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Abstract
Probabilistic embeddings have several advantages over deter-
ministic embeddings as they map each data point to a distri-
bution, which better describes the uncertainty and complex-
ity of data. Many works focus on adjusting the distribution
constraint under the Information Bottleneck (IB) principle
to enhance representation learning. However, these proposed
regularization terms only consider the constraint of each la-
tent variable, omitting the structural information between la-
tent variables. In this paper, we propose a novel structural
entropy-guided probabilistic coding model, named SEPC.
Specifically, we incorporate the relationship between latent
variables into the optimization by proposing a structural en-
tropy regularization loss. Besides, as traditional structural in-
formation theory is not well-suited for regression tasks, we
propose a probabilistic encoding tree, transferring regression
tasks to classification tasks while diminishing the influence
of the transformation. Experimental results across 12 natu-
ral language understanding tasks, including both classifica-
tion and regression tasks, demonstrate the superior perfor-
mance of SEPC compared to other state-of-the-art models in
terms of effectiveness, generalization capability, and robust-
ness to label noise. The codes and datasets are available at
https://github.com/SELGroup/SEPC.

Introduction
Probabilistic embedding (Vilnis and McCallum 2015) is
a flexible representation learning method aiming to learn
the underlying probability distribution of data. It has been
broadly applied to various domains such as graph structural
learning (Sun et al. 2022), computer vision (Kim et al. 2021;
Oh et al. 2019; Shi and Jain 2019; Fischer 2020), and natu-
ral language processing (Mahabadi, Belinkov, and Hender-
son 2021; Hu et al. 2024, 2022). In contrast to deterministic
embedding (Dong, Yan, and Wang 2024; Xu et al. 2024),
which maps the input into a fixed latent variable representa-
tion, probabilistic embedding represents each data point as a
probability distribution. Hence, probabilistic embedding in-
herently accounts for the uncertainty and complexity of data
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by controlling the spread of the probability density over the
learning latent space (Oh et al. 2019), showcasing better dis-
criminative ability and robustness.

The mainstream probabilistic embedding methods are
grounded in the Information Bottleneck (IB) princi-
ple (Tishby, Pereira, and Bialek 2000; Tishby and Zaslavsky
2015). IB aims to find compressed representations that main-
tain as much information as possible for the prediction task
while removing as much irrelevant information as possible.
Specifically, it seeks the latent representation Z that is max-
imally informative about the target Y (i.e., maximize mu-
tual information I(Y ;Z)) while being minimally informa-
tive about the input data X (i.e., minimize mutual informa-
tion I(X;Z)) (Sun et al. 2022). The former target is typi-
cally achieved with common task losses like cross entropy
(CE) loss or mean squared error (MSE) loss, whereas var-
ious regularization losses are proposed for the latter goal.
VIB (Alemi et al. 2017) assumes the prior distribution of
Z is the standard normal distribution and utilizes Kull-
back–Leibler (KL) divergence to regularize the learning dis-
tribution p(z|x). Sparse IB (Chalk, Marre, and Tkacik 2016)
changes the prior distribution of VIB to the Student-t dis-
tribution to achieve relevant and sparse coding. MEIB (An,
Jammalamadaka, and Chong 2023) lifts the prior distribu-
tion constraint of VIB and instead uses maximum condi-
tional entropy H(Z|X) as the only regularization. SPC (Hu
et al. 2024) omits the decoder of VIB and proposes an addi-
tional structured regularization that encourages class-level
uniformity within the latent space under the multivariate
Gaussian distribution. However, all of them focus solely on
the individual latent variable Z or the constraint of Z with
the label Y , neglecting the structural information between
latent variables.

In recent years, structural entropy theory (Li and Pan
2016) has demonstrated its advantage in capturing hierar-
chical structural information and has been widely used in
various fields like node classification (Duan et al. 2024),
graph structural learning (Zou et al. 2023), and contrastive
learning (Wu et al. 2023). It considers the structural infor-
mation of the original inputs by modeling the input data as
a graph and then converting the graph into an encoding tree.



The data points are the leaf nodes of the encoding tree, and
each upper node represents a partition, resulting in a hier-
archical clustering of the input data. Low-depth tree nodes
depict more coarse-grained clusters of the input data. Each
node in the encoding tree has its own structural entropy. The
structural entropy of the encoding tree is calculated by sum-
ming the structural entropy of all non-root nodes, represent-
ing the overall structural information of the input. Previous
work (Wang et al. 2023; Zeng, Peng, and Li 2023) mostly fo-
cuses on minimizing the structural entropy of the encoding
trees to obtain the optimized encoding tree or embeddings of
input data, aiming at learning as much task-related informa-
tion as possible. However, the potential for using structural
entropy for regularization remains underexplored. Addition-
ally, as the structural entropy is designed for classification
tasks, how to effectively leverage it in the regression task is
still a problem.

In this paper, we propose a structural entropy-guided
probabilistic coding model, named SEPC. We present a
structural entropy-based regularization loss that incorporates
structural information between latent variables. Specifically,
we first construct the adjacency matrix based on the similar-
ity between embeddings of latent variables and propose to
maximize the structural entropy of the induced graph, which
helps improve the generalization of the model by separat-
ing the probabilistic distribution of each latent variable. Ad-
ditionally, we design a probabilistic encoding tree to adapt
our structural entropy loss in regression tasks. We first dis-
cretize and soften regression labels into soft classification
labels (i.e., each data point belongs to multiple classes with
varying probabilities), diminishing the influence of unsuit-
able classification caused by using only discretization (Pin-
tea et al. 2023). To adapt structural entropy to such soft la-
bels, we relax the constraint that one child belongs to one
parent in the encoding tree, allowing each child to connect
to all upper-level nodes with varying probabilities. Exten-
sive experiments are conducted on 12 natural language un-
derstanding tasks, including 10 classification tasks and 2
regression tasks. Comparative results and analysis demon-
strate that the proposed SEPC enjoys superior effectiveness,
generalization, and robustness compared to the state-of-the-
art (SOTA) baselines. The main contributions are summa-
rized as follows:

• We present a structural entropy based regularization loss,
incorporating the structural information between data
points into model regularization. To our knowledge, this
is the first time that maximizing structural entropy has
been utilized as a regularization loss.

• We propose a probabilistic encoding tree for soft classi-
fication labels and present an effective method to utilize
structural entropy for regression tasks for the first time.

• Extensive experiments on 12 datasets demonstrate that
SEPC achieves SOTA performance in classification and
regression tasks regarding effectiveness, generalization,
and robustness.
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(b) Encoder-only architecture.

Figure 1: Two common architectures of probabilistic coding.

Preliminaries
In this section, we present the basic concepts of probabilistic
coding, the encoding tree, and structural entropy.

Probabilistic Coding
The classical probabilistic coding model employs an
encoder-decoder architecture, as shown in Figure 1(a). The
encoder fe maps input x ∈ X to a Gaussian distribution
N (z;µ,Σ). All distributions of z consist of the embed-
ding space of the latent variable Z. The re-parameterization
trick (Kingma and Welling 2013) is then used to sample z
from the distribution while keeping the gradient unbiased.
Finally, z is mapped by the decoder to fd(z) to predict the
label y ∈ Y . The work (Hu et al. 2024) also proposes an
encoder-only architecture for probabilistic coding (as shown
in Figure 1(b)), omitting the decoder and directly predicting
y using the sample from the learned distribution.

Under the Markov chain constraint Y → X → Z,
the probabilistic coding follows the Information Bottleneck
principle and aims to learn the minimal sufficient informa-
tion for representation Z:

Z = argmin
Z

−I(Z;Y ) + βI(Z;X), (1)

where I(Z;Y ) is the mutual information between Z and Y ,
I(Z;X) is the mutual information between Z and X , and β
is the Lagrangian multiplier trading off sufficiency and min-
imality. Assuming z ∈ Z follows the Gaussian distribution,
the objective of probabilistic coding is as follows:

LPC = Ez∼p(z|x) [− log q(y|z)] + βKL [p(z|x), r(Z)] . (2)

Here, KL refers to the KL divergence operator, p(z|x) =
N (z;µ,Σ) is learned by the encoder fe, r(Z) is the ex-
pected prior distribution, and r(Z) = N (z;0, I) in gen-
eral. q(y|z) is the variational approximation to p(y|z) and
is calculated by the decoder fd or by a non-parametric oper-
ator like the softmax function in the encoder-only architec-
ture (Hu et al. 2024).

Encoding Tree
Given a graph G = {X,E,W}, X is the set of input data
points, E is the edge set, and W ∈ R+ is the edge weight
set. For each point x ∈ X , its degree dx is defined as the sum
of the weights of edges associated with it. The encoding tree
T of G is a multi-child tree with the following properties:
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Figure 2: The overall model of SEPC.

(1) Each tree node α corresponds to a subset of data points
Tα ⊆ X . Especially, for the root node λ of T , we define the
points set it associated with as Tλ = X . For the leaf node α
at the last depth, Tα is a singleton containing a single data
point x ∈ X . If the leaf node α is not at the last depth, Tα is
∅. (2) For each non-leaf tree node α, its i-th immediate child
is α<i>, and its parent node is denoted as α−. (3) For each
non-leaf tree node α, Tα =

⋃Nα

i=1 Tα<i> , Nα is the number
of children of α. With these properties, each depth of a node
in the encoding tree depicts a partition of the data point set
X , and lower depth means a more coarse-grained partition.

Structural Entropy
The structural entropy is defined under the graph G and the
encoding tree T as follows:

HT (G) =
∑

α∈T ,α ̸=λ

HT (G;α), (3)

HT (G;α) = − gα
vol(G)

log2
Vα

Vα−
. (4)

Here, gα is the sum of the weights of the edges that connect
points inside Tα with points outside Tα (i.e., the weights
of the cut edges between Tα and its complement set T ∁

α).
The volume of G, denoted as vol(G), is the sum of the
degrees of all data points X , i.e., vol(G) =

∑
x∈X dx.

Vα =
∑

x∈Tα
dx is the volume of Tα, and α− is the par-

ent node of α.

Proposed Method
In this section, we elaborate on the proposed structural en-
tropy based regularization loss of SEPC, introduce the prob-
abilistic encoding tree for soft classification labels, and de-
scribe how to utilize it in regression tasks. We adopt the
encoder-only architecture (Hu et al. 2024) for probabilistic
coding, and the overall model of SEPC is shown in Figure 2.

Structural Entropy based Regularization Loss
Previous works only consider the individual latent variable
in the regularization loss, ignoring the structural information
between latent variables. To capture the structural informa-
tion, we incorporate structural entropy into the regulariza-
tion loss, as it inherently considers the self-organization of
data. As illustrated in Figure 2, the input data X is first en-
coded into the probabilistic embedding HZ . The graph G is
constructed from Z as follows:

A = σ(HZ ×HT
Z ), (5)
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Figure 3: Probabilistic encoding tree for regression tasks.

where HZ is the embedding of Z, and σ is the sigmoid ac-
tivation function to ensure positive values for the adjacency
matrix A.

The construction of the encoding tree is also straightfor-
ward. We treat the labels as the optimal partition for the data
and construct a three-tier encoding tree. The nodes in the
intermediate layer represent the classes of the classification
task, and each leaf node (i.e., the input data X) is assigned
to an intermediate node according to its label. We define an
assignment matrix C ∈ {0, 1}n×r, where n is the number
of leaf nodes and r is the number of intermediate nodes.
Cij = 1 means the i-th leaf node belongs to the j-th class.
To enhance the capability of the latent representations, we
propose maximizing the structural entropy of the interme-
diate layer nodes, constraining the probabilistic distribution
of the latent variables to ensure separation. The structural
entropy of the intermediate layer nodes for the three-tier en-
coding tree is as follows:

HT
C (G) =

r∑
j=1

−gαj

vol(G)
log2

Vαj

vol(G)
, (6)

where r is the number of classes, gαj
is the sum of the

weights of the cut edges between Tαj
and its complement

set T ∁
αj

, Vαj is the volume of Tαj , and {α1, . . . , αr} is the
intermediate layer nodes in the encoding tree. Utilizing the
adjacency matrix A and the assignment matrix C, the regu-
larization loss format of HT

C (G) is as follows:

LSE = −
r∑

j=1

(
(1− C)TAC

)
jj

sum(A)
× log2

(
1TAC

)
jj

sum(A)
. (7)

Here, 1 is the full-one matrix with shape n× r, the operator
sum(·) sums up the matrix to a scalar, and (·)jj selects the
value in the j-th row and the j-th column of the matrix. The
overall loss of SEPC is as follows:

LSEPC = LPC − γLSE , (8)

where γ is a hyperparameter controlling the weight of our
structural entropy based regularization loss LSE .

Probabilistic Encoding Tree for Regression Tasks
Discretization is a widely used method to transform a re-
gression task into a classification task by binning continu-
ous labels into discrete classes (Muthukumar et al. 2021;
Stewart et al. 2023). However, as the binning borders need to



be predefined, inappropriate borders can lead to unbalanced
or indistinguishable classification labels, hampering model
performance (Pintea et al. 2023). Softening labels mitigates
this issue (Ma et al. 2023), as it allows each data point to be-
long to all classes with different probabilities to express ten-
dencies. We propose a probabilistic encoding tree to utilize
structural entropy theory in such soft classification labels. It
loosens the constraint that one child node is only assigned to
one parent node, allowing the child node to connect with all
up-depth nodes with different probabilities.

As shown in Figure 3, during the discretized period, we
first bin the entire regression label value space into r classes.
Then, we calculate the distance between the regressive label
Y and the centers P = {P1, . . . , Pr} of the r bins:

D = |Y T − P |, (9)

where D ∈ Rn×r, n is the number of data points, and the i-
th row of D denotes the distance between the i-th data point
and the r bin centers. The soft label is then calculated during
the softening period as follows:

Y ′ = softmax(−D), (10)

where −D ensures that a closer distance to the bin cen-
ter corresponds to a higher probability of belonging to this
class. The structural entropy of the intermediate layer nodes
for the three-tier probabilistic encoding tree HT

C (G) is then
defined as follows:

V ′
αj

=
∑
xi∈X

Y ′
ijdxi , (11)

HT (G;αj) = −
g′αj

vol(G)
log2

V ′
αj

vol(G)
, (12)

HT
C (G) =

r∑
j=1

HT (G;αj). (13)

Here, Y ′
ij denotes the soft label of the i-th data point xi re-

garding to the j-th class, and dxi is the degree of xi. αj rep-
resents the j-th intermediate layer nodes in the probabilistic
encoding tree. For g′αj

, the weight of cut edges should be
multiplied by the probability of one vertex belonging to Tαj

and the other belonging to T ∁
αj

. Letting the assignment ma-
trix C = Y ′, the structural entropy loss for the probabilistic
encoding tree is as follows:

LSE = −
r∑

j=1

(
(1− C)TAC

)
jj

sum(A)
× log2

(
1TAC

)
jj

sum(A)
. (14)

It is equivalent to Equation 7 in the formula, except that
the elements of the assignment matrix C are probabilities
between 0 and 1. Thus far, we have presented an effective
method to utilize structural entropy for regression tasks.

Experiments
In this section, we conduct extensive experiments to evaluate
the effectiveness, generalization capability, and robustness
of SEPC. For fairness, all results are reported as the average
and standard deviation of metrics tested with five random
seeds, as in other works.

Experiment Setups
Datasets Following Hu et al. (2024), we evaluate SEPC
on 10 classification task datasets and 2 regression task
datasets. For classification tasks, 7 datasets about tweet
semantic analysis are used: Emoji (Barbieri et al. 2018),
Emotion (Mohammad et al. 2018), Hate (Basile et al.
2019), Irony (Van Hee, Lefever, and Hoste 2018), Offen-
sive (Zampieri et al. 2019), Sentiment (Rosenthal, Farra,
and Nakov 2017), and Stance (Mohammad et al. 2016).
Additionally, we also experiment on three emotion-related
datasets from different domains: ISEAR (Scherer and Wall-
bott 1994), MELD (Poria et al. 2019), and GoEmo-
tions (Demszky et al. 2020). For regression tasks, we utilize
STS-B (Cer et al. 2017) and Claire (Roth, Anthonio, and
Sauer 2022) for evaluation.

Evaluation Metric We use the same metric as in previous
works. The macro-averaged F1 score across all classes is re-
ported for most classification datasets. Following Hu et al.
(2024), we report the macro-averaged F1 score of favor and
against classes for the Stance dataset, the F1 score of the
ironic class for the Irony dataset, and the macro-averaged
recall for the Sentiment dataset. For regression tasks, we re-
port both Pearson and Spearman correlation coefficients.

Baselines We compare SEPC with two categories of clas-
sic baselines: universal models and fine-tuned representa-
tion models. The baseline results are collected from the
work of Hu et al. or evaluated using the source code pro-
vided by the authors. In the universal models, we com-
pare with SVM (Cortes and Vapnik 1995), FastText (Joulin
et al. 2017), BiLSTM (Hochreiter and Schmidhuber 1997),
and GPT-3.51. For the fine-tuned models, we use bert-
base-uncased (Devlin et al. 2019) and roberta-base (Liu
et al. 2020) as the backbone and fine-tune them on the
evaluation datasets. We compare with four deterministic
embedding baselines: cross-entropy (CE) for classification
tasks and mean squared error (MSE) for regression tasks,
CE+CP (Pereyra et al. 2017), CE/MSE+AT (Miyato, Dai,
and Goodfellow 2017), and CE+SCL (Gunel et al. 2021).
Besides, we compare SEPC with four probabilistic embed-
ding models: VIB (Alemi et al. 2017), MINE-IB (Belghazi
et al. 2018), MEIB (An, Jammalamadaka, and Chong 2023),
and SPC (Hu et al. 2024).

Parameter Settings The training epoch number is 20, and
the maximum patience for early stopping is 5 epochs. The
learning rate is 5e-5 in all datasets. A linear learning rate
warm-up is applied over the first 10% of the training data.
The batch size is uniformly set to 128. The trade-off pa-
rameter β and the weight parameter γ are searched from
{1e − 2, 1e − 1, 1, 10}. We set the class number r = 5 for
the STS-B dataset and r = 4 for the Claire dataset, as their
labels range from 0–5 and 1–5, respectively. All experiments
are conducted on two NVIDIA RTX A6000 GPUs.

Evaluations
Classification Tasks We conduct comparative experi-
ments with the baselines on 10 classification datasets and

1https://openai.com/index/chatgpt/



Table 1: Classification evaluation (%) results. The best results are bolded. w/o SE refers to SEPC without the proposed structural
entropy based regularization loss.

Method Emoji Emotion Hate Irony Offensive Sentiment Stance ISEAR MELD GoEmotions Avg.
SVM 29.30 64.70 36.70 61.70 52.30 62.90 67.30 - - - -
FastText 25.80 65.20 50.60 63.10 73.40 62.90 65.40 - - - -
BiLSTM 24.70 66.00 52.60 62.80 71.70 58.30 59.40 - - - -
GPT-3.5 6.34±0.01 73.23±0.18 48.30±0.11 66.81±3.26 63.71±0.13 40.40±3.13 39.45±0.10 67.22±0.09 41.46±0.11 25.21±0.08 47.21

BERT backbone
CE 22.30±0.60 76.05±1.41 44.67±1.78 59.38±3.01 80.16±1.26 70.54±0.44 65.21±0.71 67.17±0.78 39.80±0.84 46.29±0.79 57.16
CE+CP 21.91±0.71 76.28±1.20 45.97±2.93 64.06±2.41 78.99±1.57 70.68±0.31 65.83±0.39 67.20±0.95 39.54±1.61 46.39±0.63 57.69
CE+AT 22.93±0.70 75.08±1.23 46.30±3.61 64.23±2.04 79.68±1.59 70.55±0.57 66.46±1.13 65.70±0.69 39.84±0.38 47.37±0.54 57.81
CE+SCL 21.72±0.51 75.43±1.37 45.86±1.15 65.39±2.46 80.20±0.56 70.70±0.79 65.34±0.60 67.54±0.64 40.00±1.96 46.50±0.46 57.87
VIB 21.31±0.62 77.37±0.71 45.99±1.93 63.82±1.00 80.37±1.11 70.39±0.31 65.43±0.60 67.24±0.57 38.52±0.51 45.89±1.10 57.63
MINE-IB 21.29±0.31 76.60±0.41 47.64±2.11 65.86±2.57 78.67±2.28 69.85±0.54 65.35±0.88 67.62±0.40 41.23±0.67 46.87±0.42 58.10
MEIB 21.87±0.73 76.70±0.82 48.27±1.72 65.87±2.14 80.49±0.81 70.55±0.57 65.59±1.58 67.44±0.50 39.30±0.61 46.26±0.81 58.23
SPC 24.19±1.55 77.15±0.73 57.48±2.99 65.85±1.07 80.65±0.78 70.74±0.12 67.17±1.08 68.94±0.35 42.68±0.94 47.62±1.38 60.25
SEPC 24.85±0.31 78.58±0.25 62.44±2.08 69.56±1.14 82.14±0.59 71.35±0.21 69.25±0.78 69.77±0.26 43.23±0.71 51.16±0.35 62.23
- w/o SE 22.49±0.43 76.63±1.07 56.54±0.68 67.10±0.54 80.31±0.79 70.57±0.54 66.84±0.83 68.69±0.14 42.31±0.39 46.68±0.32 59.82

RoBERTa backbone
CE 30.25±1.32 77.41±1.33 45.49±4.70 57.99±4.96 78.74±2.20 71.80±0.93 66.78±1.34 70.00±0.45 39.23±0.41 46.64±1.15 58.43
CE+CP 31.12±0.84 77.54±0.70 48.59±3.28 58.75±6.19 79.50±0.98 72.82±0.29 66.89±1.67 70.58±0.71 40.74±0.89 47.98±0.65 59.45
CE+AT 32.00±0.93 77.30±1.07 44.71±4.76 60.17±3.17 79.81±1.11 72.51±0.44 67.81±0.95 70.97±0.68 40.10±0.60 47.89±1.21 59.33
CE+SCL 31.09±1.85 76.98±2.02 49.51±2.86 60.71±4.23 80.39±0.83 73.16±0.44 66.73±1.54 70.26±0.45 40.64±1.02 47.87±0.86 59.72
VIB 29.71±0.79 77.99±0.86 49.39±3.08 59.93±4.57 79.63±0.66 72.81±0.39 68.40±0.52 70.74±0.44 38.94±0.55 46.23±0.18 59.38
MINE-IB 31.70±0.45 78.79±0.58 46.39±2.82 57.39±8.27 79.76±0.67 72.85±0.56 67.27±1.00 70.15±0.58 41.80±2.14 48.88±1.04 59.50
MEIB 29.94±1.30 78.73±0.90 49.34±2.42 60.54±2.70 79.68±0.98 72.78±0.29 67.89±1.70 70.86±0.61 39.00±0.37 47.18±1.15 59.59
SPC 32.54±0.48 79.01±0.61 59.80±1.32 65.31±1.91 80.98±1.36 72.96±0.22 69.02±0.63 71.01±0.59 43.99±0.29 50.04±0.60 62.47
SEPC 32.90±0.22 79.82±0.54 63.41±1.27 70.02±1.22 82.09±0.46 73.18±0.34 70.33±0.53 71.92±0.19 44.64±0.42 51.55±0.83 63.99
- w/o SE 31.05±0.63 79.25±0.33 57.13±5.10 67.20±0.86 80.74±0.83 72.73±0.19 69.06±0.41 71.11±0.92 43.23±1.03 48.52±0.86 62.00

Table 2: Regression evaluation (%) results with the
RoBERTa backbone. The best results are bolded, and the
second-best results are underlined. w/o soft refers to SEPC
without the soft label and probabilistic encoding tree.

Method STS-B Claire Avg.Spearman Pearson Spearman Pearson
MSE 88.33±0.32 88.80±0.36 50.37±5.90 49.10±5.74 69.15
MSE+AT 88.40±0.50 89.01±0.37 53.09±0.64 51.87±0.65 70.59
VIB 88.45±0.50 89.01±0.40 52.86±0.88 51.66±0.78 70.49
MEIB 88.61±0.14 89.13±0.17 52.85±0.72 51.39±0.81 70.50
SPC 88.71±0.19 89.31±0.24 53.11±0.95 52.21±0.81 70.84
SEPC 89.10±0.29 89.64±0.20 54.66±0.69 53.81±0.84 71.80
- w/o soft 88.90±0.29 89.27±0.31 53.65±0.64 52.85±0.44 71.17

report the results in Table 1. Both on the BERT backbone
and the RoBERTa backbone, SEPC outperforms all other
baselines with 2.02%-5.07% and 1.52%-5.56% average met-
ric improvements, respectively. Compared to SPC, which is
also an encoder-only architecture-based probability coding
model, SEPC still shows superior performance across all
datasets. These experimental results demonstrate the effec-
tiveness of our proposed structural entropy based regulariza-
tion loss LSE . The most notable enhancement occurs in the
Hate and the Irony dataset, where SEPC with the RoBERTa
backbone surpasses all baselines with improvements rang-

ing from 3.61% to 26.71% and 4.71% to 12.63%, respec-
tively. As the Hate datasets exhibit topic imbalance between
the train and test sets, and the Irony dataset has higher re-
quirements on language understanding because the seman-
tics of ironic text are subtle compared to non-ironic text, the
superior performance also demonstrates the better general-
ization capability of SEPC.

We also conduct an ablation study on SEPC w/o SE
model, disable the proposed LSE , and report the results in
Table 1. It is noteworthy that, despite SEPC w/o SE model
being the same as SPC w/o S model (Hu et al. 2024), we re-
port our experimental results as the hyperparameters and ex-
periment environments differ. The absence of LSE leads to a
performance decrease of an average of 2.41% and 1.99% on
the BERT and RoBERTa backbones, respectively. This in-
dicates the effectiveness of our proposed structural entropy
based regularization loss.

Regression Tasks We experiment with regression tasks on
STS-B and Claire datasets and report Spearman and Pear-
son correlation coefficients results in Table 2. All meth-
ods use RoBERTa as the backbone. SEPC outperforms all
other baselines across all datasets, with an average of 0.96%-
2.65% performance improvement. This demonstrates the ef-
fectiveness of SEPC on the regression tasks. To better under-
stand our proposed probabilistic encoding tree, we conduct
an ablation study by removing the soft label and probabilis-



Table 3: Robustness analysis evaluation (%) results against different noise rates. The best results are bolded.

Method Noisy Emoji Emotion Hate Irony Offensive Sentiment Stance ISEAR MELD GoEmotions Avg.
CE 10% 30.66±0.89 78.15±0.88 47.06±5.40 56.90±4.58 79.46±0.80 72.36±0.74 67.39±1.86 70.40±0.97 42.01±1.94 47.85±1.08 59.22
VIB 10% 30.74±0.48 77.78±2.05 47.64±1.57 58.66±10.60 79.96±0.73 72.13±0.54 67.54±1.20 70.85±0.33 38.63±0.89 47.30±1.65 59.12
MINE-IB 10% 31.14±0.65 78.04±1.03 47.19±3.29 56.80±8.63 78.36±1.46 72.42±0.47 67.16±1.51 70.34±0.44 42.32±1.65 48.56±1.41 59.23
MEIB 10% 31.02±0.47 78.94±0.46 49.28±4.58 57.21±8.07 80.19±0.83 72.09±0.68 68.26±0.68 70.85±0.38 38.67±0.97 46.93±1.06 59.34
SPC 10% 32.25±0.69 78.88±0.47 56.13±5.36 58.88±4.94 80.14±0.28 72.76±0.06 68.57±1.01 71.10±0.62 43.90±1.13 49.32±1.22 61.19
SEPC 10% 32.92±0.39 79.17±0.56 60.93±1.96 69.86±1.33 81.33±0.21 72.99±0.18 69.33±0.99 71.61±0.35 44.57±0.19 51.53±0.64 63.42
CE 20% 31.96±0.88 77.01±1.51 49.12±0.72 60.82±3.56 79.54±1.64 72.06±0.63 68.49±1.20 70.32±0.26 40.16±1.94 47.78±0.84 59.73
VIB 20% 30.46±0.59 79.00±0.49 47.91±2.20 60.67±4.82 79.15±1.22 72.26±0.29 66.83±0.52 71.02±0.25 39.33±1.47 47.83±1.38 59.45
MINE-IB 20% 30.31±0.97 77.84±0.98 46.23±3.23 57.43±8.41 78.65±0.91 72.02±0.83 66.83±1.82 69.26±0.52 42.31±1.58 47.55±0.99 58.84
MEIB 20% 30.84±0.75 78.38±0.88 50.02±5.18 55.12±7.07 78.17±2.55 71.63±1.11 68.05±0.81 70.68±0.38 39.09±0.87 47.29±1.22 58.93
SPC 20% 32.51±0.83 77.97±1.12 55.41±6.00 66.40±4.26 80.33±0.48 72.50±0.55 68.89±1.60 71.10±0.39 43.96±0.50 49.04±0.42 61.81
SEPC 20% 33.04±0.19 79.55±0.42 60.30±1.80 69.61±1.51 81.66±0.44 72.97±0.30 69.81±0.64 71.68±0.26 44.50±0.86 51.64±0.42 63.48
CE 30% 31.82±0.75 77.61±0.90 50.69±2.80 58.90±11.45 78.11±2.07 70.15±0.50 69.07±1.07 70.74±0.56 40.61±2.06 47.76±2.29 59.55
VIB 30% 30.85±0.53 78.23±0.79 48.22±1.97 58.81±8.84 79.38±0.62 72.15±0.52 67.59±0.93 70.27±0.74 38.71±1.19 47.16±1.32 59.14
MINE-IB 30% 30.12±0.79 77.82±1.24 46.05±3.94 56.02±7.24 78.26±1.58 72.23±0.74 65.56±2.67 69.55±0.92 39.46±1.82 46.71±1.87 58.18
MEIB 30% 30.74±0.87 77.99±0.69 49.98±4.00 57.57±5.19 72.53±5.53 71.83±0.40 67.88±0.68 69.86±1.24 39.39±1.06 47.43±1.52 58.52
SPC 30% 32.27±0.48 78.13±1.13 56.04±7.44 59.27±8.56 80.32±0.53 72.44±0.36 69.77±0.93 70.91±0.30 43.29±0.53 49.82±2.55 61.23
SEPC 30% 32.80±0.09 79.49±0.63 60.19±1.91 68.74±1.83 81.55±0.44 72.73±0.19 69.79±0.54 71.57±0.49 44.89±0.71 51.49±0.53 63.32
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Figure 4: The impact of the weight parameter γ on the regularization loss LSE .

tic encoding tree. Instead, we assign each sample to the class
with the closest distance to the class bin center and use the
normal encoding tree to calculate LSE . As shown in Table 2,
SEPC outperforms SEPC without the soft label and proba-
bilistic encoding tree. This proves the information loss of
directly discretizing regression labels and also indicates the
effectiveness of our proposed method of softening and prob-
abilistic encoding in the regression tasks.

Robustness Analysis To evaluate the robustness of SEPC,
we introduce noise by randomly flipping 10%, 20%, and
30% of the labels in the training datasets to any class with the
same probability. The experimental results are reported in
Table 3. SEPC shows superior performance across all noise
rate settings and all datasets compared to baselines. Specif-
ically, it outperforms all baselines with average improve-
ments of 2.23%-4.30%, 1.67%-4.64%, and 2.09%-5.14%
under 10%, 20%, and 30% noise rates, respectively. Besides,

when the noise rate increases from 20% to 30%, SEPC ex-
hibits a minimal average performance decrease. This exper-
iment demonstrates that SEPC has better robustness when
handling noise and data unreliability.

Hyperparameter Sensitivity Analysis We evaluate the
impact of the newly introduced weight hyperparameter γ for
regularization loss LSE on ten classification datasets and il-
lustrate the results in Figure 4. A lower regularization weight
is preferred in most datasets. A too-large weight, γ = 10,
generally leads to a noticeable performance decrement and
higher variance.

Generalization Analysis We conduct experiments under
limited training data conditions to better evaluate the gen-
eralization capability of SEPC. In detail, we randomly se-
lect 90%, 70%, 50%, and 30% of the training data during
the model training period and compare the performance of
SEPC on the test set with other probabilistic coding models.
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Figure 5: Results of different models with different ratios of the training set.
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Figure 6: Visualization of embeddings. The circle represents
the standard deviation of the probabilistic embeddings.

The experimental results are illustrated in Figure 5. SEPC
outperforms all other baselines across all datasets under dif-
ferent percentages of the training set. The superior perfor-
mance under the limited training data demonstrates the gen-
eralization capability of SEPC.

Visualization We visualize the embeddings of SEPC,
VIB, and SPC on the ISEAR dataset to intuitively showcase
the advantages of SEPC’s learned embeddings. As shown
in Figure 6, the embeddings of SEPC are more discrimina-
tive. Additionally, the embedding distribution of SEPC has
a larger standard deviation, thus occupying a larger embed-
ding space. This results in better generalization capability.

Related Work
Probabilistic Embedding Compared to deterministic em-
bedding (Dong, Yan, and Wang 2024; Xu et al. 2024), prob-
abilistic embedding learns a probabilistic distribution for
each input, effectively capturing data uncertainty and com-
plexity, and thus better handling noise and outliers. The
mainstream probabilistic embedding methods follow the In-
formation Bottleneck (IB) principle (Tishby, Pereira, and
Bialek 2000; Tishby and Zaslavsky 2015), which seeks to
discover compressed representations that retain the maxi-
mum amount of relevant information for the prediction task
while eliminating as much irrelevant information as possi-
ble. VIB (Alemi et al. 2017) constrains the latent variable
to follow the Gaussian distribution and utilizes Kullback-

Leibler (KL) divergence between the learned distribution
and the prior Gaussian distribution as the regularization loss.
Sparse IB (Chalk, Marre, and Tkacik 2016) replaces the
prior Gaussian distribution of VIB with the Student-t dis-
tribution. MINE-IB (Belghazi et al. 2018) is a mutual in-
formation neural estimation method with the IB principle,
allowing for the tractable IB application in a continuous set-
ting. Fischer (2020) proposes the conditional entropy bot-
tleneck top improved robustness to adversarial examples.
MEIB (An, Jammalamadaka, and Chong 2023) utilizes max-
imum conditional entropy to serve as the bottleneck of IB.
SPC (Hu et al. 2024) introduces an encoder-only framework,
incorporating a class-level structured regularization loss.

Structural Entropy Unlike early information entropy,
such as Shannon entropy, which is defined by unstruc-
tured probability distributions, structural entropy (Li and
Pan 2016) takes the hierarchical structural information of
the input data into account. It is gaining substantial traction
and is widely used in graph structural learning (Zou et al.
2023), node classification (Duan et al. 2024), social bot de-
tection (Peng et al. 2024; Zeng, Peng, and Li 2024), and
deep clustering (Sun et al. 2024). USER (Wang et al. 2023)
proposes a structural entropy-based loss. However, current
works focus solely on minimizing structural entropy to max-
imize task-related information and are limited to classifica-
tion tasks.

Conclusion
In this paper, we propose SEPC, a structural entropy guided
probabilistic coding model. SEPC utilizes maximizing the
structural entropy as the regularization loss, introducing the
structural information into the optimization, and aims to
separate the latent variables in the class space. Addition-
ally, we propose a probabilistic encoding tree and an effec-
tive method to utilize the structural entropy for regression
tasks based on it. Experiments on 12 datasets demonstrate
the effectiveness, generalization capability, and robustness
of SEPC in both classification and regression tasks.
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