
perbolic CSE Neural Network (HypCSE) for CSE optimiza-
tion on adaptive graphs updated during training. To avoid
the use of predefined, inappropriate graphs, we employ a
GSL strategy to learn more informative graphs. We construct
an anchor graph as the anchor view and learn a new graph
as the learner view, applying contrastive learning to guide
the graph learner. The anchor graph is updated according to
the learner graph through bootstrapping. This strategy helps
learn anchor graphs with clear hierarchies and high discrim-
ination among classes for CSE optimization.

The main contributions are summarized as follows: (1)
We devise CSE by relaxing discrete SE to measure the qual-
ity of graph embeddings in hyperbolic space for capturing
hierarchy. (2) We propose HypCSE via CSE for hierarchical
clustering, where a GSL strategy is adopted to learn better
graphs for CSE optimization. (3) Extensive experiments on
7 standard datasets demonstrate the superiority of HypCSE.

Preliminaries
Graph-Based Hierarchical Clustering
For a dataset X with n data points, graph G represent-
ing pairwise similarities (or dissimilarities) is denoted as
G = (V,E,W), where V = {v1, v2, . . . , vn} is the set of
vertices corresponding to data points in X, E is the set of
edges, and W consists of edge weights measuring pairwise
similarities (or dissimilarities) between data points. A hier-
archical clustering algorithm generates a dendrogram from
X along with G. This dendrogram is an unweighted rooted
tree T with n leaves corresponding n data points and inter-
nal nodes corresponding to nested clusters. For two leaves
Ti and Tj in T , their LCA is denoted as Ti ∨ Tj .

Hyperbolic Space
Hyperbolic space is a space with negative curvature that
has advantages in modeling hierarchical structure compared
to flat Euclidean space (Peng et al. 2021; Sun et al. 2024,
2025b,a). Among the several isomorphic models of hy-
perbolic space, two commonly used ones are the Lorentz
model and the Poincaré model. Specifically, a d-dimensional
Lorentz model Lκ,d with curvature κ represents a manifold
embeded in the d + 1 dimensional Minkowski space, de-
fined as Lκ,d = {x ∈ Rd+1 : ⟨x,x⟩L = 1

κ}, where ⟨, ⟩L is
the Minkowski inner product defined as ⟨x,y⟩L = xTRLy,
RL ∈ R(d+1)×(d+1) is a diagonal matrix with entries of 1s
except for the first one being −1. Lorentz distance between
points x and y is defined as dLarcosh(−⟨x,y⟩). Lorentz
norm of x is defined as ∥x∥L =

√
⟨x,x⟩L. A d-dimensional

Poincaré model Bκ,d with curvature κ is defined as Bκ,d =
{u ∈ Rd : ∥u∥ < 1

κ}, which can be given by project-
ing each point of Lorentz model Lκ,d onto the hyperplane
x0,d = 0. For a point x = (x0, x1, . . . , xd) ∈ Rd+1 in
the Lorentz model, the transformed point u in the Poincaré
model is given by u = (x1,...,xd)

1+x0
.

Methodology
Definition 1 (Structural Entropy ((Li and Pan 2016))).
Given an undirected weighted graph G = (V,E,W) and
an associated rooted tree T , the SE of G on T is defined as

HT (G) =
∑

α∈T ,α ̸=λ

HT (G;α) =
∑

α∈T ,α̸=λ

− gα
VG

log2
Vα
Vα−

,

(1)
whereHT (G;α) is the SE assigned to an non-root node α in
T . The rooted partitioning tree T of G forms a hierarchical
clustering of data points. Each tree node α ∈ T is associated
with a vertex set Tα, where the root node λ is associated
with Tλ = V and each leaf node ν is associated with Tν

containing only one vertex in V . For each non-leaf node α ∈
T , the child nodes of α are associated with disjoint vertex
subsets, whose union is Tα. The parent node of α is denoted
as α−. The notation gα is the cut, i.e., the sum of graph edge
weights with exactly one endpoint in Tα. Notations Vα and
VG are the volumes, i.e., the sum of node degrees in Tα and
TG, respectively. The SE of graph G is the minimum one
among all possible partitioning trees, which is defined as

H(G) = min
T
HT (G), T ∗ = argT minHT (G), (2)

where T ∗ is the optimal partitioning tree that best eliminates
uncertainty in G by characterizing the hierarchical topology.
Lemma 2 (Minimum Structural Entropy ((Zhang, Wang,
and Li 2021))). Given an undirected weighted graph G, a
binary partitioning tree T ∗ of the minimum structural en-
tropy exists.

Lemma 2 reveals that we can find the minimum SE of G
by traversing all possible binary partitioning trees.
Lemma 3 (Connection to Graph-Based Clustering-Ap-
pendix A.1). Given an weighted undirected graph G =
(V,E,W), ρT (G) = HT (G)/H1(G) is the normalized

SE of G on any possible rooted partitioning tree T , and
Φ(G) = minS⊆V

cut(S)
min{VS ,VV \S} is the graph conductance,

the following inequality holds:

ρT (G) ≥ Φ(G). (3)

The proof is given in Appendix A. We note that graph
conductance is a well-defined metric for assessing clustering
quality on graphs and has been proven effective for graph-
based hierarchical clustering (Cheng et al. 2006). Since the
one-dimensional SEH1(G) is a constant for a given G, and
it serves as an upper bound for graph conductance (Lemma
3), minimizing SE in Definition (1) is likely to also reduce
graph conductance. Furthermore, SE evaluates the quality
of the partitioning tree globally, making it a suitable global
objective for graph-based hierarchical clustering.

Continuous SE in Hyperbolic Space
We address Challenge 1 by introducing CSE as the global
objective in HypCSE. Both geodesics in hyperbolic space
and shortest paths in trees can be viewed as paths with the
shortest distances between points. This relationship allows
us to derive hyperbolic LCA analogous to the discrete LCA
(Chami et al. 2020). To achieve continuous optimization for
HypCSE, we reformulate SE based on LCA and derive a
differentiable objective CSE by the hyperbolic LCA.

Definition 4 (Structural Entropy via LCA). Given an undi-
rected weighted graph G = (V,E,W) and an associated
rooted tree T , the SE of G on T can be defined as

HT (G) =
2

V(G)

∑
(vi,vj)∈E

Wij log2 VTi∨Tj

− 1

V(G)

∑
vi∈V

VTi
log2 VTi

,

(4)

where Wij is the edge weight between pair (vi, vj), Ti is the
leaf node in T that contains only one vertex vi, and VTi∨Tj

is the volume of the LCA of leaf pair (Ti, Tj). For a given
graph G, the values of the second term in Eq. (4) are the
same for all partitioning trees.

Theorem 5 (Equivalence ((Pan, Zheng, and Fan 2021))).
HT (G) in Def. 4 is equivalent to Eq. (1) in Def. (1).

LCA Volume in Hyperbolic Space. According to Eq. (4),
the calculation of HT (G) requires finding the LCA of leaf
node pairs and calculating the volume. Given the partition-
ing tree T , the LCA Ti ∨ Tj of a leaf pair (Ti, Tj) is the
node on the shortest path between them and closest to the
root λ. We have VTi∨Tj =

∑
vk∈V VTk

I[{Tk|Ti, Tj}], where
I[·] is the indicator function and {Tk|Ti, Tj} means Tk is a
descendant of Ti ∨ Tj . When leaf nodes Ti and Tj (corre-
sponding to graph vertices vi, vj) are embedded in hyper-
bolic space, denoted as zi and zj , the shortest path between
them is geodesic. Their hyperbolic LCA zi ∨ zj can be
defined as the point closest to the origin on this geodesic.
The hyperbolic LCA volume is calculated as Vzi∨zj

=∑
vk∈V Vzk

I[{zk|zi, zj}], where {zk|zi, zj} means zk is a
descendant of zi ∨ zj .

Lemma 6 (Descendant via LCA-Appendix A.2). For leaves
Ti, Tj and Tk in rooted tree T , Tk is the descendant of Ti∨Tj
if and only if both the following statements hold:

dλ(Ti ∨ Tj) ≤ dλ(Ti ∨ Tk), dλ(Ti ∨ Tj) ≤ dλ(Tj ∨ Tk),
(5)

where dλ(Ti) is the distance between Ti and the root λ in T .

Lemma 7 (Distance of geodesic to origin (Chami et al.
2020)). For two points (x,y) ∈ B1,d where x ∨ y is the
point on the geodesic connecting x and y that minimizes the
distance to the origin o, let r be the symmetric point to x
with respect to the circle at infinity, and oref be the symmet-
ric point to o with respect to the geodesic. We have:

dBo (x ∨ y) =
artanh(∥oref∥22)

2
,

where oref =
∥r∥22 − 1

∥oinvref − r∥22
· (oinvref − r) + r,

oinvref =
2x⊤ · yinv

∥x∥22
· x− x, r =

x

∥x∥22
,

and yinv =
∥r∥22 − 1

∥y − r∥22
· (y − r) + r.

(6)

CSE objective function. Given a graph G along with the
partitioning tree T , minimizing the SE is equivalent to min-
imizing the following cost function:

CT
G =

∑
(vi,vj)∈E

Wij log2

(
VTi

+VTj
+

k ̸=i,j∑
k∈V

VTk
I[{Tk|Ti, Tj}]

)
.

(7)
Term I[{Tk|Ti, Tj}] is the non-differential term in Eq. (7),
which is an indicator for whether Tk is a descendant of
Ti ∨ Tj . According to Lemma 6, this indicator can be de-
termined by the relationship among hyperbolic distances
dλ(Ti ∨ Tj), dλ(Ti ∨ Tk), and dλ(Tj ∨ Tk). The indica-
tor outputs true when only dλ(Ti ∨ Tj) is the smallest one.
When leaves ZB = {z1, ..., zn} in T are embedded in the
hyperbolic space of Poincaré model, the distance of LCA to
the root dλ(Ti ∨ Tj) can be approximated as the distance of
geodesic to the origin dBo (zi ∨ zj), and the indicator can be
approximated by a softmax function. CSE objective is then:

LZB
cse(G) =

∑
(vi,vj)∈E

Wij log2(Vzi + Vzj + V̂zi∨zj), (8)

V̂zi∨zj
=

∑
k∈V,k ̸=i.j

(Vzk
, 0, 0) · σt1

(
soij , s

o
ik, s

o
jk

)⊤

, (9)

where σt1(·) is the scaled softmax function: σt1(x)i =
exi/t1/

∑
j e

xj/t1 , soij = r1 − dBo (zi ∨ zj), and t1 and r1
are hyperparameters.

Hyperbolic Hierarchical Clustering
Hereafter, we elaborate on achieving hierarchical clustering
in hyperbolic space by minimizing CSE objective LZ

cse. As
depicted in Figure 2 (I), the hyperbolic hierarchical clus-
tering module consists of three steps: graph construction,

Graph
learner g

Hyperbolic
encoder f

Hyperbolic
encoder f

projector h

projector h

Contrastive loss

CSE loss

Input data Anchor graph Ga

Learner graph Gl

Augmented graph Ĝa

Augmented graph Ĝl

Update

Partitioning tree

Tree decoding

Pa

Pl

I. Hyperbolic hierarchical clustering module

II. GSL module

Data
augmentation

Share
weights

Share weights

cse

con

Figure 2: Framework of HypCSE. (I) In the hyperbolic hierarchical clustering module, we construct an anchor graph Ga from
the input data, encode it using f(·), and decode it into a binary partitioning tree for hierarchical clustering. (II) In the GSL
module, we learn a leaner graph Gl using graph learner g(·), update Ga from Gl, and guide g(·) via contrastive learning.

hyperbolic encoding, and partitioning tree decoding. Given
that CSE is defined on graphs, for input data X containing n
data points, we construct a similarity graph G and sparsify
it to eliminate noise in data. First, we construct a weighted
undirected graph G = (V,E,W,X) from X. In practice,
we measure the similarity between data points by Gaussian
kernel with kernel width σ = 1 as edge weights and sparsify
G by retaining the top k = 10 edges of each vertex. Next, we
encode G via the Lorentz Convolution LConv (Chen et al.
2021) into an embedding Z in hyperbolic space, and min-
imize LZ

cse via gradient descent optimization. This embed-
ding Z has a close correspondence to tree metrics (Sarkar
2011), where each vertex embedding zi corresponds to a tree
leaf and LCA of leaves form the partitioning tree (Chami
et al. 2020). Finally, we heuristically decode Z into a binary
partitioning tree for hierarchical clustering.
Hyperbolic graph embedding. Given a constructed at-
tributed graph G = (V,E,W,X), we encode it into a hy-
perbolic embedding Z ∈ Lκ,d via LConv (Chen et al. 2021).
Two key components of LConv are the Lorentz linear layer
LLinear and the Lorentz attention-based aggregation layer
LAgg. For a graph vertex vi with feature xi, its linear trans-
form is defined as follows:

LLinear(xi) =

[√
∥ϕ(Θxi,b)∥2 − 1

κ

ϕ(Θxi,b)

]
, (10)

where Θ and b are parameters, and ϕ is an operation func-
tion. The aggregation of xi is defined as follows:

wij =
exp(− 1√

dim(xi)
d2L(qi,kj))∑n

l=1 exp(−
1√

dim(xi)
d2L(qi,kl))

,

LAgg(xi) =

∑
vj∈N (vi)

wijvj
√
−κ|∥

∑
vl∈N (vi)

wilvl∥L|
,

(11)

where dim(xi) is the dimension of xi, N (vi) is the neigh-
borhood of vertex vi in G, qi, ki and vi are row vectors

in the query set Q, key set K, and value set V, respectively.
The Lorentz convolution layer is defined as LConv(X|G) =
LAgg(LLinear(X)) ∈ Lκ,d. In our Hyperbolic encoder
f(·), we stack 3 layers of LConv to obtain the Lorentz
embedding ZL of G. Afterwards, we transform ZL into
Poincaré embedding ZB to facilitate LZ

cse minimization.
Hyperbolic tree decoding. To minimize SE, conventional
algorithms use discrete optimization (Li and Pan 2016; Pan,
Zheng, and Fan 2021) to output discrete encoding trees that
best characterize the uncertainty of the hierarchical topol-
ogy of graphs. HypCSE, however, minimizes the approxi-
mate CSE of graphs by optimizing Lcse on hyperbolic graph
embeddings rather than explicit trees. For the Poincaré em-
bedding ZB = {z1, ..., zn} encoded by LConv, we find a
binary tree by a Single Linkage clustering-like (Gower and
Ross 1969) decoding algorithm (Algorithm 1). We set each
data point zi as a cluster (tree leaves) and iteratively merge
the two closest clusters Cα and Cβ into a new cluster. The
closeness of clusters is defined as:

closeness(Cα, Cβ) = min
zi∈Cα,zj∈Cβ

(do(zi ∨ zj)). (12)

To help tree leaves separate in the Poincaré disk, we nor-
malize their embeddings to lie on the hyperbolic diame-
ter (Chami et al. 2020). We merge clusters until all clus-
ters are merged into one binary partitioning tree. With K-
nearest neighbor graph construction and minimum spanning
tree trick (Appendix B.2), the time complexity of Algorithm
1 can be reduced to O(n log n).

Graph Structure Learning
Minimizing SE on the constructed graph G guides the hy-
perbolic encoder f(·) in embedding G. However, we still en-
counter Challenge 2: optimization on the heuristically con-
structed static graph G neglects the significance of graph
structure and overlooks the information in the original in-
put data. To address this issue, we adopt a GSL technique

Algorithm 1: Tree decoding given embedding ZB

1: Input: Embeddings of vertices ZB = {z1, ..., zn};
2: Output: Binary partitioning tree T .
3: Initialize T to contain leaves {z1, ..., zn} and root λ
4: Set each data point zi as a separate cluster Ci = {zi}
5: Calculate the closeness of all cluster pairs
6: while number of clusters > 2 do
7: Merge (Cα, Cβ) into a new cluster Cγ = Cα ∪ Cβ

conditioned on argminα,β{closeness(Cα, Cβ)}
8: for each remaining cluster Cδ do
9: Calculate the closeness between Cγ and Cδ

10: end for
11: end while
12: Set the remaining two clusters as the children of λ
13: return T (which is a binary tree)

(Liu et al. 2022) guided by contrastive learning in hyperbolic
space to learn a better graph structure for SE minimization.
As depicted in Figure 2 (II), the GSL module consists of two
steps: graph learning and contrastive learning, as follows.
Graph Learning. We take the constructed graph G =
(V,E,X) as the anchor graph Ga = (V,Ea,X), which pro-
vides stable guidance for GSL. To learn graph structure from
X, we generate a learner graph Gl via a GSL encoder. First,
we apply a graph learner g(·) to learn vertex embeddings
E = g(X, Ea) for learner graph construction. Next, we con-
struct the affinity matrix Al of Gl by calculating the simi-
larities between pairs of vertex embeddings. We then select
p edges with the highest weights connected to each vertex to
form the learner graph edge set El, resulting in the learner
graph Gl = {V,El,X}. To facilitate a more informative an-
chor graph Ga, we update its edge set Ea using El as:

Ea ← Sτ (Ea) + S1−τ (El), (13)

where τ ∈ (0, 1] is the decay rate, and Sτ (·) represents a
random sampling operator with rate τ . We choose a large
τ and update Ga after each epoch, allowing it to gradually
assimilate new and eliminate erroneous information. Graph
Ga is then used to calculate LZ

cse(Ga) in Eq. (8).
Contrastive Learning. We adopt contrastive learning to
guide the graph learner g(·) and learn more discriminative
vertex features. After obtaining the anchor graph Ga and
the learner graph Gl, we perform data augmentation by ran-
domly removing edges and masking vertex features. These
graphs are then embedded in hyperbolic space as Za and
Zl by the hyperbolic encoder f(·). These embeddings are
passed to a projector h(·) with 2 layers of LLinear:

Pa = h(Za), Pl = h(Zl). (14)

Contrastive learning aims to learn representations that can
differentiate between similar and dissimilar data points. It
usually builds upon similarities between data point represen-
tation pairs (Chen et al. 2020). Unlike representations in Eu-
clidean space, the similarities between vertex features in this
context are difficult to define. Motivated by (Ge et al. 2023),
we instead minimize the hyperbolic distance of two views
from the same vertex and maximize the distance from dif-
ferent vertices. For two representations Pa = {p1

a, . . . ,p
n
a}

and Pl = {p1
l , . . . ,p

n
l }, the hyperbolic contrastive loss is

calculated as follows:

Lcon =
1

2n

n∑
i=1

[
L(pi

l,p
i
a) + L(pi

a,p
i
l)
]
,

L(pi
l,p

i
a) = − log

exp
{
[r2 − dL(p

i
l,p

i
a)]/t2

}∑n
k=1 exp

{
[r2 − dL(pi

l,p
k
a)]/t2

} ,
(15)

where r2 and t2 are hyperparameters.

Overall Framework
We apply several scalability strategies to improve HypCSE’s
efficiency, reducing the time complexity to O(n log n) (Ap-
pendix B). To generate more balanced partitioning trees, we
ensure that the learned leaf embeddings in ZL are scattered
around the origin by minimizing the distance between the
centroid of leaves and the origin. We introduce the centroid
loss Lcen based on Lorentz distance (Law et al. 2019) as:

Lcen = dLo

(∑n
j=1 zj√

−κ|∥
∑n

i=1 zi∥L|

)
, (16)

where dLo (zi) is the distance zi to origin in Lorentz model.
In summary, the overall objective is formulated as:

LHypCSE = Lcse + η1Lcon + η2Lcen, (17)

where the hyperparameters η1 and η2 are simply set as 1.

Experiments
Experimental Setup
We adopt two metrics, including Dendrogram Purity (DP)
(Heller and Ghahramani 2005; Chami et al. 2020) and Struc-
tural Entropy (SE) (Li and Pan 2016), for hierarchical clus-
tering performance evaluation. DP is a holistic measure of
partitioning trees, defined as the average purity score of
LCAs of leaf pairs with the same ground truth labels. SE
of a partitioning tree and its corresponding graph quantifies
the amount of uncertainty remaining in this graph, where
a lower SE indicates a higher quality of the tree, eliminat-
ing more uncertainty in this graph. We calculate the SEs
of the partitioning trees generated by all algorithms in the
constructed anchor graphs without performing updates. In
HypCSE, the hyperbolic encoder and projector are based
on the Lorentz model with curvature κ = −1 and opti-
mized via Riemannian Adam (Becigneul and Ganea 2019)
in Geoopt (Kochurov, Karimov, and Kozlukov 2020), while
the GSL encoder is in Euclidean space and optimized via
Adam (Kingma 2014). We consistently set t1 = 1000,
r1 = 2, t2 = 1, and r2 = 0, across all datasets, with the
sole exception of PenDigits, for which the temperature hy-
perparameters are t1 = 1 and t2 = 1000. The default value
for τ is 0.9999. Further implementation details are in Ap-
pendix D. We conduct all experiments 5 times and report
the mean values. Source code is available at GitHub1.
Datasets and Baselines. We conduct experiments on 7 clus-
tering datasets from the UCI Machine Learning Reposi-
tory (Markelle, Rachel, and Kolby 2024), whose size ranges

1https://github.com/SELGroup/HypCSE

Methods Zoo Iris Wine Br. Cancer OpticalDigits Spambase PenDigits
DP↑ SE↓ DP↑ SE↓ DP↑ SE↓ DP↑ SE↓ DP↑ SE↓ DP↑ SE↓ DP↑ SE↓

SingleLinkage 97.6 2.037 81.2 3.483 67.9 3.909 85.1 4.977 73.3 2.839 58.9 7.180 70.0 6.125
BKM 64.2 2.179 82.4 3.939 86.1 3.698 95.7 5.057 50.8 3.364 65.6 6.898 69.1 5.135
HDBSCAN 96.4 2.357 76.6 4.161 53.5 4.680 83.3 5.617 58.5 3.710 57.8 8.011 64.1 7.478
HCSE 97.3 1.929 89.7 3.593 71.1 3.819 94.2 4.319 81.5 3.011 55.2 6.599 76.9 6.877
SpecWRSC 95.4 2.228 83.2 3.172 93.5 3.441 95.1 4.512 85.9 2.900 55.1 8.817 65.3 7.190
DPClusterHSBM 93.6 2.264 82.9 2.997 89.5 3.404 92.9 4.169 81.0 2.517 61.0 5.194 not converge

UFit 93.3 2.496 81.5 3.236 78.9 3.670 95.0 4.318 69.7 3.186 59.9 6.737 70.0 6.386
HypHC 96.8 2.010 76.0 3.485 88.7 3.692 96.5 5.549 33.5 4.468 75.4 8.895 11.7 10.69
FPH 89.9 2.227 85.3 3.806 92.8 3.102 92.6 3.581 81.0 5.707 54.8 7.660 69.6 8.192
HypCSE 97.9 1.822 95.1 2.957 93.9 3.496 96.8 4.342 86.4 2.336 75.5 6.668 81.4 4.704

Table 1: Hierarchical clustering quality measured in DP (%) and SE. Bold: the best and underline: the runner-up performance.

Base GL CL Zoo Iris Wine Br. Opt. Spam.

✓ 97.8 89.7 88.8 96.0 86.2 70.1
✓ ✓ 97.8 89.7 88.8 96.5 86.3 72.1
✓ ✓ 97.7 94.1 93.4 96.6 85.9 75.4
✓ ✓ ✓ 97.9 95.1 93.9 96.8 86.4 75.5

Table 2: Experimental results (DP %) of ablation study.

from 101 to 10,992. We compare HypCSE against 6 discrete
hierarchical clustering methods, including SingleLinkage
(Gower and Ross 1969), BKM (Moseley and Wang 2017),
HDBSCAN(McInnes et al. 2017), SE-based Hierarchical
Clustering (HCSE) (Pan, Zheng, and Fan 2021), SpecWRSC
(Laenen, Manghiuc, and Sun 2023), and DPClusterHSBM
(Imola et al. 2023). We also compare HypCSE against 3
continuous methods, including UFit (Chierchia and Perret
2019), HypHC (Chami et al. 2020), and FPH (Zügner et al.
2022). We adopt the same graphs as the proposed HypCSE
for HCSE, SpecWRSC, and FPH since they are defined on
graphs and assume the graphs are given. We adopt the graph
construction methods in the original papers for other graph-
based methods, i.e., DPClusterHSBM, UFit, and HypHC.

Hierarchical Clustering Quality
In Table 1, we report the performance of discrete and contin-
uous methods for hierarchical clustering across 7 real-world
datasets. HypCSE outperforms its discrete baseline HCSE
in both metrics and achieves the best performance in DP
across all datasets. This outcome verifies that the continu-
ous optimization of a relaxed CSE objective in HypCSE is
effective for hierarchical clustering. Regarding the SE met-
ric, HypCSE achieves the best performance on 4 datasets
and runner-up performance on 1 dataset. DPClusterHSBM
achieves top-tier SE performance with the lowest SE on
Spambase and the second lowest on 4 datasets. However,
the SE metric is heavily dependent on the quality of the con-
structed similarity graph. Consequently, it might not be a
reliable indicator when the similarities between data points
are not accurately measured. On the Br. Cancer dataset,
although HypCSE achieves the highest DP score, it per-
forms poorly in the SE metric, indicating that the con-

 = 0.99 = 0.999 = 0.9999 = 0.99999 = 1.0

Zoo Iris Wine Br. cancer OpticalDigits Spambase PenDigits
60

70

80

90

100 97
.9

95
.0

93
.3 96

.1

85
.7

67
.6

80
.6

97
.7

95
.1

93
.0 96

.2

86
.3

69
.9

80
.7

97
.9

95
.1

93
.9

96
.8

86
.4

75
.5 81

.4

97
.7

93
.9

93
.2 96

.4

86
.4

76
.3 81

.8

97
.8

94
.2

92
.7 96

.6

86
.2

76
.1 81

.8

Figure 3: Parameter sensitivity on decay rate τ (DP %).

structed graphs on this dataset fail to fully capture the class-
discriminative features. HypCSE addresses this by learning
an improved graph structure via the GSL module. We also
report Dasgupta’s costs of trees from all methods in Ap-
pendix E. The ranks of each method in Dasgupta’s cost are
similar to SE, indicating the consistency between 2 metrics.

Further Analysis
Ablation Study. To verify the effectiveness of two key
components in the GSL module, we conduct an ablation
study and report the experimental results in Table 2. The
base model represents the hyperbolic hierarchical cluster-
ing module. Two key components in the GSL module are
the Graph Learning (GL) and the Contrastive Learning (CL)
components. We remove GL by replacing the learner graph
Gl with the anchor graph Ga and removing the graph learner
g(·). From Table 2, we find that both GL and CL compo-
nents improve the overall performance. Without the guid-
ance of the CL component, the GL component has a mini-
mal effect on its own. The CL component improves overall
performance by learning more discriminative features.
Parameter Sensitivity. We further investigate the parame-
ter sensitivity of HypCSE. The graph learning decay rate τ
controls the update speed of the anchor graph Ga, where
a smaller τ leads to faster updates. We report the DP
scores of HypCSE across different τ values, as shown
in Figure 3. HypCSE showed stable performance across
most datasets, with the notable exception of the Spambase
dataset. This may indicate an ambiguous hierarchical struc-
ture within Spambase, which complicates graph structure

Zoo Iris Wine Br. cancer OpticalDigits Spambase

0.1 0.2 0.5 1.0 2.0 5.0 10.0
loss weight 1

70

80

90

100

5 10 15 20 25 30 35
number of edges k

70

80

90

100

Figure 4: Parameter sensitivity on η1 and k (DP %).

Methods Zoo Iris Glass Seg.

LP 41.4 76.7 46.8 65.3
HypHC-TS 84.8±3.5 84.4±1.7 50.6±2.6 64.1±0.9
HypHC-ETE 87.9±3.8 85.6±0.8 54.4±2.9 67.7±3.4
HypCSE 88.3±3.8 91.8±3.3 54.7±5.5 78.8±2.3

Table 3: Results (ACC %) of similarity-based classification.

learning. While the optimal τ varies by dataset, we ob-
serve that τ = 0.9999 yields the best performance across
5 datasets, leading us to adopt it as the default value. We
also investigate the sensitivity of contrastive loss weight η1
and the number of edges k when constructing Ga, and re-
port the DP scores in Figure 4. We find that η1 rarely affects
model performance, except for the Spambase dataset. On
Spambase, HypCSE performs better with larger η1 values,
indicating the significant role of the contrastive loss Lcon

for this dataset. Similarly, the influence of k for the over-
all performance is also small, except for the Iris and Spam-
base datasets. On these datasets, performance drops as more
edges are retained, suggesting an increase in noise. We sim-
ply set η1 = 1 and k = 10 for all datasets. More parameter
sensitivity analysis can be found in Appendix E.2.
Flexibility Analysis. Compared to discrete hierarchical
clustering methods, continuous methods offer greater flex-
ibility, as they can be combined with other gradient descent
optimization-based methods. Following (Chami et al. 2020),
we evaluate the performance of HypCSE with a classifica-
tion loss for the similarity-based classification task. We split
4 datasets from the UCI ML Repository into training, test,
and validation sets (30/60/10% splits), where similarities of
all data points are available during training, and the test and
validation set labels are only available during testing and
validation. To ensure that only similarities are available for
classification, we utilize the similarities of each data point
to all other points as the data feature and reduce the fea-
ture dimension to 10 via Principal Component Analysis. We
compare HypCSE against HypHC End-to-End learning with
a classification loss (HypHC-ETE), HypHC embed-then-
classify Two-Step approach (HypHC-TS), and a similarity-
based semi-supervised learning method, Label Propagation
(LP). The experimental results are reported in Table 3. Sim-
ilar to HypHC, the proposed HypCSE can also be jointly
optimized with the classification loss. HypCSE achieves the
highest ACC on all datasets, demonstrating its flexibility in
jointly integrating with other machine learning pipelines.
Visualization. We visualize the partitioning trees generated

(a) Zoo (b) Wine

Figure 5: Visualization of partitioning trees in space B2.

by HypCSE on a Poincaré disk and normalize the tree leaves
to lie on the disk border. The Zoo dataset has 7 classes and
the Wine dataset has 3 classes, each with a dominant class
(characterized by a large number of data points) in colors
blue and orange, respectively. For both partitioning trees,
most leaves from the same class are correctly grouped into
the same subtrees. For Zoo, several leaves of the class in
pink are mis-clustered into nearby subtrees. For Wine, the
leaves of the class in orange are too large in number, so
some of them are mis-clustered into the other two subtrees.
In all, the visualization of trees verifies the effectiveness of
HypCSE in graph embedding and hierarchical clustering.

Related Work
Hierarchical clustering algorithms group data points into
nested clusters organized as a dendrogram, and they can
be categorized into discrete and continuous optimization
methods (Zügner et al. 2022). Conventional discrete algo-
rithms include bottom-up agglomerative and top-down divi-
sive methods (Ran et al. 2023). In contrast, continuous meth-
ods learn dendrograms via gradient descent and offer advan-
tages in flexibility, allowing for joint optimization with other
pipelines (Chami et al. 2020). Before Dasgupta’s cost was
proposed (Dasgupta 2016), most existing methods lacked a
global objective function (Chierchia and Perret 2019). SE
(Li and Pan 2016) also serves as a global cost objective for
hierarchical clustering (Pan, Zheng, and Fan 2021) by quan-
tifying information in graphs using partitioning trees.

Conclusion
In this paper, we introduce HypCSE, a continuous approach
for structure-enhanced hierarchical clustering from the per-
spective of structural entropy. We develop continuous struc-
tural entropy (CSE) by reformulating the classic structural
entropy objective using the lowest common ancestor on trees
and approximating it in hyperbolic space. This differentiable
formulation enables HypCSE to minimize CSE while simul-
taneously optimizing other objectives via gradient descent,
offering significant flexibility. To avoid relying on prede-
fined and potentially suboptimal graphs, HypCSE dynami-
cally updates graph structures under the guidance of hyper-
bolic contrastive learning. Extensive experiments on 7 real-
world datasets demonstrate the superiority of HypCSE.

Acknowledgments
The corresponding author is Yicheng Pan. This work is
partly supported by National Key R&D Program of China
(2021YFB3500700), the NSFC through grants 62322202,
62441612, and 62202164, CCF-DiDi GAIA collaborative
Research Funds for Young Scholars through grant 202527,
National Key Laboratory under grant 241-HF-D07-01, the
Fundamental Research Funds for the Central Universities,
and State Key Laboratory of Complex & Critical Software
Environment (CCSE-2024ZX-20).

References
Becigneul, G.; and Ganea, O.-E. 2019. Riemannian Adap-
tive Optimization Methods. In Proceedings of the ICLR, 1–
11.
Chami, I.; Gu, A.; Chatziafratis, V.; and Ré, C. 2020. From
trees to continuous embeddings and back: Hyperbolic hi-
erarchical clustering. In Proceedings of the NeurIPS, vol-
ume 33, 15065–15076.
Charpentier, B.; and Bonald, T. 2019. Tree sampling di-
vergence: an information-theoretic metric for hierarchical
graph clustering. In Proceedings of the IJCAI, 2067–2073.
Chen, L.; and Li, S. C. 2023. Incorporating cell hierarchy
to decipher the functional diversity of single cells. Nucleic
acids research, 51(2): e9–e9.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In Proceedings of the ICML, 1597–1607. PMLR.
Chen, W.; Han, X.; Lin, Y.; Zhao, H.; Liu, Z.; Li, P.; Sun,
M.; and Zhou, J. 2021. Fully hyperbolic neural networks.
arXiv preprint arXiv:2105.14686.
Cheng, D.; Kannan, R.; Vempala, S.; and Wang, G. 2006. A
divide-and-merge methodology for clustering. ACM Trans-
actions on Database Systems (TODS), 31(4): 1499–1525.
Chierchia, G.; and Perret, B. 2019. Ultrametric fitting by
gradient descent. In Proceedings of the NeurIPS, 1–12.
Ciaramella, A.; Nardone, D.; and Staiano, A. 2020. Data
integration by fuzzy similarity-based hierarchical clustering.
BMC bioinformatics, 21: 1–15.
Cohen-Addad, V.; Kanade, V.; Mallmann-Trenn, F.; and
Mathieu, C. 2019. Hierarchical clustering: Objective func-
tions and algorithms. Journal of the ACM, 66(4): 1–42.
Dasgupta, S. 2016. A cost function for similarity-based hi-
erarchical clustering. In Proceedings of the STOC, 118–127.
Ge, S.; Mishra, S.; Kornblith, S.; Li, C.-L.; and Jacobs, D.
2023. Hyperbolic contrastive learning for visual representa-
tions beyond objects. In Proceedings of the CVPR, 6840–
6849.
Gower, J. C.; and Ross, G. J. 1969. Minimum spanning trees
and single linkage cluster analysis. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 18(1): 54–
64.
Heller, K. A.; and Ghahramani, Z. 2005. Bayesian hierar-
chical clustering. In Proceedings of the ICML, 297–304.

Imola, J.; Epasto, A.; Mahdian, M.; Cohen-Addad, V.; and
Mirrokni, V. 2023. Differentially private hierarchical clus-
tering with provable approximation guarantees. In Proceed-
ings of the ICML, 14353–14375. PMLR.

Kingma, D. P. 2014. Adam: A method for stochastic opti-
mization. In Proceedings of the ICLR, 1–11.

Kochurov, M.; Karimov, R.; and Kozlukov, S. 2020. Geoopt:
Riemannian optimization in pytorch. In 37th ICML GRLB
Workshop, 1–6.

Laenen, S.; Manghiuc, B. A.; and Sun, H. 2023. Nearly-
optimal hierarchical clustering for well-clustered graphs. In
Proceedings of the ICML, 18207–18249. PMLR.

Law, M.; Liao, R.; Snell, J.; and Zemel, R. 2019. Lorentzian
distance learning for hyperbolic representations. In Proceed-
ings of the ICML, 3672–3681. PMLR.

Li, A. 2024. Science of Artificial Intelligence: Mathemati-
cal Principles of Intelligence (In Chinese). Beijing: Science
Press.

Li, A.; and Pan, Y. 2016. Structural information and dynam-
ical complexity of networks. IEEE TIT, 62(6): 3290–3339.

Liu, Y.; Zheng, Y.; Zhang, D.; Chen, H.; Peng, H.; and Pan,
S. 2022. Towards unsupervised deep graph structure learn-
ing. In Proceedings of the ACM Web Conference, 1392–
1403.

Markelle, K.; Rachel, L.; and Kolby, N. 2024. “The UCI
Machine Learning Repository”.

McInnes, L.; Healy, J.; Astels, S.; et al. 2017. hdbscan: Hi-
erarchical density based clustering. J. Open Source Softw.,
2(11): 205.

Monath, N.; Kobren, A.; Krishnamurthy, A.; and McCallum,
A. 2017. Gradient-based hierarchical clustering. In Proceed-
ings of the NeurIPS workshop, 1–6.

Monath, N.; Zaheer, M.; Silva, D.; McCallum, A.; and
Ahmed, A. 2019. Gradient-based hierarchical clustering us-
ing continuous representations of trees in hyperbolic space.
In Proceedings of the KDD, 714–722.

Moseley, B.; and Wang, J. R. 2017. Approximation bounds
for hierarchical clustering: average linkage, bisecting K-
means, and local search. In Proceedings of the NeurIPS,
3097–3106.

Pan, Y.; Zheng, F.; and Fan, B. 2021. An Information-
theoretic Perspective of Hierarchical Clustering. arXiv
preprint arXiv:2108.06036, 1–21.

Peng, W.; Varanka, T.; Mostafa, A.; Shi, H.; and Zhao, G.
2021. Hyperbolic deep neural networks: A survey. IEEE
TPAMI, 44(12): 10023–10044.

Ran, X.; Xi, Y.; Lu, Y.; Wang, X.; and Lu, Z. 2023. Compre-
hensive survey on hierarchical clustering algorithms and the
recent developments. Artificial Intelligence Review, 56(8):
8219–8264.

Sarkar, R. 2011. Low distortion delaunay embedding of
trees in hyperbolic plane. In International symposium on
graph drawing, 355–366. Springer.

Sun, L.; Huang, Z.; Peng, H.; Wang, Y.; Liu, C.; and Philip,
S. Y. 2024. LSEnet: Lorentz Structural Entropy Neural Net-
work for Deep Graph Clustering. In Proceedings of the
ICML, 1–10.
Sun, L.; Huang, Z.; Zhang, M.; and Yu, P. S. 2025a. Deeper
with Riemannian Geometry: Overcoming Oversmoothing
and Oversquashing for Graph Foundation Models. In Ad-
vances in the 39th Neural Information Processing Systems
(NeurIPS).
Sun, L.; Huang, Z.; Zhou, S.; Wan, Q.; Peng, H.; and Yu,
P. S. 2025b. RiemannGFM: Learning a Graph Foundation
Model from Riemannian Geometry. In Proceedings of the
ACM on Web Conference 2025 (WWW), 1154–1165. ACM.
Wang, D.; and Wang, Y. 2020. An improved cost function
for hierarchical cluster trees. Journal of Computational Ge-
ometry, 11(1): 283–331.
Yan, J.; Luo, L.; Deng, C.; and Huang, H. 2021. Unsu-
pervised hyperbolic metric learning. In Proceedings of the
CVPR, 12465–12474.
Zhang, Y. W.; Wang, M. B.; and Li, S. C. 2021. SuperTAD:
robust detection of hierarchical topologically associated do-
mains with optimized structural information. Genome biol-
ogy, 22: 1–20.
Zügner, D.; Charpentier, B.; Ayle, M.; Geringer, S.; and
Günnemann, S. 2022. End-to-end learning of probabilistic
hierarchies on graphs. In Proceedings of the ICLR, 1–23.

