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Abstract

Differentially private (DP) image synthesis enables the gen-
eration of realistic images while bounding privacy leakage,
facilitating secure data sharing across organizations. How-
ever, the Gaussian noise injected during DP training, such
as via DP-SGD, often severely degrades synthesis quality by
disrupting model convergence. To address this, we introduce
RPGen, a novel framework that enhances diffusion models’
parameter robustness to mitigate DP noise effects without
compromising privacy guarantees. At its core, RPGen em-
ploys adversarial model perturbation (AMP) during public
pre-training to build resilience against perturbations, but we
identify and tackle the critical issue of robustness transfer-
ability across domains. RPGen achieves this through a three-
step process: (1) A pre-trained classifier infers labels for pri-
vate images, aggregated into a class distribution noised with
Gaussian mechanism for DP, and public samples are selected
to match this privatized distribution for domain alignment; (2)
The diffusion model is pre-trained on this curated subset with
adversarial model perturbation to foster robustness; (3) The
model undergoes fine-tuning on private data using DP-SGD.
This synergy of robustness augmentation and transferability
optimization yields high-fidelity synthesis. Extensive evalua-
tions on ImageNet for pre-training, with CelebA and CIFAR-
10 for synthesis, show RPGen outperforming state-of-the-
art baselines across ε ∈ {1, 5, 10}. On average, it achieves
20.18% lower FID and 5.45% higher classification accuracy.
Ablations confirm the efficacy of domain curation and mod-
est perturbations, establishing RPGen as a new benchmark
for privacy-utility trade-offs in image generation.

Introduction
Privacy-preserving synthetic image generation seeks to cre-
ate synthetic images that capture the essential properties of
real data, facilitating secure data sharing within and across
organizations while mitigating privacy risks (Hu et al. 2024;
Dankar and Emam 2013). Differentially private (DP) image
synthesis (Lin et al. 2024; Li et al. 2024) provides rigorous
theoretical guarantees to quantify and bound privacy leak-
age from real data through synthetic outputs. Leveraging DP
image synthesis enables organizations, such as those in the
medical domain handling sensitive patient scans like X-rays
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or MRIs, to share and exploit synthetic images for diverse
downstream tasks, such as classification and detection, with-
out exposing sensitive information.

Diffusion models have emerged as a promising foun-
dation for DP image synthesis (Dockhorn et al. 2022;
Ghalebikesabi et al. 2023). For example, Dockhorn et
al. (Dockhorn et al. 2022) advocated training diffusion mod-
els with DP-SGD (Abadi et al. 2016), a cornerstone tech-
nique for enforcing differential privacy during optimiza-
tion. Building on this, Li et al. (Li et al. 2024) proposed
pre-training on public datasets followed by DP fine-tuning
on sensitive data, yielding state-of-the-art (SOTA) utility
compared to earlier approaches. Nevertheless, the Gaussian
noise inherent to DP-SGD often induces substantial degra-
dation in synthesis quality, as it disrupts model convergence
and feature learning. This noise sensitivity remains a critical
barrier to achieving high-fidelity DP image generation.

To address this challenge, we propose enhancing the
diffusion model’s robustness to perturbations during pre-
training, thereby preserving performance under DP noise
without violating privacy guarantees. Specifically, we aug-
ment parameter robustness against adversarial perturbations
in the public pre-training phase, enabling the model to bet-
ter tolerate DP noise during subsequent fine-tuning. While
effective in principle, this approach can yield suboptimal
results due to poor transferability of robustness from pub-
lic (upstream) to private (downstream) domains. We miti-
gate this by curating public data samples that closely mimic
the private domain, using them for targeted pre-training and
robustness enhancement. This domain-aligned strategy pro-
motes transferable robustness, unlocking significant perfor-
mance gains. We introduce RPGen, a framework for elevat-
ing DP image synthesis by bolstering model parameter ro-
bustness. RPGen unfolds in three steps. First, a pre-trained
classifier (e.g., ImageNet-trained) infers labels for private
dataset images, which are aggregated into a class frequency
distribution. To uphold DP, we inject Gaussian noise into
this distribution and select public images whose frequencies
align with the noisy private counterpart. Second, we pre-
train the diffusion model on this curated subset, incorporat-
ing adversarial model perturbation (AMP) (Zheng, Zhang,
and Mao 2021) to simulate worst-case parameter disrup-
tions. This adversarial training fosters resilience to impend-
ing DP noise, reducing its detrimental effects on conver-



gence, while the domain alignment ensures robust transfer
to the private task. Finally, we apply DP-SGD (Abadi et al.
2016) for fine-tuning on the private data.

We evaluate RPGen using ImageNet (Deng et al. 2009)
for pre-training—a standard in computer vision—paired
with CelebA and CIFAR-10 for DP synthesis. Across pri-
vacy budgets ε ∈ {1, 5, 10}, RPGen outperforms baselines
in synthesis fidelity and downstream utility. Averaged over
settings, RPGen delivers a 20.18% lower Fréchet Inception
Distance (FID) and 5.45% higher classification accuracy
compared to the SOTA baseline, with qualitative improve-
ments evident in generated samples (see Table 1).

Our ablation studies examine key hyperparameters, in-
cluding AMP perturbation magnitude and data selection ra-
tio. Modest perturbations consistently boost performance,
affirming the utility of parameter robustness and RPGen’s
insensitivity to precise tuning. However, excessive magni-
tudes (e.g., > 0.5) impair convergence. Optimal results
emerge at a 5% selection ratio, yielding nearly twofold FID
reductions versus full-dataset pre-training, underscoring the
value of domain curation for robustness transfer.

Our contributions are:
• To the best of our knowledge, we are the first to system-

atically enhance parameter robustness for DP image syn-
thesis via diffusion models, while addressing the trans-
ferability of such robustness across domains.

• We present RPGen, a pre-training paradigm that inte-
grates AMP for robustness augmentation with privacy-
aware public data selection to maximize transferability.

• Through extensive experiments across datasets and pri-
vacy levels, we demonstrate RPGen’s superior privacy-
utility trade-off, establishing new SOTA on CIFAR-
10 (Krizhevsky 2009) and CelebA (Liu et al. 2015).

Preliminaries
Differential Privacy. Differential privacy (DP) (Dwork
et al. 2006) provides a formal framework for protecting
individual-level information in a dataset during statistical
analyses or model releases. It ensures that the outputs of a
randomized mechanism are nearly indistinguishable regard-
less of whether any single record is included in the input,
thereby safeguarding privacy while enabling useful insights
into the data distribution. Formally, DP is defined as follows:
Definition 1 ((ε, δ)-Differential Privacy). Given two neigh-
boring datasets D and D′ that differ by one record, a ran-
domized mechanism M satisfies (ε, δ)-differential privacy
if, for all measurable sets S,

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ,

where ε is the privacy budget and δ is a failure probability.

A smaller ε implies stronger privacy guarantees, as it lim-
its the distinguishability between D and D′.

Sub-sampled Gaussian Mechanism (SGM). The Sub-
sampled Gaussian Mechanism (SGM) (Mironov, Talwar,
and Zhang 2019) is a fundamental tool for sanitizing data
while controlling privacy loss. For a query function f :
D ⊆ Rd → Rq with sensitivity ∆f (the maximum ℓ2-norm

change in f when altering one record), SGM is defined as
SGMf,q,σ(D) ≜ f(S) + N (0, σ2∆2

fI). Here, S is a ran-
dom subset of D where each element is included indepen-
dently with probability q ∈ (0, 1],N (0, σ2∆2

fI) adds Gaus-
sian noise with noise scale σ > 0, and I is the identity ma-
trix. By combining subsampling and noise addition, SGM
balances data utility for queries with privacy protection.

Rényi Differential Privacy (RDP). Rényi Differential Pri-
vacy (RDP) (Mironov, Talwar, and Zhang 2019) mea-
sures privacy loss using Rényi divergence. For a random-
ized mechanism M , the Rényi divergence of order α >
1 between distributions Y and N is Dα(Y ∥ N) =
1

α−1 lnEx∼N

[(
Y (x)
N(x)

)α]
.

A mechanism M satisfies (α, γ)-RDP if Dα(M(D) ∥
M(D′)) ≤ γ for any adjacent datasets D and D′. RDP of-
fers a flexible framework for analyzing privacy, providing
nuanced bounds compared to traditional metrics, and is par-
ticularly useful for tracking cumulative privacy loss in com-
posed mechanisms like SGM.

RDP for SGM. RDP provides tight bounds on the privacy
loss of SGM (Mironov, Talwar, and Zhang 2019). Let p0
and p1 be the probability density functions of N (0, σ2) and
N (1, σ2), respectively. Then, SGMf,q,σ(D) satisfies (α, γ)-
RDP, where γ ≥ Dα ((1− q)p0 + qp1 ∥ p0). This bound
connects SGM parameters to RDP guarantees, enabling sys-
tematic control of the privacy-utility trade-off in applications
like machine learning.

DP-SGD. In privacy-preserving deep learning, differen-
tially private stochastic gradient descent (DP-SGD) (Abadi
et al. 2016) is the standard approach. DP-SGD adapts tra-
ditional SGD by clipping each per-sample gradient to a
fixed norm and adding Gaussian noise proportional to this
norm before aggregation. This masks the contribution of
any single example. The total privacy budget is computed
by accounting for the per-iteration privacy cost under (ε, δ)-
DP and applying composition and subsampling amplifica-
tion (Bun and Steinke 2016; Dwork, Rothblum, and Vadhan
2010; Dwork, Roth et al. 2014) across iterations.

Diffusion Models. Diffusion models (Song and Ermon
2019) are likelihood-based generative models that learn to
reverse a data degradation process, comprising forward nois-
ing and reverse denoising phases.

Forward Noising Process. Starting from clean data x0 ∼
p(x0), Gaussian noise is added iteratively via a Markov
chain to produce a sequence of noisy samples {x1, . . . , xT }:

p(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI),

where T is the number of steps, βt ∈ [0, 1) controls the noise
level at step t, and I is the identity matrix. As t increases, xt

approaches pure Gaussian noise.
Reverse Denoising Process. The reverse process denoises

from xT ∼ N (0, I) back to x0 using a network parameter-
ized by θ to predict the noise. The training objective is:

LDM = EtEx0
Eϵ ∥ϵ− eθ(xt, t)∥2 ,

where ϵ ∼ N (0, I). For generation, sample xT ∼ N (0, I)
and iteratively denoise using the predicted noise to obtain
synthetic x0.



Methodology
Our objective is to develop a differentially private (DP) im-
age synthesis framework that generates high-fidelity syn-
thetic images from sensitive datasets while minimizing per-
formance degradation due to DP noise. By enhancing the
diffusion model’s parameter robustness during public pre-
training and ensuring its transferability to the private do-
main, we aim to preserve generative utility without compro-
mising privacy guarantees.

Formally, let Dpub = {(xi, yi)}
Npub
i=1 be a labeled public

dataset with Npub samples, and Dpriv = {zj}
Npriv
j=1 an unla-

beled private dataset with Npriv sensitive images. We seek to
train a diffusion model eθ onDpriv under (ε, δ)-DP, such that
the generated images ẑ ∼ pθ(z) closely match the distribu-
tion of Dpriv in terms of fidelity (e.g., FID) and utility (e.g.,
classification accuracy), while bounding privacy leakage.

RPGen Overview
Compared to image classification tasks, where models of-
ten exhibit some inherent robustness to small perturbations
due to simpler architectures and lower-dimensional outputs,
diffusion models for image synthesis are particularly vul-
nerable to noise. Their iterative denoising process and high-
dimensional parameter space amplify the disruptive effects
of DP-induced Gaussian noise, leading to blurred or seman-
tically incoherent generations and hindering convergence in
transfer learning scenarios with domain shifts.

To address these challenges, we design RPGen, a three-
stage paradigm that first curates domain-aligned public data
under privacy constraints, then pre-trains a diffusion model
with adversarial perturbations to build transferable param-
eter robustness, and finally fine-tunes it on private data us-
ing DP-SGD. This approach mitigates noise sensitivity by
fostering resilience in pre-training, ensuring that robustness
transfers effectively to the private task without additional
privacy costs.

Formally, RPGen consists of the following three stages:

1. Privacy-Preserving Data Selection stage: Train a classi-
fier on Dpub to infer a noisy class distribution from Dpriv
via SGM, then select top-k aligned classes to form Dsel,
promoting domain similarity for robust transfer.

2. Adversarial Pre-training stage: Pre-train the diffusion
model on Dsel with AMP to enhance parameter robust-
ness against worst-case perturbations, preparing it for DP
fine-tuning.

3. DP Fine-tuning stage: Fine-tune the robust model on
Dpriv using DP-SGD with gradient clipping and noise ad-
dition, ensuring (ε, δ)-DP while leveraging pre-built re-
silience for superior synthesis quality.

Stage 1: Privacy-Preserving Data Selection
To enhance the transferability of parameter robustness from
public pre-training to private fine-tuning, we curate a subset
of public data that aligns closely with the private domain at
the class level. This involves training a classifier on the pub-
lic dataset to infer domain similarities, followed by privacy-
preserving selection via noise injection.

Let Dpub = {(xi, yi)}
Npub
i=1 be the labeled public dataset

with Npub samples across C classes, and Dpriv = {zj}
Npriv
j=1

the unlabeled private dataset. We train a classifier fθ : X →
[C] on Dpub using cross-entropy loss, capturing the public
feature distribution.

We then infer labels on Dpriv: ŷj = fθ(zj) for each
zj , aggregating into a count vector h ∈ RC where hc =∑Npriv

j=1 I[ŷj = c]. The normalized distribution is p =

h/Npriv.
To protect privacy, we privatize h using the Sub-sampled

Gaussian Mechanism (SGM) applied to the count query
g(Dpriv) = h, with sensitivity ∆g = 1:

h̃ = SGMg,q,σ(Dpriv) = g(S) +N (0, σ2∆2
gI), (1)

where S is subsampled with probability q, yielding noisy
distribution p̃ = h̃/|S|.

This satisfies (α, γ)-RDP for α > 1 with γ ≥
Dα ((1− q)p0 + qp1 ∥ p0), where p0 and p1 are densities
ofN (0, σ2) andN (1, σ2). This bound controls leakage and
converts to (ε, δ)-DP (Mironov, Talwar, and Zhang 2019).

Finally, we select top-k classes from p̃: Ctop =
argmax|C|=k

∑
c∈C p̃c. The curated subset is Dsel =

{(xi, yi) ∈ Dpub | yi ∈ Ctop}, forming the basis for Stage 2.

Stage 2: Adversarial Pre-training
In Stage 2, we pre-train a diffusion model on the curated
public subset Dsel obtained from Stage 1, incorporating Ad-
versarial Model Perturbation (AMP) to enhance the model’s
parameter robustness against random perturbations. This
step is crucial for mitigating the adverse effects of DP noise
in the subsequent fine-tuning stage, as the augmented robust-
ness promotes better convergence under noisy gradients. We
build upon the diffusion model framework and adversarial
model perturbation (Zheng, Zhang, and Mao 2021), adapt-
ing them to foster resilience in the generative setting.

Recall that diffusion models learn to reverse a forward
noising process by minimizing a noise prediction loss. For
our pre-training, we parameterize the noise predictor as
eθ(·, t), where θ denotes the model parameters. The stan-
dard objective on Dsel is:

LDM(θ) = Et∼[1,T ]Ex0∼DselEϵ∼N (0,I) ∥ϵ− eθ(xt, t)∥2 ,
(2)

where xt is derived from x0 via the forward process p(xt |
xt−1) = N (xt;

√
1− βtxt−1, βtI).

To integrate AMP, we introduce worst-case perturbations
within a norm ball around the current parameters, encourag-
ing the model to perform well even under parameter distor-
tions. Following the AMP formulation, we define the adver-
sarial loss over a mini-batch B ⊆ Dsel as:

JB(θ) = max
∆∈B(0;γ)

1

|B|
∑

(x0,t,ϵ)∈B

∥ϵ− eθ+∆(xt, t)∥2 , (3)

where B(0; γ) = {∆ ∈ Θ : ∥∆∥ ≤ γ} is the norm ball with
radius γ ≥ 0, controlling the perturbation strength. A larger
γ induces greater robustness by training against more severe
parameter noise.



The worst-case perturbation ∆B is computed via:

∆B = arg max
∆∈B(0;γ)

1

|B|
∑

(x0,t,ϵ)∈B

∥ϵ− eθ+∆(xt, t)∥2 .

(4)
In practice, this is optimized using gradient ascent on ∆ with
learning rate η1, projecting back into the ball if necessary, to
simulate perturbations that maximally increase the loss.

The model parameters are then updated based on the per-
turbed objective:

α = η2∇θJB(θ), (5)

where η2 is the update learning rate. To avoid retaining
the perturbation (which could degrade clean performance),
the final update is applied to the unperturbed parameters:
θ ← θ + α. This process iterates over mini-batches from
Dsel, yielding a pre-trained model eθ with enhanced param-
eter robustness, primed for DP fine-tuning in Stage 3.

Stage 3: DP Fine-tuning
In Stage 3, we fine-tune the robust diffusion model obtained
from Stage 2 on the private datasetDpriv using DP-SGD, en-
suring that the training process satisfies differential privacy
guarantees while preserving the model’s generative utility.
This step leverages the parameter robustness built during
pre-training to mitigate the performance degradation typi-
cally caused by DP noise, as the model is now more resilient
to perturbations in its gradients. We adapt the standard dif-
fusion objective to the DP setting, drawing on the SGM and
RDP for privacy accounting.

The fine-tuning objective remains the noise prediction
loss, but now optimized over Dpriv:

LDM(θ) = Et∼[1,T ]Ez0∼DprivEϵ∼N (0,I) ∥ϵ− eθ(zt, t)∥2 ,
(6)

where zt is generated from private sample z0 via the forward
noising process, and eθ is the pre-trained noise predictor ini-
tialized from Stage 2.

To enforce DP, we employ DP-SGD, which modifies the
gradient computation to bound sensitivity and add noise. For
a mini-batch B ⊆ Dpriv of size B, we first compute per-
sample gradients:

gi = ∇θℓ(eθ(z
(i)
t , t), ϵ(i)), ∀(z(i)0 , t, ϵ(i)) ∈ B, (7)

where ℓ(·, ·) = ∥ϵ−eθ(zt, t)∥2 is the sample-wise loss. Each
gradient is clipped to bound its L2-norm:

g̃i = gi/max

(
1,
∥gi∥2
C

)
, (8)

with clipping threshold C > 0 controlling sensitivity.
The aggregated noisy gradient is then formed by averag-

ing the clipped gradients and adding Gaussian noise:

ḡ =
1

B

B∑
i=1

g̃i +N
(
0,

σ2C2

B2
I

)
, (9)

where σ > 0 is the noise multiplier. The model parameters
are updated as θ ← θ − ηḡ, with learning rate η.

This process corresponds to applying SGM to the gradi-
ent query function, with sampling probability q = B/Npriv.
The privacy loss is tracked via RDP: each DP-SGD step sat-
isfies (α, γ)-RDP with γ ≥ Dα((1 − q)p0 + qp1 ∥ p0),
where p0 = N (0, σ2) and p1 = N (C, σ2), convertible
to (ε, δ)-DP over multiple steps using composition theo-
rems (Mironov, Talwar, and Zhang 2019). Upon conver-
gence, the fine-tuned model eθ enables image synthesis by
sampling from the reverse denoising process.

In particular, RPGen incurs privacy budget expenditure
in two key phases: (1) estimating the privatized class dis-
tribution from the private dataset during data selection, and
(2) computing noisy gradients in each iteration of the fine-
tuning process on the private data. Each of these phases can
be modeled as a sequence of composed SGM applications.
As such, we employ RDP to accurately account for and com-
pose the overall privacy costs of RPGen, enabling precise
control over the (ε, δ)-DP guarantees.

Experiments
Experimental Setup
We utilize ImageNet (Deng et al. 2009), a cornerstone
dataset for pre-training in computer vision with 1,281,167
training images, 50,000 validation images, and 100,000
test images across 1,000 classes, alongside CelebA (Liu
et al. 2015) and CIFAR-10 (Krizhevsky 2009) for DP im-
age synthesis. CelebA comprises 202,525 celebrity face
images with 40 attributes (162,770 training, 19,867 vali-
dation, 19,962 test), center-cropped and resized to 32×32
(CelebA32) or 64×64 (CelebA64). CIFAR-10 includes
60,000 32×32 natural images across 10 classes (45,000
training, 5,000 validation, 10,000 test). These datasets pose
greater synthesis challenges than simpler ones like MNIST
or Fashion-MNIST due to their complexity and scale.

In this work, we compare the proposed RPGen against
eight baselines: DPDM (Dockhorn et al. 2022), PDP-
Diffusion (Ghalebikesabi et al. 2023), DP-LDM (Lyu et al.
2023), DPSDA (Lin et al. 2024), DPGAN (Torkzadehma-
hani, Kairouz, and Paten 2019), DPGAN with pre-training
(DPGAN-p) (Ghalebikesabi et al. 2023), PRIVIMAGE with
GAN (PRIVIMAGE+G) (Li et al. 2024), and PRIVIMAGE
with Diffusion (PRIVIMAGE+D) (Li et al. 2024).

• DPDM (Dockhorn et al. 2022) trains lightweight diffu-
sion models with large batch sizes, injecting Gaussian
noise into gradients via DP-SGD (Abadi et al. 2016) for
privacy-preserving generation.

• PDP-Diffusion (Ghalebikesabi et al. 2023) uses large
batches for stability and pre-trains on public data before
DP fine-tuning on sensitive datasets.

• DP-LDM (Lyu et al. 2023) fine-tunes only the label em-
bedding and attention modules of a pre-trained diffusion
model, reducing parameters and noise requirements.

• DPSDA (Lin et al. 2024) employs a Private Evolution al-
gorithm to adapt pre-trained models for synthetic dataset
generation without fine-tuning.

• DPGAN (Torkzadehmahani, Kairouz, and Paten 2019)
trains GANs directly on sensitive data using DP-SGD.



• DPGAN-p extends DPGAN by pre-training on public
data (Ghalebikesabi et al. 2023) before DP fine-tuning.

• PRIVIMAGE+G (Li et al. 2024) queries sensitive data
semantics to select public subsets for GAN pre-training.

• PRIVIMAGE+D (Li et al. 2024) applies the same selec-
tion strategy but for diffusion models.

For CIFAR-10, we set δ = 10−5, and for CelebA, δ =
10−6. Across both datasets, we evaluate under three com-
mon privacy budgets: ε ∈ {1, 5, 10} (Dockhorn et al. 2022;
Ghalebikesabi et al. 2023).

We implement RPGen in PyTorch, employing the De-
noising Diffusion Probabilistic Model (DDPM) architec-
ture (Song and Ermon 2019) for the diffusion backbone. In
the adversarial pre-training stage (Stage 2), we train on the
curated subset Dsel for 4,000 epochs, with a learning rate
of η1 = 0.4 for worst-case perturbation computation and
η2 = 10−4 for model updates. Weight decay is disabled (set
to 0.0), and we use a batch size of 512. The perturbation
magnitude defaults to γ = 0.2. For the data selection stage
(Stage 1), we configure the SGM noise scale as σ = 484 for
CIFAR-10 and σ = 5300 for CelebA, with a default selec-
tion ratio of 5% (corresponding to top-k = 50 classes) from
ImageNet. During the DP fine-tuning stage (Stage 3), we ap-
ply a gradient clipping norm of C = 0.001, adjust the noise
multiplier to achieve the target ε, and fine-tune for 50 epochs
with a batch size of 19,384. All experiments are conducted
on NVIDIA A100 GPUs, with results averaged across six
random seeds.

We evaluate the fidelity and utility of synthetic datasets
using two established metrics: Fréchet Inception Dis-
tance (FID) for image quality and Classification Accuracy
(CA) for downstream task performance, consistent with
prior DP image synthesis studies (Dockhorn et al. 2022;
Ghalebikesabi et al. 2023).

• Fréchet Inception Distance (FID) (Ho, Jain, and
Abbeel 2020; Brock, Donahue, and Simonyan 2019):
This metric quantifies the similarity between generated
and real image distributions by comparing their feature
statistics from an Inception network. Lower FID values
indicate higher fidelity and realism. We compute FID us-
ing 5,000 synthetic images against the real test set.

• Classification Accuracy (CA): To measure utility, we
train classifiers on synthetic images and evaluate their
accuracy on the real test set, assessing how well the
synthetics capture discriminative features. We employ
three models—Logistic Regression (LR), Multi-Layer
Perceptron (MLP), and Convolutional Neural Network
(CNN)—trained on 50,000 synthetic images per method.

Main Results
Table 1 presents the CA and FID scores across various
settings. Overall, RPGen consistently improves CA and
reduces FID compared to baselines in all configurations.
For example, on CIFAR-10 with ε = 10, RPGen boosts
CNN-based CA from the previous best of 68.8% (PRIVIM-
AGE+D) to 73.4%, a 4.6% gain, while lowering FID from
27.6 (PRIVIMAGE+D) to 26.5, a 3.99% reduction.

Figure 1: t-SNE visualization of feature embeddings from
synthetic CIFAR-10 images generated by RPGen (left) and
PRIVIMAGE+D (right).

Figure 2: Qualitative comparison of synthetic CIFAR-10 im-
ages generated by RPGen (middle) and PRIVIMAGE+D
(right), alongside real images (left).

Furthermore, RPGen demonstrates robustness across di-
verse private datasets. While ImageNet and CIFAR-10 en-
compass general objects, CelebA focuses on faces, introduc-
ing a significant domain shift. Nonetheless, RPGen excels
on CelebA; for instance, on CelebA32 with ε = 10, it re-
duces FID from the prior best of 18.9 (PRIVIMAGE+G) to
16.3, a 13.76% improvement. This resilience highlights the
efficacy of our privacy-preserving data selection in bridging
domain gaps, ensuring transferable robustness even when
public and private distributions differ markedly.

RPGen also handles higher-resolution image generation
effectively. On CelebA64 with ε = 5, it decreases FID from
45.2 (PRIVIMAGE+G) to 39.3, yielding a 13.05% reduc-
tion. These gains are particularly noteworthy as higher reso-
lutions amplify the challenges of DP noise, yet RPGen’s pre-
trained robustness mitigates artifacts like blurring or loss of
fine details, producing more coherent and realistic outputs.

Although the PRIVIMAGE variants often achieve state-
of-the-art results, their performance varies across datasets:
PRIVIMAGE+D achieves the best performance on CIFAR-
10 under ε = 10, whereas PRIVIMAGE+G performs better
on CelebA32 and CelebA64. Notably, on CelebA64, PRIV-
IMAGE+D even underperforms compared to DPSDA. Sim-
ilar inconsistencies appear for ε = 5 and ε = 1. In contrast,
RPGen delivers the best results across all settings, under-



Method

ε = 10 ε = 5 ε = 1
CIFAR-10 CeA32 CeA64 CIFAR-10 CeA32 CeA64 CIFAR-10 CeA32 CeA64

CA (%) FID FID FID CA (%) FID FID FID CA (%) FID FID FIDLR MLP CNN LR MLP CNN LR MLP CNN
DPGAN 9.2 8.4 10.5 258.0 202.0 121.0 14.2 14.6 13.0 210.0 227.0 190.0 16.2 17.4 14.8 225.0 232.0 162.0
DPGAN-p 13.6 14.9 24.1 49.7 29.7 51.1 13.9 14.3 19.2 48.5 23.9 52.2 11.3 13.8 12.8 70.1 37.9 54.5
DPDM 20.7 24.6 21.3 304.0 113.0 115.0 21.1 24.7 22.0 311.0 122.0 127.0 19.6 22.3 14.7 340.0 223.0 243.0
DP-LDM 15.2 14.1 26.0 48.6 21.9 58.0 15.3 14.6 24.8 48.9 22.2 63.9 12.8 11.8 18.8 50.1 45.5 131.9
PDP-Diffusion 18.7 21.4 30.4 66.8 22.6 51.6 19.3 22.2 28.7 70.0 23.6 55.9 17.7 19.4 22.9 87.5 33.7 77.7
DPSDA 24.1 25.0 47.9 29.9 23.8 49.0 23.5 24.4 46.1 30.1 33.8 49.4 24.2 23.6 47.1 31.2 37.9 54.9
PRIVIMAGE+G 19.9 24.5 44.3 28.1 18.9 38.2 19.6 24.6 39.2 29.9 19.8 45.2 15.8 18.0 25.5 47.5 31.8 45.1
PRIVIMAGE+D 32.6 36.5 68.8 27.6 19.1 49.3 32.4 35.9 69.4 27.6 20.1 52.9 30.2 33.2 66.2 29.8 26.0 71.4
RPGen (Ours) 33.4 37.7 73.4 26.5 16.3 37.1 32.9 37.0 72.5 27.0 17.5 39.3 31.2 35.0 70.3 28.5 22.7 43.5

Table 1: FID and CA of RPGen and eight baselines on CIFAR-10, CelebA32, and CelebA64 under ε = {10, 5, 1}. Due to space
constraints, CeA32 and CeA64 denote CelebA32 and CelebA64, respectively. Best results in each column are shown in bold.

scoring its stability and versatility. This consistency stems
from the synergistic integration of AMP and domain-aligned
pre-training, which provides a more reliable defense against
DP noise compared to baselines that either lack robustness
enhancement or domain curation.

Figure 1 visualizes t-SNE embeddings of RPGen-
generated images, forming 10 distinct clusters aligned
with CIFAR-10 categories. This indicates that classifiers
trained on RPGen data better capture discriminative fea-
tures, outperforming those on PRIVIMAGE+D (the SOTA
on CIFAR-10), whose embeddings exhibit less clear separa-
tion and yield inferior classification. Qualitative examples of
synthetic CIFAR-10 images from RPGen, PRIVIMAGE+D,
and real data are shown in Figure 2, where RPGen’s outputs
exhibit sharper details and better semantic fidelity.

Method
CIFAR-10 CeA32 CeA64

CA (%) FID FID FIDLR MLP CNN
Real 37.4 45.7 86.1 - - -
NonPriv 35.8 42.2 77.1 19.8 9.0 18.0
RPGen (Ours) 33.4 37.7 73.4 26.5 16.3 37.1

Table 2: FID and Classification Accuracy (CA) for RP-
Gen, the non-private baseline, and real data on CIFAR-10,
CelebA32, and CelebA64 under ε = 10. Lower FID and
higher CA indicate better performance.

Furthermore, as detailed in Table 2, RPGen exhibits min-
imal utility degradation relative to non-private counterparts.
On average, it incurs only a 3.5% drop in CA across the three
classification models compared to the non-private base-
line. When benchmarked against classifiers trained directly
on real data, RPGen’s synthetic images result in an aver-
age CA reduction of 8.2%, a modest gap that underscores
the method’s effectiveness in preserving downstream utility
while enforcing strong DP guarantees.

Ablation Studies
To dissect RPGen’s key components, we perform ablations
on CIFAR-10 under ε = 10. Omitting AMP during pre-
training (γ = 0 in Figures 3 and 4) results in a 4.3% FID

Figure 3: FID on CIFAR-10 under ε = 10 versus perturba-
tion magnitude γ.

Figure 4: CA on CIFAR-10 under ε = 10 versus perturba-
tion magnitude γ.

increase and a 3.6% CA drop, highlighting its critical role in
building noise tolerance. Removing the data selection stage
(Selection Ratio=100% in Figure 5) leads to a 48.1% FID
rise and a 40.0% CA decline, affirming the importance of
domain alignment for effective robustness transfer.

Impact of Perturbation. In this section, we analyze how
the perturbation in AMP influences performance, evaluating
γ ∈ 0, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5, 0.8 on CIFAR-10
under ε = 10. As shown in Figures 3 and 4, both FID and
CA reach their best values at γ = 0.2. When the perturba-
tion becomes too large (γ > 0.5), performance drops be-



cause excessive robustness begins to impede effective con-
vergence. Interestingly, even relatively small perturbations
(0 < γ < 0.2) consistently improve results across metrics.
This trend not only highlights the value of incorporating pa-
rameter robustness, but also shows that RPGen remains sta-
ble across a wide range of hyperparameter settings.

Impact of Selection Ratio. Figure 5 further examines the
effect of the selection ratio. Ratios between 5% and 20% of-
fer the strongest performance, with 20% yielding the best
FID and 5% achieving the highest CA. We choose 5% as
the default because it maintains strong performance while
keeping computational cost low. Extremely small ratios (be-
low 5%) lack sufficient data diversity, whereas very large
ratios (above 20%) introduce less relevant samples, reduc-
ing robustness transfer. These observations confirm the im-
portance of the selection stage in ensuring that robustness
learned during pre-training carries over effectively to down-
stream DP training.

Figure 5: Impact of selection ratio on FID and CA for
CIFAR-10 under ε = 10.

Related Work
Differential Privacy
Differential privacy (DP) (Dwork 2008; Dwork and Roth
2014) provides a rigorous mathematical framework for
quantifying privacy guarantees, typically parameterized by
a privacy budget that balances protection and utility. It has
been widely applied to diverse data analysis tasks, includ-
ing synthetic dataset generation (Yuan et al. 2023; Zhang
et al. 2021; Wang et al. 2023; Du et al. 2023), marginal re-
lease (Zhang et al. 2018), range queries (Du et al. 2021), and
streaming data processing (Wang et al. 2021). A seminal ad-
vancement is DP-SGD (Abadi et al. 2016), introduced by
Abadi et al. as a foundational algorithm for DP learning.

Recent studies (Park et al. 2023; Shi et al. 2023; Wang
et al. 2025) have incorporated AMP-like techniques into
DP algorithms to improve test accuracy, although these ef-
forts have focused mainly on image classification tasks. It
is still unclear whether such methods generalize to syn-
thetic image generation, which requires modeling complex
distributions rather than learning discriminative features. In
addition, prior methods strengthen robustness during fine-
tuning on private data, while RPGen applies AMP solely

in the public pre-training stage. This design choice intro-
duces both unique advantages and specific challenges (Wang
et al. 2024). One clear benefit is that robustness accumu-
lation occurs before DP noise is introduced, allowing the
model to build parameter resilience without interference
from privacy-preserving perturbations. The corresponding
challenge arises from domain shift, since public and private
data distributions may differ significantly, unlike fine-tuning
approaches that operate on the same domain. This issue has
not been addressed in previous work (Wang et al. 2024).
RPGen tackles this difficulty by explicitly optimizing for
robustness transferability through privacy-aware data selec-
tion, which forms the central motivation for our framework.

Data Selection for Fine-Tuning

Data selection techniques (Schaul et al. 2016; Loshchilov
and Hutter 2015; Katharopoulos and Fleuret 2018) often
aim to identify subsets that approximate training on the
full dataset, typically involving dynamic updates to sam-
ple importance scores throughout the process. They have
proven effective across supervised and semi-supervised vi-
sion tasks (Sener and Savarese 2018; Coleman et al. 2020;
Killamsetty et al. 2021a,b; Mirzasoleiman, Bilmes, and
Leskovec 2020; Paul, Ganguli, and Dziugaite 2021; Wei,
Iyer, and Bilmes 2015), and have also been applied to en-
hance DP fine-tuning using public data (Li et al. 2024). Our
work departs from prior efforts by using data selection to
support not only utility transfer, but also robustness transfer.

Conclusion

In this paper, we addressed the persistent challenge of per-
formance degradation in differentially private (DP) image
synthesis caused by noise injection during training, propos-
ing RPGen as a novel framework to enhance diffusion mod-
els’ parameter robustness while ensuring transferable ben-
efits across domains. By integrating privacy-aware data se-
lection to curate domain-aligned public samples, adversar-
ial model perturbation (AMP) for robustness augmentation
during pre-training, and DP-SGD for secure fine-tuning, RP-
Gen effectively mitigates the adverse effects of DP noise,
yielding high-fidelity synthetic images without compromis-
ing privacy guarantees. Our extensive experiments across
datasets like CIFAR-10 and CelebA, under varying privacy
budgets, demonstrate RPGen’s superiority over state-of-the-
art methods. To the best of our knowledge, this is the first
work to systematically tackle robustness transfer in DP gen-
erative modeling, paving the way for more practical privacy-
preserving data sharing in sensitive applications.

While RPGen advances DP image synthesis, it assumes
labeled public data, which may not always be available. Fu-
ture work could extend RPGen to unlabeled public sources
via self-supervised selection, incorporate advanced diffusion
variants like latent diffusion models, or extend RPGen to
other generative architectures, such as GANs or transform-
ers, and explore its efficacy in federated learning scenarios,
further advancing the privacy-utility frontier in AI.
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